
Algorithms Lecture 3: Treaps and Skip Lists [Sp’20]

I thought the following four [rules] would be enough, provided that I made a firm and constant
resolution not to fail even once in the observance of them. The first was never to accept anything
as true if I had not evident knowledge of its being so. . . . The second, to divide each problem I
examined into as many parts as was feasible, and as was requisite for its better solution. The
third, to direct my thoughts in an orderly way. . .establishing an order in thought even when the
objects had no natural priority one to another. And the last, to make throughout such complete
enumerations and such general surveys that I might be sure of leaving nothing out.

—René Descartes, Discours de la Méthode (1637)

There are those who think that life has nothing le� to chance
A host of holy horrors to direct our aimless dance

—Rush, “Freewill”, Permanent Waves (1980), lyrics by Neal Peart

What is luck?
Luck is probability taken personally.
It is the excitement of badmath.

—Penn Jillette (2001), quoting Chip Denman (1998)

3 Randomized Binary Search Trees

In this lecture, we consider two randomized alternatives to balanced binary search tree structures
such as AVL trees, red-black trees, B-trees, or splay trees, which are arguably simpler than any of
these deterministic structures.

3.1 Treaps

3.1.1 Definitions

A treap is a binary tree in which every node has both a search key and a priority, where the
inorder sequence of search keys is sorted and each node’s priority is smaller than the priorities of
its children.1 In other words, a treap is simultaneously a binary search tree for the search keys
and a (min-)heap for the priorities. In our examples, we will use letters for the search keys and
numbers for the priorities.
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A treap. Letters are search keys; numbers are priorities.

I’ll assume from now on that all the keys and priorities are distinct. Under this assumption,
we can easily prove by induction that the structure of a treap is completely determined by the

1Sometimes I hate English. Normally, ‘higher priority’ means ‘more important’, but ‘first priority’ is also more
important than ‘second priority’. Maybe ‘posteriority’ would be better; one student suggested ‘unimportance’.
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search keys and priorities of its nodes. Since it’s a heap, the node v with highest priority must be
the root. Since it’s also a binary search tree, any node u with key(u)< key(v) must be in the left
subtree, and any node w with key(w) > key(v) must be in the right subtree. Finally, since the
subtrees are treaps, by induction, their structures are completely determined. The base case is
the trivial empty treap.

Another way to describe the structure is that a treap is exactly the binary search tree that
results by inserting the nodes one at a time into an initially empty tree, in order of increasing
priority, using the standard textbook insertion algorithm. This characterization is also easy to
prove by induction.

A third description interprets the keys and priorities as the coordinates of a set of points in
the plane. The root corresponds to a T whose joint lies on the topmost point. The T splits the
plane into three parts. The top part is (by definition) empty; the left and right parts are split
recursively. This interpretation has some interesting applications in computational geometry,
which (unfortunately) we won’t have time to talk about.
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A geometric interpretation of the same treap.

Treaps were first discovered by Jean Vuillemin in 1980, but he called them Cartesian trees.2
The word ‘treap’ was first used by Edward McCreight around 1980 to describe a slightly different
data structure, but he later switched to the more prosaic name priority search trees.3 Treaps were
rediscovered and used to build randomized search trees by Cecilia Aragon and Raimund Seidel in
1989.⁴ A different kind of randomized binary search tree, which uses random rebalancing instead
of random priorities, was later discovered and analyzed by Conrado Martínez and Salvador Roura
in 1996.⁵

3.1.2 Treap Operations

The search algorithm is the usual one for binary search trees. The time for a successful search is
proportional to the depth of the node. The time for an unsuccessful search is proportional to the
depth of either its successor or its predecessor.

To insert a new node z, we start by using the standard binary search tree insertion algorithm
to insert it at the bottom of the tree. At the point, the search keys still form a search tree, but the

2J. Vuillemin, A unifying look at data structures. Commun. ACM 23:229–239, 1980.
3E. M. McCreight. Priority search trees. SIAM J. Comput. 14(2):257–276, 1985.
⁴R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16:464–497, 1996.
⁵C. Martínez and S. Roura. Randomized binary search trees. J. ACM 45(2):288-323, 1998. The results in this paper

are virtually identical (including the constant factors!) to the corresponding results for treaps, although the analysis
techniques are quite different.
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priorities may no longer form a heap. To fix the heap property, as long as z has smaller priority
than its parent, perform a rotation at z, a local operation that decreases the depth of z by one
and increases its parent’s depth by one, while maintaining the search tree property. Rotations
can be performed in constant time, since they only involve simple pointer manipulation.
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A right rotation at x and a le� rotation at y are inverses.

The overall time to insert z is proportional to the depth of z before the rotations—we have to
walk down the treap to insert z, and then walk back up the treap doing rotations. Another way
to say this is that the time to insert z is roughly twice the time to perform an unsuccessful search
for key(z).
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Le� to right: A�er inserting S with priority−1, rotate it up to fix the heap property.
Right to le�: Before deleting S, rotate it down to make it a leaf.

To delete a node, we just run the insertion algorithm backward in time. Suppose we want to
delete node z. As long as z is not a leaf, perform a rotation at the child of z with smaller priority.
This moves z down a level and its smaller-priority child up a level. The choice of which child to
rotate preserves the heap property everywhere except at z. When z becomes a leaf, chop it off.

We sometimes also want to split a treap T into two treaps T< and T> along some pivot key π,
so that all the nodes in T< have keys less than π and all the nodes in T> have keys bigger then
π. A simple way to do this is to insert a new node z with key(z) = π and priority(z) = −∞.
After the insertion, the new node is the root of the treap. If we delete the root, the left and right
sub-treaps are exactly the trees we want. The time to split at π is roughly twice the time to
(unsuccessfully) search for π.

Similarly, we may want to join two treaps T< and T>, where every node in T< has a smaller
search key than any node in T>, into one super-treap. Merging is just splitting in reverse—create
a dummy root whose left sub-treap is T< and whose right sub-treap is T>, rotate the dummy
node down to a leaf, and then cut it off.

The cost of each of these operations is proportional to the depth of some node v in the treap.

• Search: A successful search for key k takes O(depth(v)) time, where v is the node with
key(v) = k. For an unsuccessful search, let v− be the inorder predecessor of k (the node
whose key is just barely smaller than k), and let v+ be the inorder successor of k (the
node whose key is just barely larger than k). Since the last node examined by the binary
search is either v− or v+, the time for an unsuccessful search is either O(depth(v+)) or
O(depth(v−)).
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• Insert/Delete: Inserting a new node with key k takes either O(depth(v+)) time or
O(depth(v−)) time, where v+ and v− are the predecessor and successor of the new node.
Deletion is insertion in reverse.

• Split/Join: Splitting a treap at pivot value k takes either O(depth(v+)) time or O(depth(v−))
time, because the split is identical to inserting a new dummy root with search key k and
priority −∞. Merging is splitting in reverse.

In the worst case, the depth of an n-node treap is Θ(n), so each of these operations has a
worst-case running time of Θ(n).

3.1.3 Random Priorities

A randomized treap is a treap in which the priorities are independently and uniformly distributed
continuous random variables. Whenever we insert a new search key into the treap, we indepen-
dently generate a real number (say) uniformly at random between 0 and 1 and use that number
as the priority of the new node. The precise distribution is unimportant, as long as the same
distribution is used for all nodes, and the probability that two nodes have equal priorities is
zero. (Equal priorities make the analysis slightly messier; in practice, we can choose random
integers from a large range, like 0 to 231 − 1, and break ties arbitrarily; occasional ties have
almost no practical effect on the performance of the data structure.) Also, since the priorities are
independent, each node is equally likely to have the smallest priority.

The cost of all the operations we discussed—search, insert, delete, split, join—is proportional
to the depth of some node in the tree. Here we’ll see that the expected depth of any node
is O(log n), which implies that the expected running time for any of those operations is also
O(log n).

Let xk denote the node with the kth smallest search key. To simplify notation, let us write
i ↑ k (read “i above k”) to mean that x i is a proper ancestor of xk. By definition, the depth of v
is the number of proper ancestors of v, so we can write

depth(xk) =
n
∑

i=1

[i ↑ k].

(Again, we’re using Iverson bracket notation.) Now we can express the expected depth of a node
in terms of these indicator variables as follows.

E[depth(xk)] =
n
∑

i=1

E
�

[i ↑ k]
�

=
n
∑

i=1

Pr[i ↑ k]

(Just as in our analysis of matching nuts and bolts, we’re using linearity of expectation and the
fact that E[X ] = Pr[X = 1] for any zero-one variable X ; in this case, X = [i ↑ k].) So to compute
the expected depth of a node, we only need to compute the probabilities that one node is a
proper ancestor of another.

Fortunately, we can do this easily once we prove a simple structural lemma. Let X (i, k) denote
either the subset of treap nodes {x i , x i+1, . . . , xk} or the subset {xk, xk+1, . . . , x i}, depending on
whether i < k or i > k. The order of the arguments is unimportant; the subsets X (i, k) and
X (k, i) are identical. The subset X (1, n) = X (n, 1) contains all n nodes in the treap.

Lemma 1. For all i 6= k, we have i ↑ k if and only if x i has the smallest priority among all nodes
in X (i, k).
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Proof: There are four cases to consider.
If x i is the root, then i ↑ k, and by definition, it has the smallest priority of any node in the

treap, so it must have the smallest priority in X (i, k).
On the other hand, if xk is the root, then k ↑ i, so i 6 ↑ k. Moreover, x i does not have the

smallest priority in X (i, k)— xk does.
On the gripping hand⁶, suppose some other node x j is the root. If x i and xk are in different

subtrees, then either i < j < k or i > j > k, so x j ∈ X (i, k). In this case, we have both i 6 ↑ k and
k 6 ↑ i, and x i does not have the smallest priority in X (i, k)— x j does.

Finally, if x i and xk are in the same subtree, the lemma follows from the inductive hypothesis
(or, if you prefer, the Recursion Fairy), because the subtree is a smaller treap. The empty treap is
the trivial base case. �

Since each node in X (i, k) is equally likely to have smallest priority, we immediately have the
probability we wanted:

Pr[i ↑ k] =
[i 6= k]
|k− i|+ 1

=























1
k− i + 1

if i < k

0 if i = k

1
i − k+ 1

if i > k

To compute the expected depth of a node xk, we plug this probability into our formula and grind
through the algebra.

E[depth(xk)] =
n
∑

i=1

Pr[i ↑ k] =
k−1
∑

i=1

1
k− i + 1

+
n
∑

i=k+1

1
i − k+ 1

=
k
∑

j=2

1
j
+

n−k+1
∑

i=2

1
j

= Hk − 1+Hn−k+1 − 1

< ln k+ ln(n− k+ 1)− 2

< 2 ln n− 2.

In conclusion, every search, insertion, deletion, split, and join operation in an n-node randomized
binary search tree takes O(log n) expected time.

Since a treap is exactly the binary tree that results when you insert the keys in order of
increasing priority, a randomized treap is the result of inserting the keys in random order. So
our analysis also automatically gives us the expected depth of any node in a binary tree built by
random insertions (without using priorities).

3.1.4 Randomized Quicksort (Again!)

We’ve already seen two completely different ways of describing randomized quicksort. The first
is the familiar recursive one: choose a random pivot, partition, and recurse. The second is a
less familiar iterative version: repeatedly choose a new random pivot, partition whatever subset
contains it, and continue. But there’s a third way to describe randomized quicksort, this time in
terms of (generic, off-the-shelf, standard) binary search trees.

⁶See Larry Niven and Jerry Pournelle, The Gripping Hand, Pocket Books, 1994.
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RandomizedQuicksort(A[1 .. n]):
T ← an empty binary search tree
for i← 1 to n in random order

insert A[i] into T
output the inorder sequence of keys in T

Our treap analysis tells us is that this algorithm will run in O(n log n) expected time, since each
key is inserted in O(log n) expected time.

Why is this quicksort? As in our analysis of Rawlins nuts and bolts algorithm, all we’ve done
is rearrange the order of the comparisons. The binary search tree is the recursion tree created
by the normal version of quicksort. In the recursive formulation, we first compare the initial
pivot against everything else and then recurse. In the binary-tree formulation, the first “pivot”
becomes the root of the tree without any comparisons, but then later, as other keys are inserted
into the tree, each new key is compared against the root. Either way, the first pivot chosen is
compared with every other key. The partition splits the remaining items into a left subarray
and a right subarray; in the binary tree version, these are exactly the items that go into the left
subtree and the right subtree. Because both algorithms define the same two subproblems, by
induction, both algorithms perform the same comparisons within those subproblems.

We’ve even the probability 1/(|k− i|+ 1) before in the analysis of Rawlins’ aglorithm. In the
more familiar setting of sorting an array of numbers, the probability that randomized quicksort
compares the ith largest and kth largest elements is exactly 2/(|k − i|+ 1). The binary tree
version of quicksort compares x i and xk if and only if either i ↑ k or k ↑ i, so the probabilities are
exactly the same.

3.2 Skip Lists

Skip lists, first discovered by Bill Pugh in the late 1980’s,⁷ have many of the usual desirable
properties of balanced binary search trees, but their superficial structure is very different.

At a high level, a skip list is just a sorted linked list with some random shortcuts. To do a
search in a normal singly-linked list of length n, we obviously need to look at n items in the worst
case. To speed up this process, we can make a second-level list that contains roughly half the
items from the original list. Specifically, for each item in the original list, we duplicate it with
probability 1/2. We then string together all the duplicates into a second sorted linked list, and
add a pointer from each duplicate back to its original. Just to be safe, we also add sentinel nodes
at the beginning and end of both lists.

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

A linked list with some randomly-chosen shortcuts.

Now we can find a value x in this augmented structure using a two-stage algorithm. First,
we scan for x in the shortcut list, starting at the −∞ sentinel node. If we find x , we’re done.
Otherwise, we reach some value bigger than x and we know that x is not in the shortcut list. Let
w be the largest item less than x in the shortcut list. In the second phase, we scan for x in the
original list, starting from w. Again, if we reach a value bigger than x , we know that x is not in
the data structure.

⁷William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6):668–676, 1990.
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

Searching for 5 in a list with shortcuts.

Since each node appears in the shortcut list with probability 1/2, the expected number of
nodes examined in the first phase is at most n/2. Only one of the nodes examined in the second
phase has a duplicate. The probability that any node is followed by k nodes without duplicates is
2−k, so the expected number of nodes examined in the second phase is at most 1+

∑

k≥0 2−k = 2.
Thus, by adding these random shortcuts, we’ve reduced the cost of a search from n to n/2+ 2,
roughly a factor of two in savings.

3.2.1 Recursive Random Shortcuts

Now there’s an obvious improvement—add shortcuts to the shortcuts, and repeat recursively.
That’s exactly how skip lists are constructed. For each node in the original list, we repeatedly
flip a coin until we get tails. Each time we get heads, we make a new copy of the node. The
duplicates are stacked up in levels, and the nodes on each level are strung together into sorted
linked lists. Each node v stores a search key key(v), a pointer down(v) to its next lower copy,
and a pointer right(v) to the next node in its level.

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

A skip list is a linked list with recursive random shortcuts.

The search algorithm for skip lists is very simple. Starting at the leftmost node L in the
highest level, we scan through each level as far as we can without passing the target value x , and
then proceed down to the next level. The search ends when we either reach a node with search
key x or fail to find x on the lowest level.

SkipListFind(x , L):
v← L
while (v 6= Null and key(v) 6= x)

if key(right(v))> x
v← down(v)

else
v← right(v)

return v

Intuitively, since each level of the skip lists has about half the number of nodes as the previous
level, the total number of levels should be about O(log n). Similarly, each time we add another
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

Searching for 5 in a skip list.

level of random shortcuts to the skip list, we cut the search time roughly in half, except for a
constant overhead, so O(log n) levels should give us an overall expected search time of O(log n).
Let’s formalize each of these two intuitive observations.

3.2.2 Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume the keys
are the integers 1 through n. Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level. Each new copy of x is created with probability 1/2
from the previous level, essentially by flipping a coin. We can compute the expected value of
L(x) recursively—with probability 1/2, we flip tails and L(x) = 0; and with probability 1/2, we
flip heads, increase L(x) by one, and recurse:

E[L(x)] =
1
2
· 0+

1
2

�

1+ E[L(x)]
�

Solving this equation gives us E[L(x )] = 1.
In order to analyze the expected worst-case cost of a search, however, we need a bound on

the number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum
the way we would compute the average of a sum. Instead, we derive a stronger result: The
depth of a skip list storing n keys is O(logn) with high probability. “High probability” is a
technical term that means the probability is at least 1−1/nc for some constant c ≥ 1; the hidden
constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it
was inserted, so Pr[L(x ) ≥ `] = 2−`. The skip list has at least ` levels if and only if L(x)≥ ` for
at least one of the n search keys.

Pr[L ≥ `] = Pr
�

(L(1)≥ `) ∨ (L(2)≥ `) ∨ · · · ∨ (L(n)≥ `)
�

Using the union bound — Pr[A∨ B]≤ Pr[A] + Pr[B] for any random events A and B — we can
simplify this as follows:

Pr[L ≥ `] ≤
n
∑

x=1

Pr[L(x)≥ `] = n · Pr[L(x)≥ `] =
n
2`

.

When ` ≤ lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper
bound

Pr[L ≥ c lg n]≤
1

nc−1
.
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We conclude that with high probability, a skip list has O(logn) levels.
This high-probability bound indirectly implies a bound on the expected number of levels.

Some simple algebra gives us the following alternate definition for expectation:

E[L] =
∑

`≥0

` · Pr[L = `] =
∑

`≥1

Pr[L ≥ `]

Clearly, if ` < `′, then Pr[L(x) ≥ `] > Pr[L(x) ≥ `′]. So we can derive an upper bound on the
expected number of levels as follows:

E[L(x)] =
∑

`≥1

Pr[L ≥ `] =
lg n
∑

`=1

Pr[L ≥ `] +
∑

`≥lg n+1

Pr[L ≥ `]

≤
lg n
∑

`=1

1 +
∑

`≥lg n+1

n
2`

= lg n+
∑

i≥1

1
2i

[i = `− lg n]

= lgn + 2

So in expectation, a skip list has at most two more levels than an ideal version where each level
contains exactly half the nodes of the next level below. Notice that this is an additive penalty
over a perfectly balanced structure, as opposed to treaps, where the expected depth is a constant
multiple of the ideal lg n.

3.2.3 Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the algorithm backwards.
SkipListFind takes the output from SkipListFind as input and traces back through the data

structure to the upper left corner. Skip lists don’t really have up and left pointers, but we’ll
pretend that they do so we don’t have to write ‘ v←down(v) ’ or ‘ v←right(v) ’.⁸

SkipListFind (v):
while (level(v) 6= L)

if up(v) exists
v← up(v)

else
v← left(v)

Now for every node v in the skip list, up(v) exists with probability 1/2. So for purposes of
analysis, SkipListFind is equivalent to the following algorithm:

FlipWalk(v):
while (v 6= L)

if CoinFlip= Heads
v← up(v)

else
v← left(v)

⁸ LeonardodaVinciwroteallhisnotesusingmirror-writing,butnotbecausehewantedtokeephisdiscoveries
secret.Hejusthadreallybadarthritisinhisrighthand!
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Obviously, the expected number of heads is exactly the same as the expected number of Tails.
Thus, the expected running time of this algorithm is twice the expected number of upward
jumps. But we already know that the number of upward jumps is O(log n) with high probability.
It follows the running time of FlipWalk is O(log n) with high probability (and therefore in
expectation).

Exercises

1. Prove that a treap is exactly the binary search tree that results from inserting the nodes
one at a time into an initially empty tree, in order of increasing priority, using the standard
textbook insertion algorithm.

2. Consider a treap T with n vertices. As in the notes above, identify nodes in T by the ranks
of their search keys; thus, ‘node 5’ means the node with the 5th smallest search key. Let
i, j, and k be integers such that 1≤ i ≤ j ≤ k ≤ n.

(a) Prove that the expected number of proper descendants of any node in a treap is
exactly equal to the expected depth of that node.

(b) The left spine of a binary tree is a path starting at the root and following only left-child
pointers. What is the expected number of nodes in the left spine of T?

(c) What is the expected number of leaves in T? [Hint: What is the probability that
node k is a leaf?]

(d) What is the expected number of nodes in T with two children?

(e) What is the expected number of nodes in T with exactly one child?
?(f) What is the expected number of nodes in T with exactly one grandchild?
(g) Define the priority rank of a node in T to be one more than the number of nodes with

smaller priority. For example, the root of T always has priority rank 1, and one of the
children of the root has priority rank 2. What is the expected priority rank of node i?

(h) What is the expected priority rank of the left child of the root (given that such a node
exists)?

?(i) What is the expected priority rank of the leftmost grandchild of the root (given that
such a node exists)?

?(j) What is the expected priority rank of a node with depth d?

(k) What is the exact probability that node j is a common ancestor of node i and node k?

(l) What is the exact expected length of the unique path in T from node i to node k?

(m) What is the expected (key) rank of the leftmost leaf in T?

(n) What is the expected (key) rank of the leftmost node in T with two children (given
that such a node exists)?

(o) What is the probability that T has no nodes with two children?

3. Let X be a set of n real numbers. For any two numbers a ≤ z, let [a, z] denote the closed
interval {a ≤ x ≤ z | x ∈ R}. An interval emptiness query over the set X asks, given two
real numbers a ≤ z, whether the subset X ∩ [a, z] is empty.
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(a) Suppose X is stored (as the search keys) in a randomized treap. Describe an algorithm
to answer an emptiness query for any interval [a, z] in O(1+ log(n/w)) time, where
w= 1+ |X ∩ [a, z]|. In particular, if X ∩ [a, z] =∅, your query algorithm should run
in O(log n) time, and if X ⊆ [a, z], your query algorithm should run in O(1) time.

(b) Consider a weighted version of randomized treaps where each search key k comes
with a positive integer weight w(k), and the priority of k is defined as the minimum
of w(k) independent real random numbers.

Prove that the expected depth of the node storing any key k is at most 1+2 ln( W
w(k)),

where W =
∑

i w(i) is the sum of the weights of all nodes. [Hint: Use the identity
x/y ≤ − ln(1− x

y ) = ln y − ln(y − x), which holds for all 0≤ x < y .]
(c) Suppose X is stored in a skip list. Describe an algorithm to answer an emptiness

query for any interval [a, z] in O(1+ log(n/w)) time, where w= 1+ |X ∩ [a, z]|. In
particular, if X ∩ [a, z] =∅, your query algorithm should run in O(log n) time, and if
X ⊆ [a, z], your query algorithm should run in O(1) time.

(d) Now consider a weighted version of skip lists, where each search key k ∈ X comes
with a positive integer weight w(k). To determine the number of lists that contain a
given key k ∈ X , we essentially insert w(k) independent copies of k into the skip list,
but then keep only most successful copy. More formally, each search key k at each
level of the weighted skip list survives to the next level with probability 1− 2−w(k).

Prove that the expected time to find any key k in a weighted skip list is O(1+
log( W

w(k))), where W =
∑

i w(i) is the sum of the weights of all search keys.

4. Recall that a priority search tree is a binary tree in which every node has both a search key
and a priority, arranged so that the tree is simultaneously a binary search tree for the keys
and a min-heap for the priorities. A heater is a priority search tree in which the priorities
are given by the user, and the search keys are distributed uniformly and independently at
random in the real interval [0, 1]. Intuitively, a heater is a sort of anti-treap.⁹

The following problems consider an n-node heater T whose priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T
with priority 5. For example, the min-heap property implies that node 1 is the root of T .
Finally, let i and j be integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+1)-element set {1, 2, . . . , i, j}, elements
i and j are adjacent with probability 2/(i + 1).

(b) Prove that node i is an ancestor of node j with probability exactly 2/(i + 1). [Hint:
Use part (a)!]

(c) What is the exact probability that node i is a descendant of node j? [Hint: Don’t use
part (a)!]

(d) What is the exact expected depth of node j?
(e) Describe and analyze an algorithm to insert a new item into a heater. Express the

expected running time of the algorithm in terms of the rank of the newly inserted
item.

(f) Describe an algorithm to delete the minimum-priority item (the root) from an n-node
heater. What is the expected running time of your algorithm?

⁹If you choose not to decide, you still have made a choice.
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5. Prove the following basic facts about skip lists, where n is the number of keys.

(a) The expected number of nodes is O(n).
(b) The number of nodes is O(n) with high probability.
(c) A new key can be inserted in O(log n) time with high probability.
(d) A key can be deleted in O(log n) time with high probability.

6. Suppose we are given two skip lists, one storing a set A of m keys, and the other storing
a set B of n keys. Describe and analyze an algorithm to merge these into a single skip
list storing the set A∪ B in O(n+m) expected time. Do not assume that every key in A is
smaller than every key in B; the two sets could be arbitrarily intermixed. [Hint: Do the
obvious thing.]

7. Any skip list L can be transformed into a binary search tree T (L) as follows. The root of
T (L) is the leftmost node on the highest non-empty level of L; the left and right subtrees
are constructed recursively from the nodes to the left and to the right of the root. Let’s call
the resulting tree T (L) a skip list tree.

(a) Show that any search in T (L) is no more expensive than the corresponding search
in L. (Searching in T (L) could be considerably cheaper—why?)

(b) Describe an algorithm to insert a new search key into a skip list tree in O(log n)
expected time. Inserting key x into the tree T (L) should produce exactly the same
tree as inserting x into the skip list L and then transforming L into a tree. [Hint:
You need to maintain some additional information in the tree nodes.]

(c) Describe an algorithm to delete a search key from a skip list tree in O(log n) expected
time. Again, deleting key x from T (L) should produce exactly the same tree as
deleting x from L and then transforming L into a tree.

8. Consider the following “loose” variant of treaps. Instead of generating priorities uniformly
at random, for each node, we flip an independent fair coin until it comes up heads, and
define the priority of the node to be the number of flips. Thus, for every positive integer k,
a node has priority k with probability 2−k. In addition, we invert the heap property, by
requiring that the priority of any node is not larger than the priority of its parent.

This method creates many nodes with the same priority; in particular, about half the
nodes will have priority 1. Thus, a single set of search keys and priorities may be consistent
with many different loose treaps.

Prove that the expected depth of any node in an n-node “loose treap” is O(log n). To be
pedantic, the expectation is over the random choice of priorities, but for each choice of
priorities, we consider the worst possible loose treap.

[Hint: This is almost exactly the same as the previous question.]

?9. In the usual theoretical presentation of treaps, the priorities are random real numbers
chosen uniformly from the interval [0,1]. In practice, however, computers have access only
to random bits. This problem asks you to analyze an implementation of treaps that takes
this limitation into account.
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Suppose the priority of a node v is abstractly represented as an infinite sequence
πv[1 ..∞] of random bits, which is interpreted as the rational number

priority(v) =
∞
∑

i=1

πv[i] · 2−i .

However, only a finite number `v of these bits are actually known at any given time.
When a node v is first created, none of the priority bits are known: `v = 0. We generate
(or “reveal”) new random bits only when they are necessary to compare priorities. The
following algorithm compares the priorities of any two nodes in O(1) expected time:

LargerPriority(v, w):
for i← 1 to∞

if i > `v
`v ← i; πv[i]← RandomBit

if i > `w
`w← i; πw[i]← RandomBit

if πv[i]> πw[i]
return v

else if πv[i]< πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v
denote the total number of random bits generated by calls to LargerPriority during these
insertions.

(a) Prove that E[L] = Θ(n).

(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

10. A meldable priority queue stores a set of keys from some totally-ordered universe (such
as the integers) and supports the following operations:

• MakeQueue: Return a new priority queue containing the empty set.

• FindMin(Q): Return the smallest element of Q (if any).

• DeleteMin(Q): Remove the smallest element in Q (if any).

• Insert(Q, x): Insert element x into Q, if it is not already there.

• DecreaseKey(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x ,
the operation fails.) The input is a pointer directly to the node in Q containing x .

• Delete(Q, x): Delete the element x ∈Q. The input is a pointer directly to the node
in Q containing x .

• Meld(Q1,Q2): Return a new priority queue containing all the elements of Q1 and
Q2; this operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree,
where each node stores a key, along with pointers to its parent and two children. Meld
can be implemented using the following randomized algorithm:
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Meld(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←Meld(left(Q1),Q2)

else
right(Q1)←Meld(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of Meld(Q1,Q2) is O(log n),
where n= |Q1|+ |Q2|. [Hint: What is the expected length of a random root-to-leaf
path in an n-node binary tree, where each left/right choice is made with equal
probability?]

(b) Prove that Meld(Q1,Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to Meld and O(1) additional time. (This implies that every
operation takes O(log n) time with high probability.)

?11. Our probabilistic analysis of treaps and skip lists assumes that the sequence of operations
used to query and update the data structures are independent of the random choices used
to build the data structure. However, if a malicious adversary has additional information
about the data structure, he can force significantly worse performance.

(a) Let π[0 .. n2] be an arbitrary permutation of the numbers 0, 1,2, . . . , n2. For each
index i, define two integers:

• ai is the length of the longest increasing subsequence of π that ends with π[i].
• bi be the length of the longest decreasing subsequence of π that starts with π[i].

Argue that the n2 + 1 ordered pairs (ai , bi) are all distinct.

(b) Prove the Erdős-Szekeres Theorem: Any permutation π[0 .. n2] of the numbers
0,1, 2, . . . , n2 contains either an increasing subsequence of length n+1 or a decreasing
subsequence of length n+ 1.

(c) Suppose after constructing a skip list with n items, the adversary discovers the number
of levels that contain each item. Prove that by deleting a subset of the nodes, the
adversary can force the maximum search time to be Ω(

p
n).

(d) Suppose after constructing a skip list with n items, the adversary discovers the number
of levels that contain each item. Prove that by deleting a subset of the nodes, the
adversary can force the maximum search time to be Ω(n) with high probability.

(e) Suppose after constructing a treap with n items, the adversary discovers the random
priorities of each item. Prove that by deleting a subset of the nodes, the adversary
can force the maximum depth of the treap to be Ω(

p
n).
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