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5.1: Introduction
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What is going on?
Clicker question

Consider the formula √xy =
√

x√y.
=⇒ 1 =

√
1 =

√
(−1)(−1) =

√
−1
√
−1 = −1.

1. 1 = −1. Its time that this was more publicly
known.

2. The formula √xy =
√

x√y is incorrect.
3.
√
−1 is two numbers, and the above formula is

incorrect in this case.
4. Wikipedia knows the answer.
5. This is not related to the class topic, so stop

wasting my time.
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Polynomials of degree 2
Clicker question

Consider the polynomial p(x) = ax2 + bx + c that
passes through the points (0, 1), (−1, 1), (1, 2).
Which of the following statements are correct?

1. There are infinite family of such polynomials.
2. There is no such polynomial.
3. There is only one such polynomial, but its

coefficients are complex numbers.
4. There is only one such polynomial, and it is

p(x) = x2/2 + x/2 + 1.
5. None of the above.
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Polynomials of degree n
Clicker question

Consider two polynomials p(x) =
∑n−1

i=0 aixi and
q(x) =

∑n−1
i=0 bixi that passes through the points

(xi, yi), for i = 1, . . . ,n. Then:
1. p(x) = q(x), for all x.
2. p(x) 6= q(x), for all x ∈ R \ {x1, . . . , xn}.
3. Both (A) and (B) are possible.
4. None of the above.
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Approximating functions with polynomials
Clicker question

Let f be a continuous function on the interval [0, 1].
Let ε > 0 be a parameter. Then, we have:

1. ∃n > 0, and a polynomial p(x) of degree n, such
that ∀x ∈ [0, 1] |p(x)− f (x)| ≤ ε.

2. For n = O(1/ε2), there exists a polynomial p(x)
of degree n, such that
∀x ∈ [0, 1] |p(x)− f (x) ≤ ε.

3. There might not be a polynomial that can
approximate f on [0, 1], up to additive error of ε.

4. None of the above.
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Polynomials and point value pairs
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Multiplying polynomials quickly
Definition
polynomial p(x) of degree n:a function
p(x) =

∑n
j=0 ajxj = a0+x(a1+x(a2+. . .+xan)).

x0: p(x0) can be computed in O(n) time.
“dual” (and equivalent) representation...
Theorem
For any set

{
(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

}
of

n point-value pairs such that all the xk values are
distinct, there is a unique polynomial p(x) of degree
n − 1, such that yk = p(xk), for k = 0, . . . ,n − 1.

8/46

8



Polynomial via point-value
Clicker question

Let x0, . . . , xn be n + 1 distinct real numbers.

p(x) =
(x − x1)(x − x2) . . . (x − xn)

(x0 − x1)(x0 − x2) . . . (x0 − xn)

1. p(x) is a polynomial of degree n, we have
p(x0) = 0, and
p(x1) = 1, p(x2) = 1, . . . , p(xn) = 1.

2. p(x) is a rational function.
3. p(x) is a polynomial of degree n, we have

p(x0) = 1, and
p(x1) = 0, p(x2) = 0, . . . , p(xn) = 0.

4. p(x) is not well defined function because of
division by zero.

5. None of the above.
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Polynomial via point-value{
(x0, y0), (x1, y1), (x2, y2)

}
: polynomial through

points:

p(x) = y0
�����XXXXX(x − x0)(x − x1)(x − x2)

XXXXXX(x0 − x0)(x0 − x1)(x0 − x2)

+ y1
(x − x0)�����XXXXX(x − x1)(x − x2)

(x1 − x0)
XXXXXX(x1 − x1)(x1 − x2)

+ y2
(x − x0)(x − x1)�����XXXXX(x − x2)

(x2 − x0)(x2 − x1)
XXXXXX(x2 − x2)
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Polynomial via point-value{
(x0, y0), (x1, y1), (x2, y2)

}
: polynomial through

points:

p(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)

+ y1
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

+ y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
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Polynomial via point-value{
(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

}
: polynomial

through points:

p(x) =

n−1∑
i=0

yi

∏
j 6=i(x − xj)∏
j 6=i(xi − xj)

.

ith is zero for x = x1, . . . , xi−1, xi+1, . . . , xn−1, and
is equal to yi for x = xi .
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Polynomials: regular vs. point-value pair
representation
Just because.

1. Given n point-value pairs. Can compute p(x) in
O(n2) time.

2. Point-value pairs representation: Multiply
polynomials quickly!

3. p, q polynomial of degree n − 1, both represented
by 2n point-value pairs{
(x0, y0), (x1, y1), . . . , (x2n−1, y2n−1)

}
for p(x),

and
{
(x0, y′

0), (x1, y′
1), . . . , (x2n−1, y′

2n−1)
}

for q(x).

4. r(x) = p(x)q(x): product.
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Polynomials: regular vs. point-value pair
representation
Just because.

1. In point-value representation representation of r(x)
is{

(x0, r(x0)), . . . , (x2n−1, r(x2n−1))
}

=

{(
x0, p(x0)q(x0)

)
, . . . ,

(
x2n−1, p(x2n−1)q(x2n−1)

)}
=

{
(x0, y0y′

0), . . . , (x2n−1, y2n−1y′
2n−1)

}
.
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Which implies...
1. p(x) and q(x): point-value pairs =⇒ compute

r(x) = p(x)q(x) in linear time!
2. ...but r(x) is in point-value representation.

Bummer.
3. ...but we can compute r(x) from this

representation.
4. Purpose: Translate quickly (i.e., O(n log n) time)

from the standard r to point-value pairs
representation of polynomials.

5. ...and back!
6. =⇒ computing product of two polynomials in

O(n log n) time.
7. Fast Fourier Transform is a way to do this.
8. choosing the xi values carefully, and using divide

and conquer.
14/46
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5.2: Computing a
polynomial quickly on n

values
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Computing a polynomial quickly on n values
Lets just use some magic.

1. Assume: polynomials have degree n − 1, where
n = 2k.

2. .. pad polynomials with terms having zero
coefficients.

3. Magic set of numbers: Ψ = {x1, . . . , xn}.
Property: |SQ(Ψ)| = n/2, where
SQ(Ψ) =

{
x2

∣∣∣ x ∈ Ψ
}

.
4. |square()| = |Ψ| /2.
5. Easy to find such set...
6. Magic: Have this property repeatedly...

SQ(SQ(Ψ)) has n/4 distinct values.
7. SQ(SQ(SQ(Ψ))) has n/8 values.
8. SQi(Ψ) has n/2i distinct values.
9. Oops: No such set of real numbers.

10. NO SUCH SET.
16/4627
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Collapsible sets
Assume magic...

Let us for the time being ignore this technicality, and fly,
for a moment, into the land of fantasy, and assume that
we do have such a set of numbers, so that
|SQi(Ψ)| = n/2i numbers, for i = 0, . . . , k. Let us
call such a set of numbers collapsible.
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Breaking the input polynomial into...
... two polynomials of half the degree

1. For a set X = {x0, . . . , xn} and polynomial p(x),
let

p
(
X
)
=

〈(
x0, p(x0)

)
, . . . ,

(
xn, p(xn)

)〉
.

2. p(x) =
∑n−1

i=0 aixi as
p(x) = u(x2) + x · v(x2), where

u(y) =

n/2−1∑
i=0

a2iy
i and v(y) =

n/2−1∑
i=0

a1+2iy
i.

3. all even degree terms in u(·), all odd degree terms
in v(·).

4. maximum degree of u(y), v(y) is n/2.
18/46
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4. maximum degree of u(y), v(y) is n/2.
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FFT: The dividing stage
1. p(x) =

∑n−1
i=0 aixi as

p(x) = u(x2) + x · v(x2).
2. Ψ: collapsible set of size n.
3. p(Ψ): compute polynomial of degree n − 1 on n

values.
4. Decompose:

u(y) =

n/2−1∑
i=0

a2iyi and v(y) =

n/2−1∑
i=0

a1+2iyi.

5. Need to compute u(x2), for all x ∈ Ψ.
6. Need to compute v(x2), for all x ∈ Ψ.
7. SQ(Ψ) =

{
x2

∣∣∣ x ∈ Ψ
}

.
8. =⇒ Need to compute u(SQ(Ψ)), v(SQ(Ψ)).
9. u(SQ(Ψ)), v(SQ(Ψ)): comp. poly. degree n

2 − 1
on n

2 values.
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FFT: The dividing stage
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2 − 1
on n
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FFT: The dividing stage
1. p(x) =

∑n−1
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p(x) = u(x2) + x · v(x2).
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FFT: The conquering stage
1. Ψ: Collapsible set of size n.
2. p(x) =

∑n−1
i=0 aixi as

p(x) = u(x2) + x · v(x2).
3. u(y) =

∑n/2−1
i=0 a2iyi and

v(y) =
∑n/2−1

i=0 a1+2iyi.

4. u(SQ(Ψ)), v(SQ(Ψ)): Computed recursively.
5. Need to compute p(Ψ).
6. For x ∈ Ψ: Compute p(x) = u(x2) + x · v(x2).
7. Takes constant time per single element x ∈ Ψ.
8. Takes O(n) time overall.
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FFT: The conquering stage
1. Ψ: Collapsible set of size n.
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FFT algorithm
FFTAlg(p, X)// X: A collapsible set of n elements.

input: p(x): polynomial deg. n: p(x) =
∑n−1

i=0 aixi

output: p(X)

u(y) =
∑n/2−1

i=0 a2iyi v(y) =
∑n/2−1

i=0 a1+2iyi.
Y = SQ(X) =

{
x2

∣∣∣ x ∈ X
}

.
U = FFTAlg(u,Y ) // U = u(Y )
V = FFTAlg(v,Y ) // V = v(Y )
Out ← ∅
for x ∈ X do // p(x) = u(x2) + x ∗ v(x2)

(x, p(x))← (x,U [x2] + x ·V [x2]) // U [x2] ≡ u(x2)
Out ← Out ∪ {(x, p(x))}

return Out
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Running time analysis...
...an old foe emerges once again to serve

1. T(m,n): Time of computing a polynomial of
degree m on n values.

2. We have that:

T(n − 1,n) = 2T(n/2− 1,n/2) + O(n).

3. The solution to this recurrence is O(n log n).
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Generating Collapsible Sets
1. How to generate collapsible sets?
2.
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Generating Collapsible Sets
1. How to generate collapsible sets?
2. Trick: Use complex numbers!
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Complex numbers – a quick reminder
1. Complex number:

pair (α, β) of real
numbers.
Written as
τ = α + iβ.

2. α: real part,
β: imaginary part.

3. i is the root of −1.
4. Geometrically: a

point in the complex
plane:

1. polar form:
τ = r cosφ + ir sinφ = r(cosφ + i sinφ)

2. r =
√

α2 + β2 and φ = arcsin(β/α).
24/46
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Complex numbers – a quick reminder
1. Complex number:

pair (α, β) of real
numbers.
Written as
τ = α + iβ.

2. α: real part,
β: imaginary part.

3. i is the root of −1.
4. Geometrically: a

point in the complex
plane:
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β
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r

φ
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A useful formula: cosφ + i sinφ = eiφ

1. By Taylor’s expansion:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · ,

cos x = 1−
x2

2!
+

x4

4!
−

x6

6!
+ · · · ,

and ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ · · · .

2. Since i2 = −1:

eix = 1 + i
x
1!
−

x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
−

x6

6!
· · ·

= cos x + i sin x.
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Back to polar form
1. polar form: τ = r cosφ + ir sinφ =

r(cosφ + i sinφ) = reiφ,
2. τ = reiφ, τ ′ = r ′eiφ′ : complex numbers.
3. τ · τ ′ = reiφ · r ′eiφ′

= rr ′ei(φ+φ′).
4. eiφ is 2π periodic (i.e., eiφ = ei(φ+2π)), and

1 = ei0.
5. nth root of 1: complex number τ – raise it to

power n get 1.
6. τ = reiφ, such that τ n = rneinφ = ei0.
7. =⇒ r = 1, and there must be an integer j, such

that

nφ = 0 + 2πj =⇒ φ = j(2π/n).
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Roots of unity
The desire to avoid war?

For j = 0, . . . ,n − 1, we get the n distinct roots of
unity .

1

γ1(4) = β3(4) = i

γ
2
(4
)
=

β
2
(4
)
=

−
1

γ3(4) = β1(4) = −i

1

γ1(8) = β7(8)

γ2(8) = β6(8) = i

γ3(8) = β5(8)

γ
4
(8
)
=

β
4
(8
)
=

−
1

γ5(8) = β3(8)

γ6(8) = β2(8) = −i

γ7(8) = β1(8)

(n = 4) (n = 8) (n = 16)
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Back to collapsible sets
1. Can do all basic calculations on complex numbers in

O(1) time.
2. Idea: Work over the complex numbers.
3. Use roots of unity!
4. γ: nth root of unity. There are n such roots, and

let γj(n) denote the jth root.

γj(n) = cos((2πj)/n) + i sin((2πj)/n) = γj.

Let A(n) = {γ0(n), . . . , γn−1(n)}.
5. |SQ(A(n))| has n/2 entries.
6. SQ(A(n)) = A(n/2)
7. n to be a power of 2, then A(n) is the required

collapsible set.
28/46
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The first result...
Theorem
Given polynomial p(x) of degree n, where n is a power
of two, then we can compute p(X) in O(n log n)
time, where X = A(n) is the set of n different powers
of the nth root of unity over the complex numbers.
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Problem...
We can go, but can we come back?

1. Can multiply two polynomials quickly
2. by transforming them to the point-value pairs

representation...
3. over the nth roots of unity.
4. Q: How to transform this representation back to the

regular representation.
5. A: Do some confusing math...
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5.3: Recovering the
polynomial

92



Recovering the polynomial
Think about FFT as a matrix multiplication operator.
p(x) =

∑n−1
i=0 aixi . Evaluating p(·) on A(n):


y0
y1
y2
...

yn−1

 =



1 γ0 γ2
0 γ3

0 · · · γn−1
0

1 γ1 γ2
1 γ3

1 · · · γn−1
1

1 γ2 γ2
2 γ3

2 · · · γn−1
2

1 γ3 γ2
3 γ3

3 · · · γn−1
3

... ... ... ... · · · ...
1 γn−1 γ2

n−1 γ3
n−1 · · · γn−1

n−1


︸ ︷︷ ︸

the matrix V



a0
a1
a2
a3
...

an−1


,

where γj = γj(n) = (γ1(n))j is the jth power of the
nth root of unity, and yj = p(γj).
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The Vandermonde matrix
Because every matrix needs a name

V is the Vandermonde matrix.
V−1: inverse matrix of V
Vandermonde matrix. And let multiply the above
formula from the left. We get:


y0
y1
y2
...

yn−1

 = V



a0
a1
a2
a3
...

an−1


=⇒



a0
a1
a2
a3
...

an−1


= V−1


y0
y1
y2
...

yn−1

 .
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The inverse Vandermonde matrix
..for the rescue

1. Recover the polynomial p(x) from the point-value
pairs{
(γ0, p(γ0)), (γ1, p(γ1)), . . . , (γn−1, p(γn−1))

}
2. by doing a single matrix multiplication of V−1 by

the vector [y0, y1, . . . , yn−1].
3. Multiplying a vector with n entries with n × n

matrix takes O(n2) time.
4. No benefit so far...
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What is the inverse of the Vandermonde matrix
Vandermonde matrix is famous, beautiful and well known – a celebrity
matrix

Claim

V−1 =
1
n



1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

... ... ... ... · · · ...
1 βn−1 β2

n−1 β3
n−1 · · · βn−1

n−1


,

where βj = (γj(n))−1.
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Proof
Consider the (u, v) entry in the matrix C = V−1V .
We have

Cu,v =

n−1∑
j=0

(βu)
j(γj)

v

n
.

As γj = (γ1)
j .Thus,

Cu,v =

n−1∑
j=0

(βu)
j((γ1)

j)v

n
=

n−1∑
j=0

(βu)
j((γ1)

v)j

n
=

n−1∑
j=0

(βuγv)
j

n
.

Clearly, if u = v then

Cu,u =
1
n

n−1∑
j=0

(βuγu)
j =

1
n

n−1∑
j=0

(1)j =
n
n

= 1.
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Proof continued...
If u 6= v then,

βuγv = (γu)
−1γv = (γ1)

−uγv
1 = (γ1)

v−u = γv−u.

And

Cu,v =
1
n

n−1∑
j=0

(γv−u)
j =

1
n
·
γn

v−u − 1
γv−u − 1

=
1
n
·

1− 1
γv−u − 1

= 0,

Proved that the matrix C have ones on the diagonal and
zero everywhere else.
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Recap...
1. n point-value pairs {(γ0, y0), . . . , (γn−1, yn−1)}:

of polynomial p(x) =
∑n−1

i=0 aixi over nth roots
of unity.

2. Recover coefficients of polynomial by multiplying
[y0, y1, . . . , yn] by V−1:

a0
a1
a2
...

an−1

 =
1
n



1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

... ... ... ... · · · ...
1 βn−1 β2

n−1 β3
n−1 · · · βn−1

n−1


︸ ︷︷ ︸

V−1



y0
y1
y2
y3
...

yn−1


.

3. W (x) =

n−1∑
i=0

(yi/n)xi : ai = W (βi).
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Recovering continued...
1. recover coefficients of p(·)...
2. ... compute W (·) on n values: β0, . . . , βn−1.
3. {β0, . . . , βn−1} = {γ0, . . . , γn−1}.
4. Indeed βn

i = (γ−1
i )n = (γn

i )
−1 = 1−1 = 1.

5. Apply the FFTAlg algorithm on W (x) to compute
a0, . . . , an−1.
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Result
Theorem
Given n point-value pairs of a polynomial p(x) of
degree n − 1 over the set of n powers of the nth roots
of unity, we can recover the polynomial p(x) in
O(n log n) time.

Theorem
Given two polynomials of degree n, they can be
multiplied in O(n log n) time.
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5.4: Convolutions
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Convolutions
1. Two vectors: A = [a0, a1, . . . , an] and

B = [b0, . . . , bn].
2. dot product A · B = 〈A,B〉 =

∑n
i=0 aibi.

3. Ar : shifting of A by n − r locations to the left
4. Padded with zeros:, aj = 0 for j /∈ {0, . . . ,n}).
5. Ar =

[
an−r, an+1−r, an+2−r, . . . , a2n−r

]
where aj = 0 if j /∈

[
0, . . . ,n

]
.

6. Observation: An = A.
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Example of shifting
Example
For A = [3, 7, 9, 15], n = 3
A2 = [7, 9, 15, 0],
A5 = [0, 0, 3, 7].
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Definition
Definition
Let ci = Ai · B =

∑2n−i
j=n−i ajbj−n+i , for

i = 0, . . . , 2n. The vector [c0, . . . , c2n] is the
convolution of A and B.

question
How to compute the convolution of two vectors of
length n?
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Convolution via multiplication polynomials
1. p(x) =

∑n
i=0 αixi , and q(x) =

∑n
i=0 βixi .

2. Coefficient of xi in r(x) = p(x)q(x) is
di =

∑i
j=0 αjβi−j .

3. Want to compute
ci = Ai · B =

∑2n−i
j=n−i ajbj−n+i .

4. Set αi = ai and βl = bn−l−1.
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Convolution by example
1. Consider coefficient of x2 in product of

p(x) = a0 + a1x + a2x2 + a3x3 and
q(x) = b0 + b1x + b2x2 + b3x3.

2. Sum of the entries on the anti diagonal:

a0+ a1x +a2x2 +a3x3

b0 a2b0x2

+b1x a1b1x2

+b2x2 a0b2x2

+b3x3

3. entry in the ith row and jth column is aibj .
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Convolution
Theorem
Given two vectors A = [a0, a1, . . . , an],
B = [b0, . . . , bn] one can compute their convolution in
O(n log n) time.

Proof.
Let p(x) =

∑n
i=0 an−ixi and let q(x) =

∑n
i=0 bixi .

Compute r(x) = p(x)q(x) in O(n log n) time using
the convolution theorem. Let c0, . . . , c2n be the
coefficients of r(x). It is easy to verify, as described
above, that [c0, . . . , c2n] is the convolution of A and
B.
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