Algorithms ICS 473, Fall 2021

Network flow, duality and Linear Programming

Lecture 24 November 18, 2021

Rounding thingies I

Clicker question

Let G = (V, E) be a given graph. Consider the following:

$$\begin{array}{ll} \text{max} & \sum_{\mathsf{v}\in\mathsf{V}} x_\mathsf{v},\\ \text{such that} & x_\mathsf{v}\in\{0,1\} & \forall \mathsf{v}\in\mathsf{V}\\ & x_\mathsf{v}+x_\mathsf{u}\leq 1 & \forall \mathsf{vu}\in\mathsf{E}. \end{array}$$

The above IP (Integer program) solves the problem of:

- Computing largest clique in G.
- Computing largest edge cover in G.
- Computing largest vertex cover in G.
- Omputing largest clique cover in G.
- © Computing largest independent set in G.

24.1: Network flow via linear programming

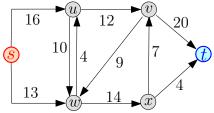
24.1.1: Network flow: Problem definition

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- Limited capacities.

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- Limited capacities.



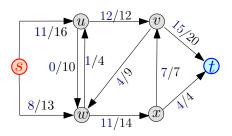
Network: Definition

- Given a network with capacities on each connection.
- Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- **G** = (**V**, **E**): a **directed** graph.
- $\forall (u, v) \in E(G)$: capacity $c(u, v) \geq 0$,
- $\bullet (u,v) \notin G \implies c(u,v) = 0.$
- s: source vertex, t: target sink vertex.
- G, s, t and $c(\cdot)$: form flow network or network.

Network Example



- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity \leq capacity of edge.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : E(G) \to \mathbb{R}$:

Bounded by capacity:

$$\forall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- Two special vertices: (i) the source s and the sink t.
- **Onservation of flow** (Kirchhoff's Current Law):

$$\forall u \in V \setminus \{s,t\}$$
 $\sum_{v} f(u,v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Problem: Max Flow

• Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow \mathbf{f} such that $|\mathbf{f}|$ is maximized.

24.1.2: Network flow via linear programming

Network flow via linear programming

Input: G = (V, E) with source s and sink t, and capacities $c(\cdot)$ on the edges. Compute max flow in G.

The edges. Compute max now in
$$\mathbf{G}$$
:
$$\forall (u, v) \in E \qquad 0 \leq x_{u \to v} \\ x_{u \to v} \leq \mathbf{c}(u \to v)$$

$$\forall v \in V \setminus \{\mathbf{s}, \mathbf{t}\} \qquad \sum_{(u, v) \in E} x_{u \to v} - \sum_{(v, w) \in E} x_{v \to w} \leq 0$$

$$\sum_{(u, v) \in E} x_{u \to v} - \sum_{(v, w) \in E} x_{v \to w} \geq 0$$

$$\max \sum_{(\mathbf{s}, u) \in E} x_{\mathbf{s} \to u}$$

24.1.3: Min-Cost Network flow via linear programming

Min cost flow

Input:

G = (V, E): directed graph.

[s:] source.

t: sink

c(·): capacities on edges,

 ϕ : Desired amount (value) of flow.

 $\kappa(\cdot)$: Cost on the edges.

Definition - cost of flow

cost of flow f:
$$cost(f) = \sum_{e \in E} \kappa(e) * f(e)$$
.

Min cost flow problem

Min-cost flow

minimum-cost s-t flow problem: compute the flow ${\bf f}$ of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Rounding thingies II

Clicker question

Let G = (V, E) be a given graph. Consider the following:

$$\begin{array}{ll} \text{max} & \sum_{\mathsf{v}\in\mathsf{V}} x_\mathsf{v},\\ \text{such that} & x_\mathsf{v}\in\{0,1\} & \forall \mathsf{v}\in\mathsf{V}\\ & x_\mathsf{v}+x_\mathsf{u}\leq 1 & \forall \mathsf{vu}\in\mathsf{E}. \end{array}$$

In the worst case, the optimal solution to the above IP is:

- **A** 1
- B |V|
- |E|
- lacksquare ∞ .

Rounding thingies III

Clicker question

Let G = (V, E) be a given graph. Consider the following LP:

$$\begin{array}{ll} \max & \sum_{\mathsf{v}\in\mathsf{V}} x_\mathsf{v},\\ \text{such that} & 0 \leq x_\mathsf{v} \leq 1 & \forall \mathsf{v}\in\mathsf{V}\\ & x_\mathsf{v} + x_\mathsf{u} \leq 1 & \forall \mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

In the worst case, the optimal solution to the above LP is:

- A > 1
- | > | V | /2
- | | > | | | /2 |
- lacksquare ∞ .
- **3** 0.

Rounding thingies IV

Clicker question

Consider an optimization problem (a maximization problem) on a graph, that can be written as an IP.

 α' : optimal solution of the IP.

 α : optimal solution of the LP (aka fractional solution).

We always have that:

Rounding thingies V

Clicker question

Consider an optimization problem (a maximization problem) on a graph with n vertices and m edges, that can be written as an IP. α' : optimal solution of the IP.

 α : optimal solution of the LP.

We always have that:

- ① Always $\alpha/\alpha' \geq m$. Unless $m \leq n^{3/2}$ and then $\alpha/\alpha' \geq \sqrt{m}/n$.
- ① In the worst case $\alpha/\alpha' \geq n/2$, but it can be much worse.

24.2: Duality and Linear Programming

Duality...

- **1** Every linear program L has a **dual linear program** L'.
- Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
- Lets look an example..

24.2.1: Duality by Example

Duality by Example

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

- **1** η : maximal possible value of target function.
- **2** Any feasible solution \Rightarrow a lower bound on η .
- In above: $x_1 = 1$, $x_2 = x_3 = 0$ is feasible, and implies z = 4 and thus $\eta \ge 4$.
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1 + 4x_2) \le 2(1) + 3(3x_1 - x_2 + x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. (1)$$

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

- extstyle extstyle extstyle inequality must hold for any feasible solution of <math> extstyle L.
- ① Objective: $z = 4x_1 + x_2 + 3x_3$ and $x_{1,}x_{2}$ and x_{3} are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- For any feasible solution: $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$,

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- ② Opt solution is LP L is somewhere between 9 and 11.
- **1** Multiply first inequality by y_1 , second inequality by y_2 and add them up:

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 < y_1 + 3y_2.$$

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

 Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 < y_1 + 3y_2.$$

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3$$

$$\le y_1 + 3y_2.$$

Primal LP:

max
$$z = 4x_1 + x_2 + 3x_3$$

s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Dual LP: \hat{L}

min
$$y_1 + 3y_2$$

s.t. $y_1 + 3y_2 \ge 4$
 $4y_1 - y_2 \ge 1$
 $y_2 \ge 3$
 $y_1, y_2 \ge 0$.

- **1** Best upper bound on η (max value of z) then solve the LP \hat{L} .
- ② \hat{L} : Dual program to \hat{L} .
- **3** opt. solution of \hat{L} is an upper bound on optimal solution for L.

Primal program/Dual program

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i},$$
for $i = 1, \dots, m$,
$$x_{j} \geq 0,$$
for $j = 1, \dots, n$.

$$\min \sum_{i=1}^{m} b_i y_i$$
s.t. $\sum_{i=1}^{m} a_{ij} y_i \geq c_j$,
for $j = 1, \dots, n$,
 $y_i \geq 0$,
for $i = 1, \dots, m$.

Primal program/Dual program

Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$		$x_n \ge 0$	Primal relation	Min v
$y_1 \ge 0$	a ₁₁	a ₁₂	a ₁₃		a_{1n}	≦	b_1
$y_2 \ge 0$	a_{21}	a_{22}	a_{23}	• • •	a_{2n}	≦	b_2
:		:	:		:	:	
$y_m \ge 0$	a_{m1}	a_{m2}	a_{m3}		a_{mn}	≦	b_m
Dual Relation	IIV	IIV	IIV		IIV		
Max z	c_1	c_2	c_3		C_n		

max
$$c^T x$$

s. t. $Ax \le b$.
 $x \ge 0$.

min
$$y^T b$$

s. t. $y^T A \ge c^T$.
 $y \ge 0$.

Primal program/Dual program

What happens when you take the dual of the dual?

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$

$$\text{s.t.} \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i},$$

$$\text{for } i = 1, \dots, m,$$

$$x_{j} \geq 0,$$

$$\text{for } j = 1, \dots, n.$$

$$\min \sum_{i=1}^{m} b_{i}y_{i}$$

$$\text{s.t.} \sum_{i=1}^{m} a_{ij}y_{i} \geq c_{j},$$

$$\text{for } j = 1, \dots, n,$$

$$y_{i} \geq 0,$$

$$\text{for } i = 1, \dots, m.$$

$$c_j x_j$$
 $\min \sum_{i=1}^m b_i y_i$ $a_{ij} x_j \leq b_i,$ $\text{s.t.} \sum_{i=1}^m a_{ij} y_i \geq c_j,$ for $i=1,\ldots,m,$ $0,$ $y_i \geq 0,$ for $j=1,\ldots,m.$

Primal program / Dual program in standard form

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i},$$
for $i = 1, \dots, m,$

$$x_{j} \geq 0,$$
for $j = 1, \dots, n.$

$$\max \sum_{i=1}^{m} (-b_i) y_i$$
s.t.
$$\sum_{i=1}^{m} (-a_{ij}) y_i \le -c_j,$$
for $j = 1, \dots, n$,
$$y_i \ge 0,$$
for $i = 1, \dots, m$.

Dual program in standard form

Dual of a dual program

$$\max \sum_{i=1}^{m} (-b_i) y_i$$
s.t.
$$\sum_{i=1}^{m} (-a_{ij}) y_i \le -c_j,$$
for $j = 1, \dots, n$,
$$y_i \ge 0,$$
for $i = 1, \dots, m$.

min
$$\sum_{j=1}^{n} -c_j x_j$$

s.t. $\sum_{j=1}^{n} (-a_{ij}) x_j \ge -b_i,$
for $i = 1, \dots, m,$
 $x_j \ge 0,$
for $j = 1, \dots, n.$

Dual of dual program

Dual of a dual program written in standard form

min
$$\sum_{j=1}^{n} -c_{j}x_{j}$$

s.t. $\sum_{j=1}^{n} (-a_{ij})x_{j} \geq -b_{i},$
for $i=1,\ldots,m,$
 $x_{j} \geq 0,$
for $j=1,\ldots,n.$

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i},$$
for $i = 1, \dots, m,$

$$x_{j} \geq 0,$$
for $j = 1, \dots, n.$

 \implies Dual of the dual LP is the primal LP!

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L'' be the dual to L'. Then L and L'' are the same LP.

24.2.2: The Weak Duality Theorem

Weak duality theorem

Theorem

If $(x_1, x_2, ..., x_n)$ is feasible for the primal LP and $(y_1, y_2, ..., y_m)$ is feasible for the dual LP, then

$$\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}.$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem - proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i=1}^{m} y_{i} a_{ij} \right) x_{j} \leq \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \sum_{i} b_{i} y_{i}.$$

- **1** y being dual feasible implies $c^T \leq y^T A$
- ② x being primal feasible implies $Ax \leq b$
- $\Rightarrow c^{\mathsf{T}} x \leq (y^{\mathsf{T}} A) x \leq y^{\mathsf{T}} (A x) \leq y^{\mathsf{T}} b$

Weak duality is weak...

If apply the weak duality theorem on the dual program,

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

24.3: The strong duality theorem

The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = (x_1^*, \dots, x_n^*)$ then the dual also has an optimal solution, $y^* = (y_1^*, \dots, y_m^*)$, such that

$$\sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*.$$

Proof is tedious and omitted.

24.4: Some duality examples

24.4.1: Maximum matching in Bipartite graph

Max matching in bipartite graph as LP

Input:
$$G = (L \cup R, E)$$
.

$$egin{array}{lll} \max & & \sum_{uv \in \mathsf{E}} \mathsf{x}_{uv} \ & s.t. & & \sum_{uv \in \mathsf{E}} \mathsf{x}_{uv} \leq 1 & & orall v \in \mathsf{G}. \ & \mathsf{x}_{uv} \geq 0 & & orall uv \in \mathsf{E} \end{array}$$

Max matching in bipartite graph as LP (Copy)

Input: $G = (L \cup R, E)$.

max	$\sum_{uv\in E}x_{uv}$	
s.t.	$\sum x_{uv} \leq 1$	$\forall v \in G.$
	$x_{uv} \geq 0$	$\forall uv \in E$

Max matching in bipartite graph as LP (Notes)

24.4.2: Shortest path

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source, t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source, t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- **5** d_x : var=dist. **s** to x, $\forall x \in \mathbf{V}$.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source, t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u, v) \in E$: weight $\omega(u, v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- **5** d_x : var=dist. **s** to x, $\forall x \in \mathbf{V}$.
- $\forall (u,v) \in \mathsf{E}: \\ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

$$egin{array}{ll} ext{max} & d_{ ext{t}} \ ext{s.t.} & d_{ ext{s}} \leq 0 \ & d_{u} + \omega(u,v) \geq d_{v} \ & orall (u,v) \in \mathsf{E}, \ & d_{x} \geq 0 \quad orall x \in \mathsf{V}. \end{array}$$

- G = (V, E): graph. s: source, t: target
- $\forall (u, v) \in \mathsf{E}$: weight $\omega(u, v)$ o edge.
- 3 Q: Comp. shortest s-t path.
- No edges into s/out of t.
 - d_x: var=dist. s to x, ∀x ∈ V.
 ∀(u, v) ∈ E: d_u + ω(u, v) > d_v.

 - Also d_s = 0.
 Trivial solution: all variables 0.
 - **9** Target: find assignment max d_t .
- LP to solve this!
 Output

 Description:
 Description:
 •

$$\max d_{t}$$

s.t.
$$d_s \le 0$$

 $d_u + \omega(u, v) > d_v$

$$\omega(u,v) \geq d_v \ orall (u,v) \in \mathsf{E},$$

 $d_x > 0 \quad \forall x \in V.$

$$\max d_{t}$$

$$l_{
m s} \leq 0$$

$$d_{v}-d_{u}\leq\omega(u,v)$$

$$d_{\mathbf{v}} - d_{\mathbf{u}} \leq \omega(\mathbf{u}, \mathbf{v})$$
 $\forall (\mathbf{u}, \mathbf{v}) \in \mathbf{E},$
 $d_{\mathbf{v}} > \mathbf{0} \quad \forall \mathbf{x} \in \mathbf{V}.$

s.t.
$$d_s \leq 0$$

 $d_v - d_u \leq \omega(u, v)$

$\mathbf{0}$ $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: graph. s: source, t: target $(u, v) \in E$: weight $\omega(u, v)$ o

•
$$d_x$$
: var=dist. s to x , $\forall x \in V$.
• $\forall (u, v) \in E$:

$$d_u + \omega(u, v) \ge d_v.$$

$$\text{Also } d_{s} = 0.$$

The dual

$$\min \qquad \sum_{(u,v)\in \mathsf{E}} y_{uv}\omega(u,v)$$

$$\mathrm{s.t.} \qquad y_{\mathsf{s}} - \sum_{(\mathsf{s},u)\in \mathsf{E}} y_{\mathsf{s}u} \geq 0 \qquad (*)$$

$$\max \quad d_{\mathsf{t}} \qquad \sum_{(u,x)\in \mathsf{E}} y_{ux} - \sum_{(x,v)\in \mathsf{E}} y_{xv} \geq 0$$

$$\forall x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\} \qquad (**)$$

$$\forall u,v \in \mathsf{E}, \quad \forall u,$$

The dual – details

- **1** y_{uv} : dual variable for the edge (u, v).
- ② y_s : dual variable for $d_s \leq 0$
- **1** Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- oconservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- (*) implies that at least y_s units of flow leaves the source.
- Remaining of LP implies that $y_s \ge 1$.

Integrality

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

Set cover...

Details in notes...

Set cover LP:

$$\begin{aligned} & \min & & \sum_{F_j \in \mathcal{F}} x_j \\ & \text{s.t.} & & \sum_{\substack{F_j \in \mathcal{F}, \\ u_i \in F_j}} x_j \geq 1 & & \forall u_i \in \mathbf{S}, \\ & & x_j \geq 0 & & \forall F_j \in \mathcal{F}. \end{aligned}$$

Set cover dual is a packing LP...

Details in notes...

max
$$\sum_{u_i \in \mathsf{S}} y_i$$
 s.t. $\sum_{u_i \in \mathsf{F}_j} y_i \leq 1$ $\forall \mathsf{F}_j \in \mathfrak{F},$ $y_i \geq 0$ $\forall u_i \in \mathsf{S}.$

Network flow

$$\begin{array}{ll} \max & \sum\limits_{(\mathsf{s}, \mathsf{v}) \in \mathsf{E}} \mathsf{x}_{\mathsf{s} \to \mathsf{v}} \\ & \mathsf{x}_{\mathsf{u} \to \mathsf{v}} \leq \mathsf{c}(\mathsf{u} \to \mathsf{v}) & \forall (\mathsf{u}, \mathsf{v}) \in \mathsf{E} \\ & \sum\limits_{(\mathsf{u}, \mathsf{v}) \in \mathsf{E}} \mathsf{x}_{\mathsf{u} \to \mathsf{v}} - \sum\limits_{(\mathsf{v}, \mathsf{w}) \in \mathsf{E}} \mathsf{x}_{\mathsf{v} \to \mathsf{w}} \leq \mathsf{0} & \forall \mathsf{v} \in \mathsf{V} \setminus \{\mathsf{s}, \mathsf{t}\} \\ & - \sum\limits_{(\mathsf{u}, \mathsf{v}) \in \mathsf{E}} \mathsf{x}_{\mathsf{u} \to \mathsf{v}} + \sum\limits_{(\mathsf{v}, \mathsf{w}) \in \mathsf{E}} \mathsf{x}_{\mathsf{v} \to \mathsf{w}} \leq \mathsf{0} & \forall \mathsf{v} \in \mathsf{V} \setminus \{\mathsf{s}, \mathsf{t}\} \\ & \mathsf{0} < \mathsf{x}_{\mathsf{u} \to \mathsf{v}} & \forall (\mathsf{u}, \mathsf{v}) \in \mathsf{E}. \end{array}$$

Dual of network flow...

$$egin{aligned} \min \sum_{(u,v) \in \mathsf{E}} \mathsf{c}(u
ightarrow v) \, y_{u
ightarrow v} \ d_u - d_v & \leq y_{u
ightarrow v} & orall (u,v) \in \mathsf{E} \ y_{u
ightarrow v} & \geq 0 & orall (u,v) \in \mathsf{E} \ d_{\mathsf{s}} & = 1, & d_{\mathsf{t}} & = 0. \end{aligned}$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.