Algorithms

CS 473, Fall 2021

Reductions and NP

Lecture 2 Saturday, August 21, 2021

LATEXed: August 26, 2021 12:42

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

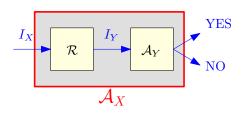
Clicker question

- About as many boards as the bored Mongol hordes would hoard if the bored Mongol hordes did hoard boards in gourds.
- Probably none. Woodchucks are not particularly tree-oriented. They got the name "woodchuck" from British trappers who could not quite wrap their tongues around the Cree Indian name "wuhak".
- It depends on how good his dentures are.
- The answer my friend is blowing in the wind.
- IDK I don't know.

Part I

Total recall...

Polynomial-time reductions



- Algorithm is efficient if it runs in polynomial-time.
- Interested only in polynomial-time reductions.
- **3** $X \leq_P Y$: Have polynomial-time reduction from problem X to problem Y.
- **4** $\mathcal{A}_{\mathbf{Y}}$: poly-time algorithm for \mathbf{Y} .
- \bullet Polynomial-time/efficient algorithm for X.

2.1: Polynomial time reductions

Polynomial-time reductions and instance sizes

Proposition

 \mathcal{R} : a polynomial-time reduction from \mathbf{X} to \mathbf{Y} . Then, for any instance $\mathbf{I}_{\mathbf{X}}$ of \mathbf{X} , the size of the instance $\mathbf{I}_{\mathbf{Y}}$ of \mathbf{Y} produced from $\mathbf{I}_{\mathbf{X}}$ by \mathcal{R} is polynomial in the size of $\mathbf{I}_{\mathbf{X}}$.

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Unimportant remove

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

Definition

 $X \leq_P Y$: polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A such that:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- ② \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- 3 Answer to I_X YES \iff answer to I_Y is YES.

Polynomial reductions and poly time

Polynomial reductions and poly time

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Polynomial reductions and poly time

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a *Karp reduction*.

Composing polynomials...

A quick reminder

 $oldsymbol{0}$ f and g monotone increasing. Assume that:

1
$$f(n) \le a * n^b$$
 (i.e., $f(n) = O(n^b)$)

2
$$g(n) \le c * n^d$$
 (i.e., $g(n) = O(n^d)$)

a, b, c, d: constants.

- Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition

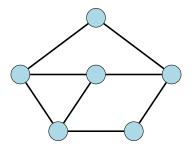
 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

- **Note:** $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- ② To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y
- \odot ...show that an algorithm for Y implies an algorithm for X.

2.2: Independent Set and Vertex Cover

Vertex Cover

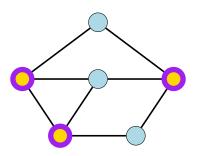
Given a graph G = (V, E), a set of vertices S is:



Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in S.



The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k. **Goal:** Is there a vertex cover of size < k in G?

Can we relate **Independent Set** and **Vertex Cover**?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph.

 ${m S}$ is an independent set $\iff {m V}\setminus {m S}$ is a vertex cover.

Proof:

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - 2 Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$.
 - **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.

Proof continued...

- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - **2** uv is not an edge of **G**, as otherwise $V \setminus S$ does not cover uv.
 - $\bullet \longrightarrow S$ is thus an independent set.

Independent Set \leq_P Vertex Cover

- (G, k): instance of the Independent Set problem.
 G: graph with n vertices. k: integer.
- ② **G** has an independent set of size $\geq k$ \iff **G** has a vertex cover of size $\leq n k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- We conclude:
 - **1** Independent Set \leq_P Vertex Cover.
 - Vertex Cover ≤_P Independent Set.
 (Because same reduction works in other direction.)

2.3: Vertex Cover and Set Cover

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Set cover example

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

Solution: $\{S_2, S_6\}$ is a set cover

Set cover example

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

Solution: $\{S_2, S_6\}$ is a set cover

Set cover example

Example

Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, k = 2 with

$$S_1 = \{3,7\}$$
 $S_2 = \{3,4,5\}$
 $S_3 = \{1\}$ $S_4 = \{2,4\}$
 $S_5 = \{5\}$ $S_6 = \{1,2,6,7\}$

Solution: $\{S_2, S_6\}$ is a set cover

Vertex Cover \leq_{P} Set Cover

- Instance of Vertex Cover: G = (V, E) and integer k.
- Construct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- Observe that **G** has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_P Set Cover

- Instance of Vertex Cover: G = (V, E) and integer k.
- Construct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- Observe that **G** has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

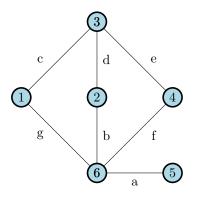
Vertex Cover \leq_P Set Cover

- Instance of Vertex Cover: G = (V, E) and integer k.
- Construct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
 - U = E.
- Observe that **G** has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_P Set Cover

- Instance of Vertex Cover: G = (V, E) and integer k.
- Construct an instance of Set Cover as follows:
 - Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
 - $\mathbf{0}$ $U = \mathbf{E}$.
 - We will have one set corresponding to each vertex; $S_{\nu} = \{e \mid e \text{ is incident on } \nu\}.$
- Observe that **G** has vertex cover of size k if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

Vertex Cover \leq_{P} Set Cover: Example

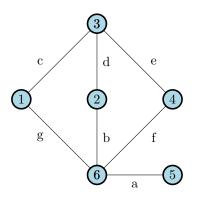


Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with $S_1 = \{c, g\}$ $S_2 = \{b, d\}$ $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$

$$S_3 = \{c, d, e\}$$
 $S_4 = \{e, f\}$
 $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

{3, 6} is a vertex cover

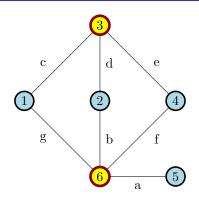
Vertex Cover \leq_P Set Cover: Example



Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with $S_1 = \{c, g\}$ $S_2 = \{b, d\}$ $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$ $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

{3, 6} is a vertex cover

Vertex Cover \leq_P Set Cover: Example



Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with $S_1 = \{c, g\}$ $S_2 = \{b, d\}$ $S_3 = \{c, d, e\}$ $S_4 = \{e, f\}$ $S_5 = \{a\}$ $S_6 = \{a, b, f, g\}$

 $\{S_3, S_6\}$ is a set cover

 $\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- 2 Satisfies the property that answer to I_X is YES $\iff I_Y$ is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Runs in polynomial time.

Summary

- polynomial-time reductions.
 - If $X \leq_P Y$ + have efficient algorithm for Y \Longrightarrow efficient algorithm for X.
 - ② If $X \leq_P Y$ + no efficient algorithm for X \Longrightarrow **no** efficient algorithm for Y.
- Examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

2.4: The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1 literal**: boolean var x_i or its negation $\neg x_i \ (\equiv \overline{x_i})$.
- 2 *clause*: disjunction literals: $x_1 \lor x_2 \lor \neg x_4$.
- **3** conjunctive normal form (CNF) = propositional formula which is a conjunction of clauses $(x_1 \lor x_2 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3}) \land x_5$: CNF formula.
- **4** A formula φ is a 3CNF: CNF s.t. every clause has **exactly** 3 literals.

$$(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$$
 is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable

of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable

of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- ① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- ② $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

3SAT

Given a 3 CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Importance of **SAT** and **3SAT**

- SAT, 3SAT: basic constraint satisfaction problems.
- Many different problems can reduced to them: simple+powerful expressivity of constraints.
- Arise in many hardware/software verification/correctness applications.
- ... fundamental problem of NP-Completeness.

2.4.1: Converting a boolean formula with $\bf 3$ variables to 3SAT

$z = \overline{x}$

Clicker question

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- \bigcirc $z \oplus x$.

$z = x \wedge y$

Clicker question

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

- $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

Z	X	y	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Z	X	y	$z = x \wedge y$		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Z	x	y	$z = x \wedge y$				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$			
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z = x \wedge y$ to 3SAT

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$	$\overline{z} \lor x \lor y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z = x \land y$ to 3SAT

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} \vee \overline{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} \vee \overline{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	X	y	$z = x \wedge y$	$z \vee \overline{x} \vee \overline{y}$	$\overline{z} \lor x \lor y$	$\overline{z} \lor x \lor \overline{y}$	$\overline{z} \vee \overline{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $z = x \wedge y$ to 3SAT

Z	X	y	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Z	X	y	$z = x \wedge y$	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Z	X	y	$z = x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Z	X	y	$z = x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z \vee \overline{x} \vee \overline{y}$
1	0	0	0	$\overline{z} \lor x \lor y$
1	0	1	0	$\overline{z} \lor x \lor y$
1	1	0	0	$\overline{z} \lor x \lor y$
1	1	1	1	

$ \begin{array}{c ccccc} 1 & 0 & 0 & \overline{z} \lor x \lor y \\ \hline 1 & 0 & 1 & 0 & \overline{z} \lor x \lor y \end{array} $	Z	X	y	$z = x \wedge y$	clauses
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	0	$z \vee \overline{x} \vee \overline{y}$
	1	0	0	0	$\overline{z} \lor x \lor y$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	0	$\overline{z} \lor x \lor y$
1 1 1 1	1	1	0	0	$\overline{z} \lor x \lor y$
1 1 1 1	1	1	1	1	

Simplify further if you want to

- ① Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:
- ② Using the above two observation, we have that our formula $\psi \equiv$ $\left(z\vee\overline{x}\vee\overline{y}\right)\wedge\left(\overline{z}\vee x\vee y\right)\wedge\left(\overline{z}\vee x\vee\overline{y}\right)\wedge\left(\overline{z}\vee\overline{x}\vee y\right)$ is equivalent to $\psi \equiv \left(\mathbf{z} \vee \overline{\mathbf{x}} \vee \overline{\mathbf{y}} \right) \wedge \left(\overline{\mathbf{z}} \vee \mathbf{x} \right) \wedge \left(\overline{\mathbf{z}} \vee \mathbf{y} \right)$

Lemma

$$(z = x \wedge y) \equiv (z \vee \overline{x} \vee \overline{y}) \wedge (\overline{z} \vee x) \wedge (\overline{z} \vee y)$$

$z = x \vee y$

Clicker question

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \lor y$:

- $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

Z	X	y	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Z	X	y	$z = x \vee y$	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Z	X	y	$z = x \vee y$	clauses
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Z	X	y	$z = x \vee y$	clauses
0	0	0	1	
0	0	1	0	$z \lor x \lor \overline{y}$
0	1	0	0	$z \vee \overline{x} \vee y$
0	1	1	0	$z \vee \overline{x} \vee \overline{y}$
1	0	0	0	$\overline{z} \lor x \lor y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

Z	X	y	$z = x \vee y$	clauses
0	0	0	1	
0	0	1	0	$z \lor x \lor \overline{y}$
0	1	0	0	$z \vee \overline{x} \vee y$
0	1	1	0	$z \vee \overline{x} \vee \overline{y}$
1	0	0	0	$\overline{z} \lor x \lor y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$(z = x \lor y)$$

$$\equiv$$

$$(z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y)$$

Simplify further if you want to

$$(z = x \vee y) \equiv (z \vee x \vee \overline{y}) \wedge (z \vee \overline{x} \vee y) \wedge (z \vee \overline{x} \vee \overline{y}) \wedge (\overline{z} \vee x \vee y)$$

- ① Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:
- Using the above two observation, we have the following.

Lemma

The formula $z = x \lor y$ is equivalent to the CNF formula $(z = x \lor y) \equiv (z \lor \overline{y}) \land (z \lor \overline{x}) \land (\overline{z} \lor x \lor y)$

Converting $z = \overline{x}$ to CNF

Lemma

$$z = \overline{x} \equiv (z \vee x) \wedge (\overline{z} \vee \overline{x}).$$

Converting into CNF: summary

Lemma

$$z = \overline{x} \qquad \equiv \qquad (z \lor x) \land (\overline{z} \lor \overline{x}).$$

$$z = x \lor y \qquad \equiv \qquad (z \lor \overline{y}) \land (z \lor \overline{x}) \land (\overline{z} \lor x \lor y)$$

$$z = x \land y \qquad \equiv \qquad (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x) \land (\overline{z} \lor y)$$

Exercise...

- Given:
 - $f(x_1, \ldots, x_d)$ a boolean function
 - ② Formally: $f: \{0,1\}^d \to \{0,1\}$.
- 2 Prove that there is CNF formula that computes f.
- **3** Prove that there is 3CNF formula that computes f.

2.4.2: SAT and 3SAT

$SAT \leq_P 3SAT$

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have *exactly* **3** different literals.

Reduce from of SAT to 3SAT: make all clauses to have 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- 2 Break long clauses into shorter clauses.
- 3 Repeat the above till we have a 3CNF.

$3SAT \leq_P SAT$

- \bullet 3SAT \leq_P SAT.
- Because...

A **3SAT** instance is also an instance of **SAT**.

$SAT \leq_P 3SAT$

Claim

 $SAT \leq_P 3SAT$.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- $oldsymbol{\Phi}$ is satisfiable iff $oldsymbol{\varphi}'$ is satisfiable.
- ② φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

$SAT \leq_P 3SAT$

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ # liters \neq 3.

 \forall clauses with \neq 3 literals: construct set logically equivalent clauses.

① Clause with one literal: $c = \ell$ clause with a single literal. u, v be new variables. Consider

$$c' = (\ell \lor u \lor v) \land (\ell \lor u \lor \neg v) \land (\ell \lor \neg u \lor v) \land (\ell \lor \neg u \lor \neg v).$$

Observe: c' satisfiable $\iff c$ is satisfiable

$SAT \leq_P 3SAT$

A clause with two literals

Reduction Ideas: 2 and more literals

① Case clause with 2 literals: Let $c = \ell_1 \vee \ell_2$. Let u be a new variable. Consider

$$c' = (\ell_1 \vee \ell_2 \vee u) \wedge (\ell_1 \vee \ell_2 \vee \neg u).$$

c is satisfiable $\iff c'$ is satisfiable

Breaking a clause

Lemma

For any boolean formulas X and Y and z a new boolean variable.

Then

$$X \lor Y$$
 is satisfiable

if and only if, z can be assigned a value such that

$$(X \lor z) \land (Y \lor \neg z)$$
 is satisfiable

(with the same assignment to the variables appearing in \boldsymbol{X} and \boldsymbol{Y}).

SAT \leq_{P} **3SAT** (contd)

Clauses with more than 3 literals

Let
$$c = \ell_1 \lor \dots \lor \ell_k$$
. Let $u_1, \dots u_{k-3}$ be new variables. Consider $c' = (\ell_1 \lor \ell_2 \lor u_1) \land (\ell_3 \lor \neg u_1 \lor u_2) \land (\ell_4 \lor \neg u_2 \lor u_3) \land \dots \land (\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land (\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = (\ell_1 \vee \ell_2 \ldots \vee \ell_{k-2} \vee u_{k-3}) \wedge (\ell_{k-1} \vee \ell_k \vee \neg u_{k-3}).$$

Example

$$\varphi = (\neg x_1 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1) \land (x_1).$$

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Example

$$\varphi = (\neg x_1 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1) \land (x_1).$$

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1) \land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v) \land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Example

$$\varphi = (\neg x_1 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1) \land (x_1).$$

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1) \land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v) \land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Example

$$\varphi = (\neg x_1 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1) \land (x_1).$$

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT(\varphi):

// \varphi: CNF formula.

for each clause c of \varphi do

if c does not have exactly 3 literals then

construct c' as before

else

c' = c

\psi is conjunction of all c' constructed in loop

return Solver3SAT(\psi)
```

Correctness (informal)

```
\varphi is satisfiable \iff \psi satisfiable ... \forall c \in \varphi: new 3CNF formula c' is equivalent to c.
```

Running time of converting **SAT** to **3SAT**?

Clicker question

Let ψ be a **SAT** formula with n variables and m clauses, of total length t. Converting it to **3SAT** can be done in

- O(n+m+t) time.
- $O((n+m+t)^2) \text{ time.}$
- $O((n+m+t)^3) \text{ time.}$
- **O**(1) time.
- $\mathbf{O}(t^2)$ time.

(Faster is better, naturally.)

What about **2SAT**?

- **1 2SAT** can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- lacktriangledight If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause. convert to collection of 2CNF clauses. Introduce a fake variable α ,

and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

2.4.3: Reducing 3SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph **G**, integer **k**.

Question: Is there an independent set in **G** of size **k**?

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a $3 \mathrm{CNF}$ formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

There are two ways to think about 3SAT

- ◆ Assign 0/1 (false/true) to vars ⇒ formula evaluates to true.
 Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true. Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true. Each clause evaluates to true.
- 2 Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true. Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.Fail if two literals picked are in *conflict*,

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true. Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 ... Fail if two literals picked are in *conflict*,
 e.g. you pick x_i and ¬x_i

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true. Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 Fail if two literals picked are in conflict,
 you pick x_i and ¬x_i

- **G** will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

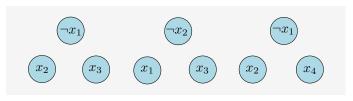


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

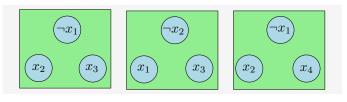


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

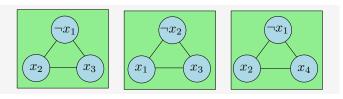


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

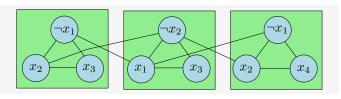


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

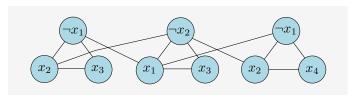


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Correctness

Proposition

 φ is satisfiable \iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} \mathbf{k} : number of clauses in φ .

Proof.

- \Rightarrow **a**: truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size

Correctness

Proposition

 φ is satisfiable \iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} \mathbf{k} : number of clauses in φ .

Proof.

- \Rightarrow **a**: truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

 φ is satisfiable \iff \mathbf{G}_{φ} has an independent set of size \mathbf{k} (= number of clauses in φ).

Proof.

- \Leftarrow **S**: independent set in G_{φ} of size k
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting clauses
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

3SAT < P Independent Set reduction time?

Clicker question

Given an instance of **3SAT** formula with n variables, m clauses, converting it to an equivalent instance of **3SAT** takes:

- \bigcirc O(n+m).
- $O(n^2 + m)$
- \bigcirc $O(n+m^2)$
- $O((n+m)^2)$