
CS 473: Algorithms, Fall 2018

Sorting networks
Lecture 24
November 19, 2018

1/47

1

Who could vote in the first elections in the US
Clicker question

1. Everybody.
2. White people.
3. White male people, that owned land or had taxable

income.
4. Males.
5. Only people that looked like George Washington.

2/47

2

24.1: Model of Computation

3

Model of Computation
1. Q: Perform a computational task considerably faster

by using a different architecture? Yep.
2. Spaghetti sort!

4/47

4

Model of Computation
1. Q: Perform a computational task considerably faster

by using a different architecture? Yep.
2. Spaghetti sort!

4/47

5

Model of Computation
1. Q: Perform a computational task considerably faster

by using a different architecture? Yep.
2. Spaghetti sort!

4/47

6

Spaghetti

5/47

7

Spaghetti

Pastafarianism

5/47

8

Spaghetti

5/47

9

Spaghetti

5/47

10

Spaghetti

The spaghetti tree hoax was a three-minute hoax report
broadcast on April Fools’ Day 1957 by the BBC
current-affairs programme Panorama, purportedly
showing a family in southern Switzerland harvesting
spaghetti from the family ”spaghetti tree”. At the time
spaghetti was relatively little-known in the UK, so that
many Britons were unaware that spaghetti is made from
wheat flour and water; a number of viewers afterwards
contacted the BBC for advice on growing their own
spaghetti trees. Decades later CNN called this broadcast
”the biggest hoax that any reputable news establishment
ever pulled.”

5/47
11

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

12

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

13

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

14

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

15

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

16

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

17

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

18

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

19

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

20

Spaghetti sort
1. Input: S = {s1, . . . , sn} ⊆ [1, 2].
2. Have much Spaghetti (this are longish and very

narrow tubes of pasta).
3. cut ith piece to be of length si , for i = 1, . . . ,n.
4. take all these pieces of pasta in your hand..
5. make them stand up vertically, with their bottom

end lying on a horizontal surface
6. lower your handle till it hit the first (i.e., tallest)

piece of pasta.
7. Take it out, measure it height, write down its

number
8. and continue in this fashion till done.
9. Linear time sorting algorithm.

10. ...but sorting takes Ω(n log n) time.
6/47

21

What is going on?
1. Faster algorithm achieved by changing the

computation model.
2. allowed new “strange” operations

(cutting a piece of pasta into a certain length,
picking the longest one in constant time, and
measuring the length of a pasta piece in constant
time)

3. Using these operations we can sort in linear time.
4. So, are there other useful computation models?

7/47

22

What is going on?
1. Faster algorithm achieved by changing the

computation model.
2. allowed new “strange” operations

(cutting a piece of pasta into a certain length,
picking the longest one in constant time, and
measuring the length of a pasta piece in constant
time)

3. Using these operations we can sort in linear time.
4. So, are there other useful computation models?

7/47

23

What is going on?
1. Faster algorithm achieved by changing the

computation model.
2. allowed new “strange” operations

(cutting a piece of pasta into a certain length,
picking the longest one in constant time, and
measuring the length of a pasta piece in constant
time)

3. Using these operations we can sort in linear time.
4. So, are there other useful computation models?

7/47

24

What is going on?
1. Faster algorithm achieved by changing the

computation model.
2. allowed new “strange” operations

(cutting a piece of pasta into a certain length,
picking the longest one in constant time, and
measuring the length of a pasta piece in constant
time)

3. Using these operations we can sort in linear time.
4. So, are there other useful computation models?

7/47

25

What is going on?
1. Faster algorithm achieved by changing the

computation model.
2. allowed new “strange” operations

(cutting a piece of pasta into a certain length,
picking the longest one in constant time, and
measuring the length of a pasta piece in constant
time)

3. Using these operations we can sort in linear time.
4. So, are there other useful computation models?

7/47
26

Circuits running time?
Clicker question

If any gate takes one unit of time to compute its value,
and wires are instantaneous, then the above circuit takes
how many units of time to compute its result?

1. 8
2. 4
3. 3
4. 2
5. 1

8/47
27

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!
3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?

9/47

28

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!
3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?

9/47

29

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!

3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?
9/47

30

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!

4 time units!
3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?
9/47

31

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!

4 time units!
3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?
9/47

32

Circuits are fast...
1. Computing the following circuit naively takes

8 units of time.
2. Use parallelism!

4 time units!
3. Circuits are really parallel...
4. Sorting numbers with circuits?
5. Q: Can sort in sublinear time by allowing parallel

comparisons?
9/47

33

24.2: Sorting with a circuit
– a naive solution

34

Sorting with a circuit – a naive solution
1. comparator gate:

Comparator

x

y

y′ = max(x, y)

x′ = min(x, y)

2. Draw it as:

11/47

35

Sorting with a circuit – a naive solution
1. comparator gate:

Comparator

x

y

y′ = max(x, y)

x′ = min(x, y)

2. Draw it as:

11/47

36

Sorting with a circuit – a naive solution
1. comparator gate:

Comparator

x

y

y′ = max(x, y)

x′ = min(x, y)

2. Draw it as:

y

x′ = min(x, y)

y′ = max(x, y)

x

11/47

37

Sorting network - an example

12/47

38

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

39

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

40

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

41

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

42

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

43

How to draw a circuit...
1. wires: horizontal lines
2. gates: vertical segments

(i.e., gates) connecting lines.
3. Inputs arrive the wires from

left.
4. Output on the right side of

wires.
5. largest number is output on

the bottom line.
6. Sorting algorithms =⇒

sorting circuits.

13/47

44

Definitions
Definition
A comparison network is a DAG, with n inputs and
n outputs, where each gate has two inputs and two
outputs.
Definition
depth of a wire is 0 at input. For gate with two inputs
of depth d1 and d2 the depth on the output wire is
1 + max(d1, d2).
depth of comparison network is maximum depth of an
output wire.
Definition
sorting network: comparison network such that for any
input, the output is monotonically sorted.
size: sorting network is number of gates.
running time of sorting network is its depth.

14/4745

Definitions
Definition
A comparison network is a DAG, with n inputs and
n outputs, where each gate has two inputs and two
outputs.
Definition
depth of a wire is 0 at input. For gate with two inputs
of depth d1 and d2 the depth on the output wire is
1 + max(d1, d2).
depth of comparison network is maximum depth of an
output wire.
Definition
sorting network: comparison network such that for any
input, the output is monotonically sorted.
size: sorting network is number of gates.
running time of sorting network is its depth.

14/4746

Definitions
Definition
A comparison network is a DAG, with n inputs and
n outputs, where each gate has two inputs and two
outputs.
Definition
depth of a wire is 0 at input. For gate with two inputs
of depth d1 and d2 the depth on the output wire is
1 + max(d1, d2).
depth of comparison network is maximum depth of an
output wire.
Definition
sorting network: comparison network such that for any
input, the output is monotonically sorted.
size: sorting network is number of gates.
running time of sorting network is its depth.

14/4747

Sorting network based on insertion sort
1. Inner loop of insertion sort is:

2. Insertion sort as a network:

15/47

48

Sorting network based on insertion sort
1. Inner loop of insertion sort is:

2. Insertion sort as a network:

15/47

49

Sorting network based on insertion sort
1 2 3 4 5 6 7 8 9

(i) (ii)

Lemma
The sorting network based on insertion sort has O(n2)
gates, and requires 2n − 1 time units to sort n numbers.

16/47

50

Sorting network based on insertion sort
1 2 3 4 5 6 7 8 9

(i) (ii)

Lemma
The sorting network based on insertion sort has O(n2)
gates, and requires 2n − 1 time units to sort n numbers.

16/47

51

What is on the bottom wire?
Clicker question

The bottom wire in the circuit on the
right would output the...

1. min of input numbers. Running
time is 4.

2. max of input numbers. Running
time is 4.

3. min of input numbers. Running
time is 15.

4. max of input numbers. Running
time is 15.

5. None of the above.

17/47

52

24.3: The Zero-One
Principle

53

Converting a sequence into a binary sequence

0

2

4

6

8

10

A B C D E F G H I

x

19/4754

Converting a sequence into a binary sequence

0

2

4

6

8

10

A B C D E F G H I

x

19/4755

Converting a sequence into a binary sequence

0

2

4

6

8

10

A B C D E F G H I

x

19/4756

Converting a sequence into a binary sequence

19/47

57

Converting a sequence into a binary sequence

1 1 1 10 0 0 0 0

19/47

58

24.3.1: The zero-one principle

59

The Zero-One Principle
Definition
zero-one principle states that if a comparison network
sort correctly all binary inputs (∀ input is 0 or 1) then it
sorts correctly all inputs (input is real number).
Need to prove the zero-one principle.
Lemma
A comparison network transforms input sequence

a = 〈a1, a2, . . . , an〉 =⇒ b = 〈b1, b2, . . . , bn〉
Then for any monotonically increasing function f , the
network transforms

f (a) =
〈

f (a1), . . . , f (an)
〉

=⇒ f (b) =
〈

f (b1), . . . , f (bn)
〉

21/47

60

The Zero-One Principle
Definition
zero-one principle states that if a comparison network
sort correctly all binary inputs (∀ input is 0 or 1) then it
sorts correctly all inputs (input is real number).
Need to prove the zero-one principle.
Lemma
A comparison network transforms input sequence

a = 〈a1, a2, . . . , an〉 =⇒ b = 〈b1, b2, . . . , bn〉
Then for any monotonically increasing function f , the
network transforms

f (a) =
〈

f (a1), . . . , f (an)
〉

=⇒ f (b) =
〈

f (b1), . . . , f (bn)
〉

21/47

61

The Zero-One Principle
Definition
zero-one principle states that if a comparison network
sort correctly all binary inputs (∀ input is 0 or 1) then it
sorts correctly all inputs (input is real number).
Need to prove the zero-one principle.
Lemma
A comparison network transforms input sequence

a = 〈a1, a2, . . . , an〉 =⇒ b = 〈b1, b2, . . . , bn〉
Then for any monotonically increasing function f , the
network transforms

f (a) =
〈

f (a1), . . . , f (an)
〉

=⇒ f (b) =
〈

f (b1), . . . , f (bn)
〉

21/47

62

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
63

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
64

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
65

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
66

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
67

Proof
1. Induction on number of comparators.
2. Consider a comparator with inputs x and y, and

outputs x′ = min(x, y) and y′ = max(x, y).
3. If f (x) = f (y) then the claim trivially holds.
4. If f (x) < f (y) then clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)),

since f (·) is monotonically increasing.
5. 〈x, y〉, for x < y, we have output 〈x, y〉.
6. Input: 〈f (x), f (y)〉 =⇒ output is 〈f (x), f (y)〉.
7. Similarly, if x > y, the output is 〈y, x〉. In this

case, for the input 〈f (x), f (y)〉 the output is
〈f (y), f (x)〉. This establish the claim for a single
comparator.

22/47
68

Proof continued
1. Claim: if a wire carry a value ai , when the sorting

network get input a1, . . . , an, then for input
f (a1), . . . , f (an) this wire would carry the value
f (ai).

2. Proof by induction on the depth on the wire at each
point.

3. If point has depth 0, then its input and claim
trivially hold.

4. Assume holds for all points in circuit of depth ≤ qi,
and consider a point p on a wire of depth i + 1.

5. G: gate which this wire is an output of.
6. By induction, claim holds for inputs of G.

Now, the claim holds for the gate G itself.
Apply above single gate proof for G.
=⇒ claim holds at p.

23/47
69

Proof continued
1. Claim: if a wire carry a value ai , when the sorting

network get input a1, . . . , an, then for input
f (a1), . . . , f (an) this wire would carry the value
f (ai).

2. Proof by induction on the depth on the wire at each
point.

3. If point has depth 0, then its input and claim
trivially hold.

4. Assume holds for all points in circuit of depth ≤ qi,
and consider a point p on a wire of depth i + 1.

5. G: gate which this wire is an output of.
6. By induction, claim holds for inputs of G.

Now, the claim holds for the gate G itself.
Apply above single gate proof for G.
=⇒ claim holds at p.

23/47
70

Proof continued
1. Claim: if a wire carry a value ai , when the sorting

network get input a1, . . . , an, then for input
f (a1), . . . , f (an) this wire would carry the value
f (ai).

2. Proof by induction on the depth on the wire at each
point.

3. If point has depth 0, then its input and claim
trivially hold.

4. Assume holds for all points in circuit of depth ≤ qi,
and consider a point p on a wire of depth i + 1.

5. G: gate which this wire is an output of.
6. By induction, claim holds for inputs of G.

Now, the claim holds for the gate G itself.
Apply above single gate proof for G.
=⇒ claim holds at p.

23/47
71

Proof continued
1. Claim: if a wire carry a value ai , when the sorting

network get input a1, . . . , an, then for input
f (a1), . . . , f (an) this wire would carry the value
f (ai).

2. Proof by induction on the depth on the wire at each
point.

3. If point has depth 0, then its input and claim
trivially hold.

4. Assume holds for all points in circuit of depth ≤ qi,
and consider a point p on a wire of depth i + 1.

5. G: gate which this wire is an output of.
6. By induction, claim holds for inputs of G.

Now, the claim holds for the gate G itself.
Apply above single gate proof for G.
=⇒ claim holds at p.

23/47
72

Proof continued
1. Claim: if a wire carry a value ai , when the sorting

network get input a1, . . . , an, then for input
f (a1), . . . , f (an) this wire would carry the value
f (ai).

2. Proof by induction on the depth on the wire at each
point.

3. If point has depth 0, then its input and claim
trivially hold.

4. Assume holds for all points in circuit of depth ≤ qi,
and consider a point p on a wire of depth i + 1.

5. G: gate which this wire is an output of.
6. By induction, claim holds for inputs of G.

Now, the claim holds for the gate G itself.
Apply above single gate proof for G.
=⇒ claim holds at p.

23/47
73

24.3.1.1:Sorting correctly binary
sequences implies real sorting

74

0/1 sorting implies real sorting
Theorem
If a comparison network with n inputs sorts all 2n binary
strings of length n correctly, then it sorts all sequences
correctly.

25/47

75

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
76

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
77

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
78

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
79

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
80

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
81

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
82

Proof: 0/1 sorting implies real sorting
1. Assume for contradiction that fails for input

a1, . . . , an. Let b1, . . . bn be the output sequence
for this input.

2. Let ai < ak be the two numbers that are output in
incorrect order (i.e. ak appears before ai in output).

3. f (x) =

{
0 x ≤ ai

1 x > ai.

4. By lemma for input 〈f (a1), . . . , f (an)〉,
circuit would output 〈f (b1), . . . , f (bn)〉.

5. This sequence looks like:
000..0????f (ak)????f (ai)??1111

6. but f (ai) = 0 and f (aj) = 1. Namely, the output
is a sequence of the form ????1????0????, which
is not sorted.

7. bin. input 〈f (b1), . . . , f (bn)〉 sorting net’ fails. A
contradiction.

26/47
83

24.4: A bitonic sorting
network

84

Bitonic sorting network
Definition
A bitonic sequence is a sequence which is first
increasing and then decreasing, or can be circularly
shifted to become so.

example
The sequences (1, 2, 3, π, 4, 5, 4, 3, 2, 1) and
(4, 5, 4, 3, 2, 1, 1, 2, 3) are bitonic, while the sequence
(1, 2, 1, 2) is not bitonic.

28/47

85

Bitonic sorting network
Definition
A bitonic sequence is a sequence which is first
increasing and then decreasing, or can be circularly
shifted to become so.

example
The sequences (1, 2, 3, π, 4, 5, 4, 3, 2, 1) and
(4, 5, 4, 3, 2, 1, 1, 2, 3) are bitonic, while the sequence
(1, 2, 1, 2) is not bitonic.

28/47

86

Bitonic sequences
Clicker question

0

2

4

6

8

10

A B C D E F G H I

x

0

2

4

6

8

10

A B C D E F G H I

x

0

2

4

6

8

10

A B C D E F G H I

x

0

2

4

6

8

10

A B C D E F G H I

x

(1) (2) (3) (4)
1. All sequences above are bitonic.
2. None of the sequences above are bitonic.
3. (3) and (4) are bitonic, (1) and (2) are not.
4. (1) and (4) are bitonic, (2) and (3) are not.
5. (1), (3) and (4) are bitonic, (2) is not.

29/47

87

Binary bitonic sequences
Observation
binary bitonic sequence is either of the form 0i1j0k or of
the form 1i0j1k, where 0i (resp, 1i) denote a sequence
of i zeros (resp., ones).

30/47

88

Bitonic sorting network
Definition
A bitonic sorter is a comparison network that sorts all
bitonic sequences correctly.

31/47

89

Half cleaner...
Definition
half-cleaner : a comparison network, connecting line i
with line i + n/2.

32/47

90

Half cleaner...
Definition
half-cleaner : a comparison network, connecting line i
with line i + n/2.

32/47

91

Half cleaner...
Definition
half-cleaner : a comparison network, connecting line i
with line i + n/2.

Half-Cleaner[n] denote half-cleaner with n inputs.

32/47

92

Half cleaner...
Definition
half-cleaner : a comparison network, connecting line i
with line i + n/2.

Half-Cleaner[n] denote half-cleaner with n inputs.
Depth of Half-Cleaner[n] is one.

32/47

93

Half cleaner on bitonic sequence...
111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

1. What a half-cleaner do to an input which is a
(binary) bitonic sequence?

2. In example... left half size is clean and all equal to
0.

3. Right side of the output is bitonic.
4. Specifically, one can prove by simple (but tedious)

case analysis that the following lemma holds.

33/47
94

Half cleaner on bitonic sequence...
111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

1. What a half-cleaner do to an input which is a
(binary) bitonic sequence?

2. In example... left half size is clean and all equal to
0.

3. Right side of the output is bitonic.
4. Specifically, one can prove by simple (but tedious)

case analysis that the following lemma holds.

33/47
95

Half cleaner on bitonic sequence...
111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

1. What a half-cleaner do to an input which is a
(binary) bitonic sequence?

2. In example... left half size is clean and all equal to
0.

3. Right side of the output is bitonic.
4. Specifically, one can prove by simple (but tedious)

case analysis that the following lemma holds.

33/47
96

Half cleaner on bitonic sequence...
111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

1. What a half-cleaner do to an input which is a
(binary) bitonic sequence?

2. In example... left half size is clean and all equal to
0.

3. Right side of the output is bitonic.
4. Specifically, one can prove by simple (but tedious)

case analysis that the following lemma holds.

33/47
97

Half cleaner half sorts a bitonic sequence...
Lemma
If the input to a half-cleaner (of size n) is a binary
bitonic sequence then for the output sequence we have
that

1. the elements in the top half are smaller than the
elements in bottom half, and

2. one of the halves is clean, and the other is bitonic.

34/47

98

Proof
Proof.
If the sequence is of the form 0i1j0k and the block of
ones is completely on the left side (i.e., its part of the
first n/2 bits) or the right side, the claim trivially holds.
So, assume that the block of ones starts at position
n/2 − β and ends at n/2 + α.

00 . . . 00 111 . . . 111

000 . . . 00011 . . . 11

HalfCleaner

00 . . . 00 00 . . . 0011

111 . . . 111

α︷ ︸︸ ︷
︸ ︷︷ ︸

β

If n/2 − α ≥ β then this is exactly the case depicted
above and claim holds. If n/2 − α < β then the
second half is going to be all ones, as depicted on the
right. Implying the claim for this case.
A similar analysis holds if the sequence is of the form
1i0j1k.

35/47
99

Bitonic sorter - sorts bitonic sequences...
���������	��

�
 ������������� ���

�
���������� �"!#�%$
&'�(�*)

�
 ��������� ��� ���

�����+���	��
 �
 ������� �,!#�-$

���������	��

� �������	�
����
����

� �����

(i) (ii) (iii)
(i) recursive construction of BitonicSorter[n],
(ii) opening up the recursive construction, and
(iii) the resulting comparison network.

36/47

100

Bitonic sorter... the result
Lemma
BitonicSorter[n] sorts bitonic sequences of length
n = 2k, it uses (n/2)k = (n/2) lg n gates, and it is
of depth k = lg n.

37/47

101

Making bitonic sequences?
Clicker question

A = 〈a1, . . . , an〉: increasing sorted sequence.
B = 〈b1, . . . , bn〉: increasing sorted sequence.
Let | the concatenate operator.
rev(〈x1, . . . , xm〉) = 〈xm, xm−1, . . . , x1〉: reverse
operator.
Then, we have that:

1. A|B is a sorted sequence.
2. A|rev(B) is a sorted sequence.
3. A|B is a bitonic sequence.
4. rev

(
rev(A)| rev(B)

)
is a bitonic sequence.

5. rev(A)|B is a bitonic sequence.

38/47
102

Merging sequence
1. Merging question: Given two sorted sequences of

length n/2, how do we merge them into a single
sorted sequence?

2. Concatenate the two sequences...
3. ... second sequence is being flipped (i.e., reversed).
4. Easy to verify that the resulting sequence is bitonic,

and as such we can sort it using the
BitonicSorter[n].

5. Given two sorted sequences a1 ≤ a2 ≤ . . . ≤ an
and b1 ≤ b2 ≤ . . . ≤ bn, observe that the
sequence
a1, a2, . . . , an, bn, bn−1, bn−2, . . . , b2, b1 is
bitonic.

39/47
103

Merger[n]: Using a bitonic sorter
Merging two sorted sequences into a sorted sequence

���������	��

�
 ���������������

� ���������������

(i) (ii) (iii) (iv)

(i) Merger via flipping the lines of bitonic sorter.
(ii) BitonicSorter.
(iii) Merger after we “physically” flip the lines.
(iv) Equivalent drawing of the resulting Merger.

40/47

104

Merger[n] described using FlipCleaner

� �������	�
����
����
� �����

� �����������

� � � � ���!�#"%$ &('

� � � � ���!� "%$ &('

� �����������

(i) (ii)

(i) FlipCleaner[n], and
(ii) Merger[n] described using FlipCleaner.

41/47

105

What Merger[n] does...
Lemma
The circuit Merger[n] gets as input two sorted
sequences of length n/2 = 2k−1, it uses
(n/2)k = (n/2) lg n gates, and it is of depth
k = lg n, and it outputs a sorted sequence.

42/47

106

24.5: Sorting Network

107

Sorting Network
Finally...

Implement merge sort using Merger[n].

Sorter[n]:

� �����������
	��

�������������� ���

���������� ��� ���

Lemma
The circuit Sorter[n] is a sorting network (i.e., it sorts
any n numbers) using G(n) = O(n log2 n) gates. It
has depth O(log2 n). Namely, Sorter[n] sorts n
numbers in O(log2 n) time.

44/47
108

Proof
Proof.
The number of gates is

G(n) = 2G(n/2) + Gates(Merger[n]).

Which is
G(n) = 2G(n/2) + O(n log n) = O(n log2 n).
As for the depth, we have that
D(n) = D(n/2) + Depth(Merger[n]) =
D(n/2) + O(log(n)), and thus D(n) = O(log2 n),
as claimed.

45/47

109

Resulting sorted

Figure: Sorter[8].

46/47

110

24.6: Faster sorting
networks

111

Faster sorting networks
1. Known: sorting network of logarithmic depth

Ajtai et al. [1983].
2. Known as the AKS sorting network.
3. Construction is complicated.
4. Ajtai et al. [1983] is better than bitonic sort for n

larger than 28046.

48/47

112

Notes

49/47

113

Notes

50/47

114

Notes

51/47

115

Notes

52/47

116

M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n)
sorting network. In Proc. 15th Annu. ACM Sympos.
Theory Comput. (STOC), pages 1–9, 1983.

117

	Model of Computation
	Sorting with a circuit – a naive solution
	Definitions
	Sorting network based on insertion sort

	The Zero-One Principle
	The zero-one principle

	A bitonic sorting network
	Merging sequence

	Sorting Network
	Faster sorting networks
	References

