CS 473: Algorithms, Fall 2018

Entropy, Randomness,
and Information

Lecture 26
December 3, 2018
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26.1: Entropy



Quote

“If only once - only once - no matter where, no
matter before what audience - | could better the
record of the great Rastelli and juggle with thir-
teen balls, instead of my usual twelve, | would
feel that | had truly accomplished something for
my country. But | am not getting any younger,
and although | am still at the peak of my pow-
ers there are moments - why deny it? - when |
begin to doubt - and there is a time limit on all
of us.”

—Romain Gary, The talent scout.



Entropy: Definition

Definition
The entropy in bits of a discrete random variable X is

H(X) = —ZPr[X: :1:} 1gPr[X: w] .

Equivalently, H(X) = E[lg %[X]]
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Entropy

Clicker question

Consider X a random variable that picks its value
uniformly from 1,...,n. We have that its entropy

H(X) = —ZxPr[X = CIZ] lgPr[X = m} is
1. O(logn).
2. O(n).
3. Inn.
4. nxInn.

5. lgn.

- /"



Entropy intuition...

Intuition...
H(X) is the number of fair coin flips that one gets
when getting the value of X.

Interpretation from last lecture...

Consider a (huge) string S = 5183 ... s, formed by
picking characters independently according to X. Then

S| H(X) = nH(X)

is the minimum number of bits one needs to store the
string S (when we compress it).



Entropy |l
Clicker question
Consider X a random variable that

174
Pr[X =i] = ﬁ,
(8%

fori=1,...,00, where o = > 72 1/i.
The entropy of X is
H(X) = =3, Pr|X = z| 1gPr| X = z| equal to
1. O(1).
2. O(n).
3. 0.
4. oo.



Entropy IV

Clicker question
Consider X a random variable that
1/4?

Pr(X =1 = ,
a

for i =2,...,00, wherea = > 72, 1/>

The entropy of X is

H(X)=->_, Pr[X = CB] lgPr[X = m} equal to
1. O(1).

2. O(n).

3. 0.

4. oo.



Entropy V

Clicker question

Consider X a random variable that
Pr[X =i =27"

fori =1,...,00. The entropy of X is
H(X) = -3, Pr|X = o] IgPr| X = x| equal to
1. O(1).
2. O(n).
3. 0.
4. oo.
5. lgn.



Entropy of a geometric distribution...

H(X) = —ZPr[X: m} lgPr[X: :c]
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Binary entropy
H(X) = —ZwPr[X — m] lgPr[X — m}



Binary entropy

H(X) = —ZwPr[X — m] lgPr[X — m}

=

Definition

The binary entropy function H(p) for a random binary
variable that is 1 with probability p, is

H(p) = —plgp — (1 — p) 1g(1 — p). We define
H(0) = H(1) = 0.



Binary entropy

H(X) = — ZwPr[X — m] lgPr[X — m}

=

Definition

The binary entropy function H(p) for a random binary
variable that is 1 with probability p, is

H(p) = —plgp — (1 — p) 1g(1 — p). We define
H(0) = H(1) = 0.

Q: How many truly random bits are there when given

the result of flipping a single coin with probability p for
heads?
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Binary entropy:
H(p) = —plgp — (1 —p)lg(l —p)

Hp) = *plgp (1-p)lg(l—p) ——

0 01 02 03 04 05 06 07 08 09 1

1. H(p) is a concave symmetric around 1/2 on the
interval [0, 1].
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Binary entropy:
H(p) = —plgp— (1 —p)lg(1 —p)

Hp) = plgp( p)lg(l —p)

0 01 02 03 04 05 06 07 08 09 1

1. H(p) is a concave symmetric around 1/2 on the
interval [0, 1].

2. maximum at 1/2.

3. H(3/4) =~ 0.8113 and H(7/8) = 0.5436.
— coin that has 3/4 probably to be heads have
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And now for some unnecessary math

1. H(p) = —plgp — (1 — p)lg(1 — p)
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And now for some unnecessary math

1. H(p) = —plgp — (1 — p)lg(1 — p)
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p
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And now for some unnecessary math
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And now for some unnecessary math

1. H(p) = —plgp — (1 — p)1g(1 — p)
2. H'(p) = —lgp+lg(1 — p) =1gi=2

)

L) = 25 (=) =
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entropy.



And now for some unnecessary math

1. H(p) = —plgp — (1 — p)lg(1 — p)

2. H'(p) = —lgp+1g(1 —p) =1g 152

3 H(p) = 2 (- %) = —5iy

4, = H"(p) <0, forall p € (0,1), and the
H(-) is concave.

5. H'(1/2) =0 = H(1/2) = 1 max of binary
entropy.

6. == balanced coin has the largest amount of
randomness in it.



26.3: Squeezing randomness
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1. byy..., by, result of n coin flips...
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...out of bad random bits...

biy..., by, result of n coin flips...
From a faulty coin!

p: probability for head.

We need fair bit coins!
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o ks W=

New bits must be truly random: Probability for
head is 1/2.



Task at hand: Squeezing good random bits...

...out of bad random bits...

biy..., by, result of n coin flips...
From a faulty coin!

p: probability for head.

We need fair bit coins!

Convert by,..., b, = bj,..., b .

New bits must be truly random: Probability for
head is 1/2.

. Q: How many truly random bits can we extract?

o ks W=

~



Intuitively...

Squeezing good random bits out of bad random bits...

Question...

Given the result of n coin flips: by,..., b, from a
faulty coin, with head with probability p, how many truly
random bits can we extract?

If believe intuition about entropy, then this number
should be = nH(p).
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Back to Entropy

1. entropy of X is
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H(X) = — EmPr[X - a,-} lgPr[X - :1:]
2. Entropy of uniform variable..

Example
A random variable X that has probability 1/n to be %,

fori =1,...,n, has entropy
H(X)=—->71, g+ =1gn.
3. Entropy is oblivious to the exact values random
variable can have.



Back to Entropy

1. entropy of X is
H(X) = — EmPr[X - a,-} lgPr[X - :1:]
2. Entropy of uniform variable..

Example
A random variable X that has probability 1/n to be %,

for ¢ = 1,...,n, has entropy
H(X)=—-31,,18,;=1gn
3. Entropy is oblivious to the exact values random
variable can have.
4. = random variables over —1, +1 with equal
probability has the same entropy (i.e., 1) as a fair



Flipper

Clicker question

You are given a coin that is head with probability p, and
tail with probability ¢ = 1 — p. We flip it three times,
and get the string S = s18553. We have the following:

1. Pr[S = 001] = Pr[S = 011] = pg¢>.
2. Pr[S = 101] = Pr[S = 110] =
Pr[S = 011] = pqg®.
3. Pr[S = 111] = Pr[S = 000] = ¢>.
4. Pr[§ = 001] = Pr[§ = 010] =
Pr[S = 100] = pg*.
5. Pr[S = 000] + Pr[S = 111] = (p + q)3.



Lemma: Entropy additive for independent
variables

Lemma

Let X and Y be two independent random variables, and
let Z be the random variable (X, Y'). Then

H(Z) =H(X)+ H(Y).
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Proof

In the following, summation are over all possible values
that the variables can have. By the independence of X
and Y we have

H(Z) = %Pr[(x’ Y) = (=, y)} '8 Br(x, Y; = (=, y)]
= ;PY[X =a| Pr[Y = y|ls Pr[X = w]lPr[Y =
= ;gpr[x = 2] Pr[Y =y lgm

+Z:Z:Pr[X:m]Pr[Y=y]lgm



Proof continued

1
Pr[X = z]

H(Z) =) Y Pr[X =a]Pr[Y = y]lg

+) ) Pr[X =a]Pr[Y = y]lg PrY = 4
y oz )

Pr(X = z]

1

Pr[Y = y]

= ZPr[X = z|lg

+> Pr[Y =y]lg

— H(X) + H(Y).



The entropy of Y...

Clicker question

Consider a binary string Y generated by flipping a coin
n times, where the probability for heads is p. Then we
have that

LH(Y)=In(").

2. H(Y) = np.

3. H(Y) = nH(p).

4. H(Y) = n — nH(p).
5. H(Y) = H(np).

N /K



Bounding the binomial coefficient using

entropy

Lemma

q €[0,1]

nq is integer in the range [0, n].
Then

H(q)
onH(q < (n) ey

n+1 nqg/ —
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Proof

Holds if g=00or g =1, so assume 0 < ¢ < 1. We
have
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Proof

Holds if g=00or g =1, so assume 0 < ¢ < 1. We
have

(1) - o < g+ - a) =1,

We also have: ¢~™(1 — q)—(l—q)n —
2n (—qlgq—(1-q)1g(1—q)) — 2nH(a) e have

n
( ) < M1 — g)-O-0n — guiite),
ng



Proof continued
Other direction...

Lop(k) = (g1 — g *



Proof continued
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Proof continued
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Proof continued
Other direction...

L op(k) = (})g" @ — "

2. 3o (a1 = @ =300, ().

3. Claim: p(ng) = (,)ga"(1 — q)" " largest term
in S (k) = 1

4. Ay =p(k) —plk+1) =
(D" — @) (1 — 5% ),



Proof continued
Other direction...

1.
2.
3.

n(k) = (1)g" 1 — g "

Yo (Da' (1 — @) = Y, u(i).

Claim: p(ng) = (,)g"(1 — g)" ™ largest term
in > p_om(k) = 1.

Ax= p(k) — p(k+ 1) =

(a1 — 9" (1 - 5L,

sign of A} = size of last term...



Proof continued
Other direction...

1.
2.
3.

p(k) = (L) d" @1 — g *

Yo (a1 — @)" 7 = i, n(d).

Claim: p(ng) = (,)g"(1 — g)" ™ largest term
in >i_o k(k) = 1.

A= pk) —p(k+1) =

(a1 — 9" (1 - 5L,

. sign of Ay = size of last term...
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Proof continued
Other direction...

1.
2.
3.

p(k) = (L) d" @1 — g *

Yo (a1 — @)" 7 = i, n(d).

Claim: p(ng) = (,)g"(1 — g)" ™ largest term
in >i_o k(k) = 1.

A= pk) —p(k+1) =

(a1 — 9" (1 - 5L,

sign of A} = size of last term...

. sign(Ayg) = sign(l — %)

ot (k+1)(1—q)—(n—k)q
_S‘gn( (f1)(1—q) >




Proof continued
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Proof continued
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A} < 0 otherwise.



Proof continued

1. (k+1)(1—¢q) — (n—k)g =
k+1—kq—q—ng+kqg=1+k—q—nq.
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A} < 0 otherwise.
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Proof continued
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Proof continued

1. (k+1)(1—¢q) — (n—k)g =
k+1—kq—q—ngq+kqg=1+k—q— ng.
2. = Ay >0whenk>ng+q—1
A < 0 otherwise.
3. pu(k) = (3)d"(1 — )"
4. p(k) < p(k+ 1), for k < ng, and
p(k) > p(k+ 1) for k > ngq.
5. = wp(ngq) is the largest term in
> o (k) = 1.
6. p(nq) larger than the average in sum.

= (-0 F 2 Ay
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Proof continued

1. (k+1)(1—¢q) — (n—k)g =
k+1—kq—q—ngq+kqg=1+k—q— ng.
2. = Ay >0whenk>ng+q—1
A < 0 otherwise.
3. pu(k) = (3)d"(1 — )"
4. p(k) < p(k+ 1), for k < ng, and
p(k) > p(k+ 1) for k > ngq.
5. = wp(ngq) is the largest term in
> o (k) = 1.
6. p(nq) larger than the average in sum.
= (Pl -9" "> 15
] =

~



Flipper revisited...

Clicker question

p: coin returns head with this probability. ¢ =1 — p.
Flip coin n times, let X be the resulting string. Assume
np and ngq are integer.

S;: set of all binary strings length n with 7 ones in
them. Then:

1. Pr[X € §;] is maximal for i = mp.
2. Vs, s € S;, we have
Pr[X = s] = Pr[X = ¢'] = (})pig"".
3. If X € 8; then entropy of X is Ig (’z)
4. H(X) = nH(p)
5. All of the above.



Generalization...

Corollary

We have:
1. g€0,1/2] = () < 2@
2 qc [1/2,1] I-n]) < onH(q)
3. qe1/2,1] = 2 < ()
4 q€[0,1/2] = 22 < ((n).

Proof is straightforward but tedious.
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What we have...

1. Proved that (") ~ 2nH(9)
ng

2. Estimate is loose.

3. Sanity check...

3.1 A sequence of n bits generated by coin with
probability q for head.
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What we have...

1. Proved that (") ~ 2nH(9)
ng

2. Estimate is loose.

3. Sanity check...

3.1 A sequence of n bits generated by coin with
probability q for head.

3.2 By Chernoff inequality... roughly ng heads in this
sequence.

3.3 Generated sequence Y belongs to (:q) ~ 2nH(q)
possible sequences .

3.4 ...of similar probability.

35 = H(Y) =nH(q) =Ig ().

nq



Just one bit...

question

Given a coin C' with:

p: Probability for head.

q = 1 — p: Probability for tail.

Q: How to get one true random bit, by flipping C.
Describe an algorithm!

30,35



Extracting randomness...

Entropy can be interpreted as the amount of unbiased
random coin flips can be extracted from a random
variable.

Definition

An extraction function Ext takes as input the value of a

random variable X and outputs a sequence of bits vy,
such that Pr[Ext(X) =y ‘ ly| = k] = ¢, whenever

Pr[|y| = k] > 0, where |y| denotes the length of y.
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1. X: uniform random integer variable out of
0,...,7.



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.
2. Ext(X): binary representation of x.



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.

2. Ext(X): binary representation of x.

3. Def. subtle: all extracted seqs of same len have
same probability.

4. Another example of extraction scheme:



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.

2. Ext(X): binary representation of x.

3. Def. subtle: all extracted seqs of same len have
same probability.

4. Another example of extraction scheme:
4.1 X: uniform random integer variable 0,...,11.



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.

2. Ext(X): binary representation of x.

3. Def. subtle: all extracted seqs of same len have
same probability.

4. Another example of extraction scheme:
4.1 X: uniform random integer variable 0,...,11.

4.2 Ext(x): output the binary representation for x if
0<z<L "7



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.

2. Ext(X): binary representation of x.

3. Def. subtle: all extracted seqs of same len have
same probability.

4. Another example of extraction scheme:
4.1 X: uniform random integer variable 0,...,11.
4.2 Ext(x): output the binary representation for x if

0<z<L "7

4.3 If x is between 8 and 117



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.

2. Ext(X): binary representation of x.

3. Def. subtle: all extracted seqs of same len have
same probability.

4. Another example of extraction scheme:

4.1 X: uniform random integer variable 0,...,11.

4.2 Ext(x): output the binary representation for x if
0<z<L "7

4.3 If x is between 8 and 117

4.4 ldea... Output binary representation of & — 8 as a
two bit number.



Extracting randomness...

1. X: uniform random integer variable out of
0,...,7.
2. Ext(X): binary representation of x.
3. Def. subtle: all extracted seqs of same len have
same probability.
4. Another example of extraction scheme:
4.1 X: uniform random integer variable 0,...,11.
4.2 Ext(x): output the binary representation for x if
0<z<L "7
4.3 If x is between 8 and 117
4.4 ldea... Output binary representation of & — 8 as a
two bit number.

5. A valid extractor...



Technical lemma

The following is obvious, but we provide a proof anyway.
Lemma

Let /vy be a faction, such that /y < 1. Then, for
any i, we have z/y < (z+ %) /(y + 7).

Proof.

We need to prove that (y + ¢) — (z + )y < 0. The
left size is equal to i(xz — y), but since y > x (as

x/y < 1), this quantity is negative, as required. O
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A uniform variable extractor...

Theorem

1. X: random variable chosen uniformly at random
from {0,...,m — 1},
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A uniform variable extractor...

Theorem

1. X: random variable chosen uniformly at random
from {0,...,m — 1},

2. Then there is an extraction function for X :
2.1 outputs on average at least

lgm] —1=[H(X)] -1

independent and unbiased bits.
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LEY]>k— 2" (14 k—u).

2u+1+2k
Andu—k—1<0ask > u.

2. If u < k — 2 then

2wt
E[Y]>k———(1+k—u)
k—u+1
:k—2k_—u_+1
_k_2+(k:—u—1)
T ok—u—1
Zk_la

since (2 - ¢)/2¢ < 1 for i > 2.
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