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5.1: Introduction



What is going on?

Clicker question

Consider the formula \/Zy = //¥.
= 1=V1=/(-)(-1) =v=1Tv/~-1=-1.

1. 1 = —1. Its time that this was more publicly
known.

2. The formula \/zy = +/x,/y is incorrect.
3. v/—1 is two numbers, and the above formula is
incorrect in this case.

4. Wikipedia knows the answer.

5. This is not related to the class topic, so stop
wasting my time.



Polynomials of degree 2

Clicker question

Consider the polynomial p(x) = az?® + bx + c that
passes through the points (0,1), (—1,1), (1,2).
Which of the following statements are correct?

1. There are infinite family of such polynomials.
2. There is no such polynomial.

3. There is only one such polynomial, but its
coefficients are complex numbers.

4. There is only one such polynomial, and it is
p(z) =x%/2 +x/2+ 1.
5. None of the above.



Polynomials of degree n

Clicker question

Consider two polynomials p(x) = 3" a;z’ and
q(z) = 374 bia’ that passes through the points
(xiy y;), for i =1,...,n. Then:

1. p(z) = q(x), for all .

2. p(x) # q(x), forall x € R\ {@x1,...,2,}.

3. Both (A) and (B) are possible.

4. None of the above.
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Approximating functions with polynomials

Clicker question

Let f be a continuous function on the interval [0, 1].
Let € > 0 be a parameter. Then, we have:

1. 3n > 0, and a polynomial p(x) of degree n, such
that Vo € [0,1]  |p(z) — f(z)| < e.

2. For n = O(1/€?), there exists a polynomial p(x)
of degree m, such that
Ve € [0,1] [p(x) — f(z) <e.

3. There might not be a polynomial that can
approximate f on [0, 1], up to additive error of €.

4. None of the above.



Polynomials and point value pairs

Some polynomials of degree two, passing through two fixed points
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Multiplying polynomials quickly

Definition

polynomial p(x) of degree m:a function

p(z) =37 o a;@ = ap+z(ar+z(az+...+zay)).
xo: p(xo) can be computed in O(n) time.

“dual” (and equivalent) representation...

Theorem

For any set {(wOa yO)a (mla yl)a ERE) (mn—la yn—l)} of
n point-value pairs such that all the x; values are
distinct, there is a unique polynomial p(x) of degree

n — 1, such that y, = p(xy), fork=0,...,n — 1.



Polynomial via point-value
Clicker question

Let =g, ..., x, be n + 1 distinct real numbers.
(x—x)(z—x2) ... (T — )

P®) = oy — 2r) (50 = 2) - - (@0 — 22)

1. p(x) is a polynomial of degree n, we have
p(xo) = 0, and
p(ml) = 13 p(w2) = ]-9 s ,p(:l:n) =1

2. p(z) is a rational function.

3. p(x) is a polynomial of degree m, we have
p(xp) = 1, and
p(a}l) = Ov p(wZ) = 0’ s 7p(mn) =0.

4. p(x) is not well defined function because of
division by zero.



Polynomial via point-value

{ (205 Y0)s (@1, 1), (2, y2) }: polynomial through
points:

() — o ETN (@ = m) (@ = 2)
(@o—x0) (w0 — @1) (w0 — 2)

(z — o) (=) (z — =)
(21 — @0) (Tr—21) (T1 — T2)

L (z — @) (z — o) (T=m2)
(w2 — o) (22 — 21) (B —-2)

+ un




Polynomial via point-value

{ (205 Y0)s (@1, 1), (2, y2) }: polynomial through
points:

(z — o) (z — x2)
(w0 — 1) (w0 — T2)

p(z) = Yo

(z — @) (z — z2)

T e~ 20) (11 — )

(x — @) (z — 1)
(22 — x0) (22 — T1)

+ Yo



Polynomial via point-value

{(ZB(), yO)’ (mla yl)? L] (mn—la yn—l)}: ponnomiaI
through points:

J#z(m )
J#'L(mz )

p(w)-—-jgz T

ith is zero for * = @1, ..., Xi—1, Tit+1y++ .4 Tp_1, and
is equal to y; for x = x;.
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Polynomials: regular vs. point-value pair
representation

Just because.

1. Given m point-value pairs. Can compute p(x) in
O(n?) time.
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Polynomials: regular vs. point-value pair
representation

Just because.

1. In point-value representation representation of r(x)
is

{(woa "'(1'0)), ) ($2n—13 ""(wZn—l))}
= {(mo, P(20)q(0) ) - - -5 (T2n-1, P(@n—l)qm"—m}

= {(iBo, yOy(,))a ooy (T2n—1, y2n—1y;n_1)} .
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r(x) = p(x)q(x) in linear time!
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Which implies...

1.

2.

p(x) and g(x): point-value pairs = compute
r(x) = p(x)q(x) in linear time!

...but 7() is in point-value representation.
Bummer.

...but we can compute r(x) from this
representation.
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from the standard r to point-value pairs
representation of polynomials.

...and back!

— computing product of two polynomials in
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Fast Fourier Transform is a way to do this.
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5.2: Computing a
polynomial quickly on n
values
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Computing a polynomial quickly on n values
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Collapsible sets

Assume magic...

Let us for the time being ignore this technicality, and fly,
for a moment, into the land of fantasy, and assume that
we do have such a set of numbers, so that

ISQ*(¥)| = n/2% numbers, for i = 0,..., k. Let us
call such a set of numbers collapsible.
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Breaking the input polynomial into...
... two polynomials of half the degree

1. For aset X = {xg,...,x,} and polynomial p(x),
let
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FFT: The conquering stage

1

W: Collapsible set of size n.

2. p(x) = 307 aix’ as

© N o oA

p(z) = w(z®) + = - v(z?).

w(y) = T2 apyt and

v(y) = ST ey’

u(SQ(¥)), v(SQ(¥)): Computed recursively.
Need to compute p(¥).

For x € ¥: Compute p(z) = u(z?) + z - v(x?).
Takes constant time per single element £ € W.

Takes O(n) time overall.



FFT algorithm

FFTAIg(p, X)// X: A collapsible set of n elements.
input: p(z): polynomial deg. m: p(z) = > i, a;z’
output: p(X)

u(y) = X757 ay v(y) = Lile ! araiy’

Y = SQ(X) = {:132 z € X}.

U = FFTAIg(u, Y) // U =u(Y)

V = FFTAIg(v, Y) //V =9v(Y)

Out < 0

for € X do // p(x) = u(x?) + = * v(x?)

(z, p(x)) + (z, Ulz®] + = - V[z?]) /1 Ula?] = u(a®)
Out < Out U {(z, p(x))}

return Out
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Running time analysis...

...an old foe emerges once again to serve

1. T(m,n): Time of computing a polynomial of
degree m on n values.
2. We have that:

T(n—1,n) =2T(n/2 —1,n/2) + O(n).

3. The solution to this recurrence is O(n log n).
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Generating Collapsible Sets

1. How to generate collapsible sets?

2. Trick: Use complex numbers!
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A useful formula: cos ¢ + isin ¢ = e'?

1. By Taylor's expansion:
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A useful formula: cos ¢ + isin ¢ = e'?

1. By Taylor's expansion:

s
51nw:w—§+5—ﬁ+...,
e S
COS$:1_§+Z_E+'”’
z?

x
and e:1+ﬁ+§+§+“"
2. Since i2 = —1:

x? 2 x> a8

€ :1+1E_§_1§+Z+la_a...

= cos x + isin x.
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Back to polar form

1. polar form: 7 = rcos ¢ + irsin ¢ =
r(cos ¢ + isin @) = re®?,

2. T =re? 7' = 1r'e?: complex numbers.

717 = re? . re? = prel(ete)

4. €® is 2 periodic (i.e., €i® = €(?T2™) and
1 = €.

5. mth root of 1: complex number T — raise it to
power 1 get 1.

6. T = re'?, such that 7" = r"e'™® = €.

7. = r =1, and there must be an integer j, such
that

w

ndG=04+211 — b= (27 /n).



Roots of unity

The desire to avoid war?

Forj=0,..

.,n — 1, we get the n distinct roots of
unity.

() = fald) = -1
(

(n = 16)

=7 /A
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Can do all basic calculations on complex numbers in
O(1) time.

Idea: Work over the complex numbers.

Use roots of unity!

~: mth root of unity. There are n such roots, and
let «v;(n) denote the jth root.

v;j(n) = cos((2mj)/n) + isin((275)/n) = +’.

Let A(n) = {vo(n),...,Yn-1(n)}.
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Back to collapsible sets

1. Can do all basic calculations on complex numbers in
O(1) time.

2. Idea: Work over the complex numbers.

3. Use roots of unity!

4. ~: mth root of unity. There are n such roots, and
let «v;(n) denote the jth root.

v;j(n) = cos((2mj)/n) + isin((275)/n) = +’.

Let A(n) = {vo(n),...,Yn-1(n)}.
5. |SQ(A(n))| has n/2 entries.
SQ(.A(n)) = A(n/2)

— I Y o e A7 N * 1 = 7

o



The first result...

Theorem

Given polynomial p(x) of degree n, where n is a power
of two, then we can compute p(X) in O(nlogn)
time, where X = A(n) is the set of n different powers
of the nth root of unity over the complex numbers.
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Problem...

We can go, but can we come back?

1. Can multiply two polynomials quickly

2. by transforming them to the point-value pairs
representation...

3. over the nth roots of unity.

4. Q: How to transform this representation back to the
regular representation.

5. A: Do some confusing math...

30/46



5.3: Recovering the
polynomial



Recovering the polynomial

Think about FFT as a matrix multiplication operator.
p(z) = 375 a;x’. Evaluating p(-) on A(n):

n—1

1 v ¥ ¥ - 7%
2 3 n—1 o
Yo 1 T T T NS ] a;
z; e M || @
: 1 vs 72 42 oot as
Yn_1 S
ap—1
1 Yoo1 Y24 Yy o o "

the matrix V

where v; = ~;(n) = (v1(n))’ is the jth power of the




The Vandermonde matrix

Because every matrix needs a name

V is the Vandermonde matrix.

V1. inverse matrix of V

Vandermonde matrix. And let multiply the above
formula from the left. We get:

Qo Qo
Yo
a; ay
)1 as as
y.2 =V as > as
Yn—1

ap_1 ap_1




The inverse Vandermonde matrix

..for the rescue

1. Recover the polynomial p(x) from the point-value
pairs

{(v0, (7)), (V15 P(71))s -+ o5 (Yn—1, P(Yn—1)) }
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The inverse Vandermonde matrix

..for the rescue

1. Recover the polynomial p(x) from the point-value
pairs

{(70, 2(70))s (V15 2(71))s -+ + s (V=15 P(VYn=1)) }

2. by doing a single matrix multiplication of V=1 by
the vector [yo, Y15+ -« 5 Yn—1]-

3. Multiplying a vector with n entries with n X n
matrix takes O(n?) time.

4. No benefit so far...



What is the inverse of the Vandermonde matrix

Vandermonde matrix is famous, beautiful and well known — a celebrity
matrix

Claim

2 -1

1 B 2 g .o g )
2 p—

1 B ? i* ces ! )

. 111 B g 3 een g_
V = — 1 B 2 3 . n—1 ’
n 3 3 3 3
. ' 2' 3' n—1
1 /671—1 n—1 n—1 = °° Bn—l

where 3; = (v;(n))~ .



Proof

Consider the (u, v) entry in the matrix C = V1 V.
We have

§2 (B

n

Cuv:

b

=0

As v; = (v1)?.Thus,

Cuw = g(ﬂu)]((vl)’)” ”i: )’((71) Y < Bu%

M

j=0 j=0 j=0

Clearly, if u = v then

1 n—1 ) 1 n—1 ] n
==Y By == 1)Y=="=1



Proof continued...
If w # v then,

BuYo = (Yu) e = (1) 7" = (7)) = Yo—u-

And

122 1 4»,—-1 1 1-1
Cu,v - — Z('yv—u)] - - —

n j=0 n Yy—u — 1 n Yy—u — 1

Proved that the matrix C' have ones on the diagonal and
zero everywhere else. |
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1. m point-value pairs {(7vo0, ¥o), - - ‘s (Yn-1s Yn—1) }:
of polynomial p(z) = "I~ a;x’ over nth roots

of unity.

2. Recover coefficients of polynomial by multiplying

[y07 Yigeooy yn] by V-1

ap
aa
as

an—1

SIS

1 B
1 B
1 8
1 B
1 Bus

n—1




Recovering continued...

1. recover coefficients of p(+)...
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1. recover coefficients of p(+)...

2. ... compute W (-) on n values: Bo,...,Bn_1.
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Recovering continued...

. recover coefficients of p(-)...
.. compute W (-) on n values: Bg,...,Bn_1.

1

2

3. {ﬁ03 o a/gn—l} - {70, oo a'Yn—l}-

4. Indeed 3} = (71._1)" = (7?)—1 =1"1=1.



Recovering continued...

1. recover coefficients of p(+)...

2. ... compute W (-) on n values: Bo,...,Bn_1.

3. {Bos s Bn—1} = {05+, Y1}

4. Indeed B = (v; )" = (") ' =171 =1

5. Apply the FFTAIg algorithm on W (x) to compute
Ags vy Qp_1.
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Result

Theorem

Given n point-value pairs of a polynomial p(x) of
degree n — 1 over the set of n powers of the nth roots
of unity, we can recover the polynomial p(x) in
O(nlogn) time.

Theorem
Given two polynomials of degree n, they can be
multiplied in O(nlog n) time.
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1.

o W

Two vectors: A = [ag, a1, ..., a,] and

B = [bg, ..., b,].

dot product A - B = (A,B) ="  a;b;.
A, shifting of A by n — 7 locations to the left
Padded with zeros:, a; = 0 for j & {0,...,n}).
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Convolutions

1.

o W

Two vectors: A = [ag, a1, ..., a,] and

B = [bg, ..., b,].

dot product A - B = (A,B) ="  a;b;.
A, shifting of A by n — 7 locations to the left
Padded with zeros:, a; = 0 for j & {0,...,n}).

Ar == [an—ra Ant1—7y A4 27y ooy a2n—r]
where a; = 0 if j GE[O,...,'n,].

Observation: 4, = A.
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Example of shifting

Example

For A =[3,7,9,15], n =3
Ay = [7,9,15,0],

As = [0,0,3,7].
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Definition

Definition _
Let C; = 14Z -B = 2322;1; ajbj_n+,~, for

i =20,...,2n. The vector [cg, ..., C2y] is the
convolution of A and B.

question

How to compute the convolution of two vectors of
length n?

4446



Convolution via multiplication polynomials

L p(a) = Xy asat, and q(@) = Y1, Bia
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Convolution via multiplication polynomials

L p(a) = S0 s, and g(x) = Y0, B
2. Coefficient of = in 7(z) = p(x)q(x) is
di = Z;’:O aj,B,-_j.
3. Want to compute
2n—1
c;=A;-B=3 7" " ajbj_ni
4. Set o; = Q; and /Bl = bn—l—l-
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Convolution by example

1. Consider coefficient of x? in product of
p(z) = ap + a1 + axx® + azx® and
q(x) = by + byx + byx? + bzx®.
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Convolution by example

1. Consider coefficient of x? in product of
p(z) = ap + a1 + axx® + azx® and
q(x) = by + byx + byx? + bzx®.

2. Sum of the entries on the anti diagonal:

| aot | az | +axz® | tase®

bo

as bO 332

—|—b133

ap bl ZL'2

+b2$2

ap b2 $2

—|—b3$3

3. entry in the ith row and jth column is a;b;.




Convolution

Theorem

Given two vectors A = [ag, G1, ..., Gy,

B = [bo,. .., b,] one can compute their convolution in
O(nlogn) time.

Proof.

Let p(z) = >0, an—;x’ and let g(z) = Y, bz’
Compute 7(x) = p(x)q(x) in O(nlog n) time using
the convolution theorem. Let cg, ..., c2, be the
coefficients of 7(x). It is easy to verify, as described
above, that [cg, ..., €a,] is the convolution of A and

B. 0



Notes
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