
CS 473: Algorithms, Fall 2018

Compression,
Information and Entropy
– Huffman’s coding
Lecture 25
December 1, 2018

1/28

1



25.1: Huffman coding

2



Entropy...
Clicker question

1. I know what entropy of information is.
2. I know what entropy of information is - I use every

day to wash my dishes.
3. I do not know what entropy of information is.
4. I do not know what entropy of information is, but I

know it increases.

3/28

3



Huffman’s trees...
Clicker question

1. I know what Huffman’s trees are.
2. I know what Huffman’s trees are, and I know how

to build them.
3. I do not know what Hufmman’s trees are.
4. I know what Huffman’s trees are - I use them every

day to dry my dishes.
5. I am going to take the fifth on this question.

4/28

4



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/285



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/286



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/287



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/288



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/289



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/2810



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/2811



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/2812



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/2813



Codes...
1. Σ: alphabet.
2. binary code: assigns a string of 0s and 1s to each

character in the alphabet.
3. each symbol in input = a codeword over some other

alphabet.
4. Useful for transmitting messages over a wire: only

0/1.
5. receiver gets a binary stream of bits...
6. ... decode the message sent.
7. prefix code: reading a prefix of the input binary

string uniquely match it to a code word.
8. ... continuing to decipher the rest of the stream.
9. binary/prefix code is prefix-free if no code is a

prefix of any other.
10. ASCII and Unicode’s UTF-8 are both prefix-free

binary codes.
5/2814



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...
4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28

15



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...
4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28

16



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...

a

b c

d
0

0

0

1

1

1

4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28
17



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...

a

b c

d
0

0

0

1

1

1

4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28
18



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...

a

b c

d
0

0

0

1

1

1

4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28
19



Codes...
1. Morse code is binary+prefix code but not

prefix-free.
2. ... code for S (· · · ) includes the code for E (·) as a

prefix.
3. Prefix codes are binary trees...

a

b c

d
0

0

0

1

1

1

4. ...characters in leafs, code word is path from root.
5. prefix treestree!prefix tree or code trees.
6. Decoding/encoding is easy.

6/28
20



What this string encodes?
Clicker question

Consider the string ’010000111100101010101111’ using
the prefix tree:

a

b c

d
0

0

0

1

1

1

This encodes the string:
1. abcdabbbc.
2. cdbabdbaa.
3. bacbacdbdbddd.
4. bacddadbdbdddd.
5. bacdddddddddbbacdbdddd.

7/28
21



Codes...
1. Encoding: given frequency table:

f [1 . . .n].
2. f [i]: frequency of ith character.
3. code(i): binary string for ith character.

len(s): length (in bits) of binary string s.
4. Compute tree T that minimizes

cost(T) =
n∑

i=1

f [i] ∗ len(code(i)), (1)

8/28

22



Codes...
1. Encoding: given frequency table:

f [1 . . .n].
2. f [i]: frequency of ith character.
3. code(i): binary string for ith character.

len(s): length (in bits) of binary string s.
4. Compute tree T that minimizes

cost(T) =
n∑

i=1

f [i] ∗ len(code(i)), (1)

8/28

23



Codes...
1. Encoding: given frequency table:

f [1 . . .n].
2. f [i]: frequency of ith character.
3. code(i): binary string for ith character.

len(s): length (in bits) of binary string s.
4. Compute tree T that minimizes

cost(T) =
n∑

i=1

f [i] ∗ len(code(i)), (1)

8/28

24



Codes...
1. Encoding: given frequency table:

f [1 . . .n].
2. f [i]: frequency of ith character.
3. code(i): binary string for ith character.

len(s): length (in bits) of binary string s.
4. Compute tree T that minimizes

cost(T) =
n∑

i=1

f [i] ∗ len(code(i)), (1)

8/28

25



Frequency table for...
“A tale of two cities” by Dickens

\ n 16,492
’ ’ 130,376
‘!’ 955
‘”’ 5,681
‘$’ 2
‘%’ 1
‘” 1,174
‘(’ 151
‘)’ 151
‘*’ 70
‘,’ 13,276
‘–’ 2,430
‘.’ 6,769
‘0’ 20

‘1’ 61
‘2’ 10
‘3’ 12
‘4’ 10
‘5’ 14
‘6’ 11
‘7’ 13
‘8’ 13
‘9’ 14
‘:’ 267
‘;’ 1,108
‘?’ 913
‘A’ 48,165
‘B’ 8,414

‘C’ 13,896
‘D’ 28,041
‘E’ 74,809
‘F’ 13,559
‘G’ 12,530
‘H’ 38,961
‘I’ 41,005
‘J’ 710
‘K’ 4,782
‘L’ 22,030
‘M’ 15,298
‘N’ 42,380
‘O’ 46,499
‘P’ 9,957

‘Q’ 667
‘R’ 37,187
‘S’ 37,575
‘T’ 54,024
‘U’ 16,726
‘V’ 5,199
‘W’ 14,113
‘X’ 724
‘Y’ 12,177
‘Z’ 215
‘_’ 182
’‘’ 93
‘@’ 2
‘/’ 26

9/28

26



Computed prefix codes...
char frequency code
‘A’ 48165 1110
‘B’ 8414 101000
‘C’ 13896 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F’ 13559 111111
‘G’ 12530 111110
‘H’ 38961 1001
‘I’ 41005 1011
‘J’ 710 1111011010
‘K’ 4782 11110111
‘L’ 22030 10101
‘M’ 15298 01000
char freq code
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q’ 667 1111011001
‘R’ 37187 0101
‘S’ 37575 1000
‘T’ 54024 000
‘U’ 16726 01001
‘V’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 1111011011
‘Y’ 12177 111100
‘Z’ 215 1111011000

10/28

27



The Huffman tree generating the code
Build only on A-Z for clarity.

•

•

•

T

..................................................................

•

•

C

..........................................................

W

...........................................................

..................................................................................... D

................................................................

.........................................................................................

....................................................................................................................................................... •

•

•

M

..........................................................

U

..........................................................

.................................................................................... R

...............................................................

........................................................................................ E

..................................................................

.......................................................................................................................................................

.................................................................................................................................................................................................................................................................... •

•

•

S

.........................................................

H

..........................................................

............................................................................................................... •

•

•

B

..........................................................

P

..........................................................

................................................................................... L

..............................................................

...................................................................................... I

................................................................

...............................................................................................................

........................................................................................................................................................................... •

•

N

..........................................................

O

..........................................................

............................................................................................................................ •

A

............................................................................................................................... •

•

Y

.......................................................................

•

V

........................................................................................

•

•

•

Z

..........................................................

Q

........................................................

....................................................................................... •

J

..........................................................

X

..........................................................

.......................................................................................

.................................................................................................... K

............................................................................

..............................................................................................................

...............................................................................................

.............................................................................................................................................................................. •

G

..........................................................

F

..........................................................

..............................................................................................................................................................................

.................................................................................................................................................

............................................................................................................................

...........................................................................................................................................................................

....................................................................................................................................................................................................................................................................

11/28
28



Merging prefix codes
Clicker question

Π1: Binary prefix code for alphabet Σ1.
Π2: Binary prefix code for alphabet Σ2.
Σ1 ∩ Σ2 = ∅.
One can get a prefix code for Σ1 ∪ Σ2 such that:
1. New code word length increased by

O(lg |Σ1| + lg |Σ2|).
2. New code word is exactly one bit longer than before.
3. New code word can be arbitrarily longer than before.
4. New code word is same length as before.
5. There is no way to combine to prefix-free codes –

have to rebuild from scratch.

12/28

29



Merging code trees?
Clicker question

Given two code trees T1 and T2 for disjoint alphabets
Σ1 and Σ2, one can get a prefix tree for Σ1 ∪ Σ2 by:
1. Hang T1 from lowest leaf of T2.
2. Hang T1 from highest leaf of T2 (or vice versa).
3. Create a new root, and hang both trees on new

root.
4. Insert all the root to leaf paths in T1 into T2 (or

vice versa).
5. None of the above.

13/28

30



Mergeablity of code trees
1. two trees for some disjoint parts of the alphabet...
2. Merge into larger tree by creating a new node and

hanging the trees from this common node.

3. M U ⇒

•

M

................................................................

U

................................................................

4. ...put together two subtrees.
A

.

..................................................................... .

.....................................................................................................................................................

B

.

..................................................................... .

.....................................................................................................................................................

⇒

•

A

.

..................................................................... .

.....................................................................................................................................................

.................................................................................................. B

.

..................................................................... .

.....................................................................................................................................................

..................................................................................................

14/28
31



Mergeablity of code trees
1. two trees for some disjoint parts of the alphabet...
2. Merge into larger tree by creating a new node and

hanging the trees from this common node.

3. M U ⇒

•

M

................................................................

U

................................................................

4. ...put together two subtrees.
A

.

..................................................................... .

.....................................................................................................................................................

B

.

..................................................................... .

.....................................................................................................................................................

⇒

•

A

.

..................................................................... .

.....................................................................................................................................................

.................................................................................................. B

.

..................................................................... .

.....................................................................................................................................................

..................................................................................................

14/28
32



Mergeablity of code trees
1. two trees for some disjoint parts of the alphabet...
2. Merge into larger tree by creating a new node and

hanging the trees from this common node.

3. M U ⇒

•

M

................................................................

U

................................................................

4. ...put together two subtrees.
A

.

..................................................................... .

.....................................................................................................................................................

B

.

..................................................................... .

.....................................................................................................................................................

⇒

•

A

.

..................................................................... .

.....................................................................................................................................................

.................................................................................................. B

.

..................................................................... .

.....................................................................................................................................................

..................................................................................................

14/28
33



Mergeablity of code trees
1. two trees for some disjoint parts of the alphabet...
2. Merge into larger tree by creating a new node and

hanging the trees from this common node.

3. M U ⇒

•

M

................................................................

U

................................................................

4. ...put together two subtrees.
A

.

..................................................................... .

.....................................................................................................................................................

B

.

..................................................................... .

.....................................................................................................................................................

⇒

•

A

.

..................................................................... .

.....................................................................................................................................................

.................................................................................................. B

.

..................................................................... .

.....................................................................................................................................................

..................................................................................................

14/28
34



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
35



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
36



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
37



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
38



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
39



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
40



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
41



Building optimal prefix code trees
1. take two least frequent characters in frequency

table...
2. ... merge them into a tree, and put the root of

merged tree back into table.
3. ...instead of the two old trees.
4. Algorithm stops when there is a single tree.
5. Intuition: infrequent characters participate in a

large number of merges. Long code words.
6. Algorithm is due to David Huffman (1952).
7. Resulting code is best one can do.
8. Huffman coding : building block used by

numerous other compression algorithms.

15/28
42



Lemma: lowest leafs are siblings...
Lemma
1. T: optimal code tree (prefix free!).
2. Then T is a full binary tree.
3. ... every node of T has either 0 or 2 children.
4. If height of T is d, then there are leafs nodes of

height d that are sibling.

16/28

43



Lemma: lowest leafs are siblings...
Lemma
1. T: optimal code tree (prefix free!).
2. Then T is a full binary tree.
3. ... every node of T has either 0 or 2 children.
4. If height of T is d, then there are leafs nodes of

height d that are sibling.

16/28

44



Lemma: lowest leafs are siblings...
Lemma
1. T: optimal code tree (prefix free!).
2. Then T is a full binary tree.
3. ... every node of T has either 0 or 2 children.
4. If height of T is d, then there are leafs nodes of

height d that are sibling.

16/28

45



Lemma: lowest leafs are siblings...
Lemma
1. T: optimal code tree (prefix free!).
2. Then T is a full binary tree.
3. ... every node of T has either 0 or 2 children.
4. If height of T is d, then there are leafs nodes of

height d that are sibling.

16/28

46



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

47



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

48



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

49



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

50



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

51



Proof...
1. If ∃ internal node v ∈ V(T) with single child...

...remove it.
2. New code tree is better compressor:

cost(T) =
∑n

i=1 f [i] ∗ len(code(i)).
3. u: leaf u with maximum depth d in T. Consider

parent v = p(u).
4. =⇒ v: has two children, both leafs

17/28

52



Frequency and depth
Clicker question

Alphabet Σ = {1, . . . ,n}.
f [1, . . . ,n]: frequencies.
T: optimal prefix-free code tree for it
Assume that f [i] > f [j], and let vi and vj be the two
corresponding nodes in T. Then it must be that:
1. depth(vi) > depth(vj)

2. depth(vi) ≥ depth(vj)

3. depth(vi) = depth(vj)

4. depth(vi) < depth(vj)

5. depth(vi) ≤ depth(vj)

18/28

53



Infrequent characters are stuck together...
Lemma
x, y: two least frequent characters (breaking ties
arbitrarily).
∃ optimal code tree in which x and y are siblings.

19/28

54



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
55



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
56



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
57



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
58



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
59



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
60



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
61



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
62



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
63



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
64



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
65



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
66



Proof...
1. Claim: ∃ optimal code s.t. x and y are siblings +

deepest.
2. T: optimal code tree with depth d.
3. By lemma... T has two leafs at depth d that are

siblings,
4. If not x and y, but some other characters α and β.
5. T′: swap x and α.
6. x depth inc by ∆, and depth of α decreases by ∆.
7. cost(T′) = cost(T) −

(
f [α] − f [x]

)
∆.

8. x: one of the two least frequent characters.
...but α is not.

9. =⇒ f [α] ≥ f [x].
10. Swapping x and α does not increase cost.
11. T: optimal code tree, swapping x and α does not

decrease cost.
12. T′ is also an optimal code tree
13. Must be that f [α] = f [x].

20/28
67



Proof continued...
1. y: second least frequent character.
2. β: lowest leaf in tree. Sibling to x.
3. Swapping y and β must give yet another optimal

code tree.
4. Final opt code tree, x, y are max-depth siblings.

21/28

68



Proof continued...
1. y: second least frequent character.
2. β: lowest leaf in tree. Sibling to x.
3. Swapping y and β must give yet another optimal

code tree.
4. Final opt code tree, x, y are max-depth siblings.

21/28

69



Proof continued...
1. y: second least frequent character.
2. β: lowest leaf in tree. Sibling to x.
3. Swapping y and β must give yet another optimal

code tree.
4. Final opt code tree, x, y are max-depth siblings.

21/28

70



Proof continued...
1. y: second least frequent character.
2. β: lowest leaf in tree. Sibling to x.
3. Swapping y and β must give yet another optimal

code tree.
4. Final opt code tree, x, y are max-depth siblings.

21/28

71



Huffman’s codes are optimal
Theorem
Huffman codes are optimal prefix-free binary codes.

22/28

72



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

73



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

74



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

75



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

76



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

77



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

78



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

79



Proof...
1. If message has 1 or 2 diff characters, then theorem

easy.
2. f [1 . . .n] be original input frequencies.
3. Assume f [1] and f [2] are the two smallest.
4. Let f [n + 1] = f [1] + f [2].
5. lemma =⇒ ∃ opt. code tree Topt for f [1..n]

6. Topt has 1 and 2 as siblings.
7. Remove 1 and 2 from Topt.
8. T′

opt: Remaining tree has 3, . . . ,n as leafs and
“special” character n + 1 (i.e., parent 1, 2 in Topt)

23/28

80



La proof continued...
1. character n + 1: has frequency f [n + 1].

Now, f [n + 1] = f [1] + f [2], we have

cost(Topt) =
n∑

i=1

f [i]depthTopt(i)

=

n+1∑
i=3

f [i]depthTopt(i) + f [1]depthTopt(1)

+ f [2]depthTopt(2) − f [n + 1]depthTopt(n + 1)

= cost
(
T′

opt

)
+

(
f [1] + f [2]

)
depth(Topt)

−
(
f [1] + f [2]

)
(depth(Topt) − 1)

= cost
(
T′

opt

)
+ f [1] + f [2].

24/28
81



La proof continued...
1. character n + 1: has frequency f [n + 1].

Now, f [n + 1] = f [1] + f [2], we have

cost(Topt) =
n∑

i=1

f [i]depthTopt(i)

=

n+1∑
i=3

f [i]depthTopt(i) + f [1]depthTopt(1)

+ f [2]depthTopt(2) − f [n + 1]depthTopt(n + 1)

= cost
(
T′

opt

)
+

(
f [1] + f [2]

)
depth(Topt)

−
(
f [1] + f [2]

)
(depth(Topt) − 1)

= cost
(
T′

opt

)
+ f [1] + f [2].

24/28
82



La proof continued...
1. character n + 1: has frequency f [n + 1].

Now, f [n + 1] = f [1] + f [2], we have

cost(Topt) =
n∑

i=1

f [i]depthTopt(i)

=

n+1∑
i=3

f [i]depthTopt(i) + f [1]depthTopt(1)

+ f [2]depthTopt(2) − f [n + 1]depthTopt(n + 1)

= cost
(
T′

opt

)
+

(
f [1] + f [2]

)
depth(Topt)

−
(
f [1] + f [2]

)
(depth(Topt) − 1)

= cost
(
T′

opt

)
+ f [1] + f [2].

24/28
83



La proof continued...
1. character n + 1: has frequency f [n + 1].

Now, f [n + 1] = f [1] + f [2], we have

cost(Topt) =
n∑

i=1

f [i]depthTopt(i)

=

n+1∑
i=3

f [i]depthTopt(i) + f [1]depthTopt(1)

+ f [2]depthTopt(2) − f [n + 1]depthTopt(n + 1)

= cost
(
T′

opt

)
+

(
f [1] + f [2]

)
depth(Topt)

−
(
f [1] + f [2]

)
(depth(Topt) − 1)

= cost
(
T′

opt

)
+ f [1] + f [2].

24/28
84



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
85



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
86



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
87



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
88



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
89



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
90



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
91



La proof continued...
1. implies min cost of Topt ≡ min cost T′

opt.
2. T′

opt: must be optimal coding tree for
f [3 . . .n + 1].

3. T′
H : Huffman tree for f [3, . . . ,n + 1]

TH : overall Huffman tree constructed for
f [1, . . . ,n].

4. By construction:
T′

H formed by removing leafs 1 and 2 from TH .
5. By induction:

Huffman tree generated for f [3, . . . ,n + 1] is
optimal.

6. cost
(
T′

opt

)
= cost

(
T′

H
)
.

7. =⇒ cost(TH) = cost
(
T′

H
)
+ f [1] + f [2] =

cost
(
T′

opt

)
+ f [1] + f [2] = cost(Topt),

8. =⇒ Huffman tree has the same cost as the
optimal tree.

25/28
92



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

93



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

94



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

95



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

96



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

97



What we get...
1. A tale of two cities: 779,940 bytes.
2. using above Huffman compression results in a

compression to a file of size 439,688 bytes.
3. Ignoring space to store tree.
4. gzip: 301,295 bytes

bzip2: 220,156 bytes!
5. Huffman encoder can be easily written in a few

hours of work!
6. All later compressors use it as a black box...

26/28

98



Huffman trees are...
Clicker question

Σ = {1, . . . ,n}: alphabet
f [1 . . .n]: Frequencies.
Assume all subset sums of frequencies are unique.
Then the optimal code tree for Σ is:
1. Unique
2. There are 2n−1 different optimal code trees.
3. There are n! different optimal code trees.
4. There are infinite number of different optimal code

trees.
5. None of the above.

27/28

99



Average size of code word
1. input is made out of n characters.
2. pi : fraction of input that is ith char (probability).
3. use probabilities to build Huffman tree.
4. Q: What is the length of the codewords assigned to

characters as function of probabilities?
5. special case...

28/28

100



Average size of code word
1. input is made out of n characters.
2. pi : fraction of input that is ith char (probability).
3. use probabilities to build Huffman tree.
4. Q: What is the length of the codewords assigned to

characters as function of probabilities?
5. special case...

28/28

101



Average size of code word
1. input is made out of n characters.
2. pi : fraction of input that is ith char (probability).
3. use probabilities to build Huffman tree.
4. Q: What is the length of the codewords assigned to

characters as function of probabilities?
5. special case...

28/28

102



Average size of code word
1. input is made out of n characters.
2. pi : fraction of input that is ith char (probability).
3. use probabilities to build Huffman tree.
4. Q: What is the length of the codewords assigned to

characters as function of probabilities?
5. special case...

28/28

103



Average size of code word
1. input is made out of n characters.
2. pi : fraction of input that is ith char (probability).
3. use probabilities to build Huffman tree.
4. Q: What is the length of the codewords assigned to

characters as function of probabilities?
5. special case...

28/28

104



Average length of codewords...
Special case

Lemma
1, . . . ,n: symbols.
Assume, for i = 1, . . . ,n:
1. pi = 1/2li : probability for the ith symbol
2. li ≥ 0: integer.

Then, in Huffman coding for this input, the code for i is
of length li .

29/28

105



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
106



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
107



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
108



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
109



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
110



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
111



Proof
1. induction of the Huffman algorithm.
2. n = 2: claim holds since there are only two

characters with probability 1/2.
3. Let i and j be the two characters with lowest

probability.
4. Must be pi = pj (otherwise,

∑
k pk 6= 1).

5. Huffman’s tree merges this two letters, into a single
“character” that have probability 2pi .

6. New “character” has encoding of length li − 1, by
induction
(on remaining n − 1 symbols).

7. resulting tree encodes i and j by code words of
length (li − 1) + 1 = li .

30/28
112



Translating lemma...
1. pi = 1/2li

2. li = lg 1/pi .
3. Average length of a code word is∑

i

pi lg
1
pi

.

4. X is a random variable that takes a value i with
probability pi , then this formula is

H(X) =
∑

i

Pr[X = i] lg
1

Pr[X = i]
,

which is the entropy of X.
31/28

113



Translating lemma...
1. pi = 1/2li

2. li = lg 1/pi .
3. Average length of a code word is∑

i

pi lg
1
pi

.

4. X is a random variable that takes a value i with
probability pi , then this formula is

H(X) =
∑

i

Pr[X = i] lg
1

Pr[X = i]
,

which is the entropy of X.
31/28

114



Translating lemma...
1. pi = 1/2li

2. li = lg 1/pi .
3. Average length of a code word is∑

i

pi lg
1
pi

.

4. X is a random variable that takes a value i with
probability pi , then this formula is

H(X) =
∑

i

Pr[X = i] lg
1

Pr[X = i]
,

which is the entropy of X.
31/28

115



Translating lemma...
1. pi = 1/2li

2. li = lg 1/pi .
3. Average length of a code word is∑

i

pi lg
1
pi

.

4. X is a random variable that takes a value i with
probability pi , then this formula is

H(X) =
∑

i

Pr[X = i] lg
1

Pr[X = i]
,

which is the entropy of X.
31/28

116



Notes

32/28

117



Notes

33/28

118



Notes

34/28

119



Notes

35/28

120


	Huffman coding
	start
	The algorithm to build Hoffman's code
	Analysis
	What do we get
	A formula for the average size of a code word


