CS 473: Algorithms, Fall 2018

Linear Programming

Lecture 21
November 8, 2018
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Easy or not easy?

Let ¢1,..., 2, € {0,1} be boolean variables. You are given m
constraints of the form:

24z +x — o, > —1.

That is, each variable might have 41 or —1 as a coefficient, and
each inequality has three variables, and a constant additive term.
Deciding if such a problem has a feasible solution is

@ NP-Complete.
@ NP-Hard.
o P
© Not a well defined question.
© Doable in polynomial time if Riemann's hypothesis is true.
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21.1: Linear Programming



2].].]. Introduction and Motivation



21.1.1.1:Resource allocation in a factory



A Factory Example

Problem
Suppose a factory produces two products I and II. Each requires
three resources A, B, C.

@ Producing one unit of Product | requires 1 unit each of
resources A and C.

@ One unit of Product Il requires 1 unit of resource B and 1 units
of resource C.

© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product | can be sold for $1 and product Il for $6.

How many units of product | and product Il should the factory
manufacture to maximize profit?
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A Factory Example

Problem

Suppose a factory produces two products I and II. Each requires
three resources A, B, C.

@ Producing one unit of Product | requires 1 unit each of
resources A and C.

@ One unit of Product Il requires 1 unit of resource B and 1 units
of resource C.

© We have 200 units of A, 300 units of B, and 400 units of C.
@ Product | can be sold for $1 and product Il for $6.

How many units of product | and product Il should the factory
manufacture to maximize profit?

Solution: Formulate as a linear program.
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A Factory Example

Problem

Suppose a factory produces two
products I and II. Each requires
three resources A, B, C.

@ Producing unit I: Req. 1 unit

of A, C.

© Producing unit II: Requ. 1
unit of B, C.

© Have A: 200, B: 300, and
C': 400.

Q Price |: $1, and II: $6.

How many units of | and Il to
manufacture to max profit?

\
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A Factory Example

Problem

Suppose a factory produces two
products I and II. Each requires

three resources A, B, C. max x5 + 6xyy
© Producing unit |: Req. 1 unit | s.t. xy < 200 (A)
of A, C. zrr < 300 (B)
@ Producing unit |I: Requ. 1 xr + x; < 400 (C)
unit of B, C. 2 >0
© Have A: 200, B: 300, and 2y > 0
C': 400.

Q Price |: $1, and II: $6.

How many units of | and Il to
manufacture to max profit?
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Linear Programming Formulation

Let us produce x; units of product | and x5 units of product Il. Our
profit can be computed by solving

maximize x; + 6x5

s.t. x, < 200
zz < 300
T + x < 400
Zy, 2 2> 0

9/58
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Linear Programming Formulation

Let us produce x; units of product | and x5 units of product Il. Our
profit can be computed by solving

maximize x; + 6x5

s.t. x, < 200
zz < 300
T + x < 400
Zy, 2 2> 0

What is the solution?

9/58
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Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP

I S 200
2

400

300

200

100

100 feo0 [300 [400 1z

10/58
16



Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP

L2

1+ xo < 400
T, + x9 = 400
400
300 o
200 o
100 )\
100 [200 [300 1400 "xy

10/58
10



Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP
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Graphical interpretation of LP

x2

400T

300

200

100

200 300 [A00 "y

10/58
24



21.1.1.2:More examples...
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Economic planning

0000

Penguina: a country.
Ruler need to decide how to allocate resources.
Maximize benefit.
Budget allocation
@ Nuclear bomb has a tremendous positive effect on security
while being expensive.
@ Guns, on the other hand, have a weaker effect.
Penguina need to prove a certain level of security:

Lgun + 1000 * Lnuclear—bomb 2 1000,
where Tguns: # GUNS Tpyclear—bomb: 7 Nuclear-bombs
constructed.

100 = Lgun + 1000000 =* Lnuclear—bomb S Lsecurity
Tsecurity: total amount spent on security.
100/1, 000, 000: price of producing a single gun/nuclear

bomb.
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Linear programming

An instance of linear programming (LP):

© 0 060 O©060

Tyy..., T, variables.

Forj=1,...,m: aix + ...+ ajpz, < b;: linear
inequality.

i.e., constraint.

Q: 3 assignment of values to @y, ..., x, such that all
inequalities are satisfied?

Many possible solutions... Want solution that maximizes some
linear quantity.

objective function: linear inequality being maximized.

13/58
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Linear programming — example

a1 + ...+ apz, < by
21T + ... + a2z, < by

A1y + LI + Amnn S bm
max iy + ...+ cpx,.

14/58
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Linear Programming: A History

@ First formalized applied to problems in economics by Leonid
Kantorovich in the 1930s
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Linear Programming: A History

@ First formalized applied to problems in economics by Leonid
Kantorovich in the 1930s
@ However, work was ignored behind the Iron Curtain and
unknown in the West
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Linear Programming: A History

@ First formalized applied to problems in economics by Leonid
Kantorovich in the 1930s
@ However, work was ignored behind the Iron Curtain and
unknown in the West
@ Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics
@ First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947
@ Kantorovich and Koopmans receive Nobel Prize for economics in
1975 ; Dantzig, however, was ignored
@ Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
"“a means for apologists of capitalism”

15/58
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Network flow via linear programming

Input: G = (V, E) with source s and sink t, and capacities c(+) on
the edges. Compute max flow in G.
V(u,v) € E 0 < xyyy
Tuy—o < C(u — v)

Vo€ VA {s,t} D @usv— Y Tsu <0

(u,v)EE (v,w)EE
Z Ly—sv — Z Ly—sw Z 0
(u,v)EE (v,w)EE
maximizing Z(s,u)GE Ls—u

16/58
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Maximum weight matching

Input: G = (V, E) and weight w(-) on the edges. Compute max
matching in G.

Yuv € E 0 < x,

Ly S 1

Yve V Z Ty < 1
uvEE

max > uwvce W(UV) Tyy

17/58
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21.1.1.3:Shortest path as a LP
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Shortest path as a LP

Let G be a directed graph with weights on the edges, and a vertices
s and t. For a vertex v € V(G), let x, be the length of the shortest

path from s to v. For all (u, v) € E(G), we must have that
Q z, + w(u,v) < x,.
Q =, +z, — w(u,v) > 0.
Q z, + w(u,v) > x,.
Q z, +z,+ w(u,v) > 0.
© All of the above.

19/58
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Computing shortest path from

to

is the LP...

Lt
z, + w(u,v) > x,

z, = 0.

Ls

z, + w(u,v) > x,

x; = 0.
min x;
Q@ | V(u,v) €E =z, + w(u,v) > x,
x, = 0.
max o

z, + w(u,v) > x,

x, = 0.

40
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21.2: The Simplex Algorithm
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2121 Linear program where all the variables are
positive

40



n
max E Cj(Bj
j=1

n
s.t. Zaijmjgbi for t=1,2,...,m
j=1

© Rewrite: so every variable is non-negative.
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Rewriting an LP

n
max E Cj(Bj
j=1

n
s.t. Zaijmjgbi for t=1,2,...,m
j=1

© Rewrite: so every variable is non-negative.
@ Replace variable z; by =] and ', where new constraints are:
x; = x, — x z; >0 and <z >0.

7!
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Rewriting an LP

n
max E Cj(Bj
j=1

n
s.t. Zaijmjgbi for t=1,2,...,m
j=1

© Rewrite: so every variable is non-negative.
@ Replace variable z; by =] and ', where new constraints are:
x; = x, —x, z; >0 and <z >0.
@ Example: The (silly) LP 2z + y > 5 rewritten:
20 — 22" + y/ _ y// > 5,
' >0,y >0,
x” > 0, and
y"” > 0.

. 23/58



Rewriting an LP into standard form

Given an instance I of LLP, one can rewrite it into an equivalent LLP,
such that all the variables must be non-negative. This takes linear
time in the size of I.
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Rewriting an LP into standard form

Given an instance I of LLP, one can rewrite it into an equivalent LLP,
such that all the variables must be non-negative. This takes linear

time in the size of I.

An LP where all variables must be non-negative is in standard form

24/58
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21 22 Standard form
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Standard form of LLP

A linear program in standard form.

n
max Z C;T;j
j=1
s.t. Zaij{Biji fori=1,2,...,m
j=1
z; >0 for j=1,...,n.

26,58
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Standard form of LLP

a1 a2 o Qa1(n—1) Q1n

az G2 ... Ga(nen azn c, b and A: prespecifi
A= : 5 : of unknowns.
A(m—1)1 Am—-1)2 -+ Q(m—-1)(n—1) C(m—1)n
Am1 Amz .o+ Gm(n—1) [ Solve LP for x.

LP in standard form.

. . Iy
(Matrix notation.) e b, 2
max c’z c=1 : |,b=| : |,z= :
st. Az <b. Cn by, Tn—1
xz > 0. Tn
27/58
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2123 Slack Form
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Slack Form

@ Rewrite LP into slack form. max c'z

@ Every inequality becomes equality. st. Az =b.
© All variables must be positive. z > 0.
@ See resulting form on the right.
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Slack Form

@ Rewrite LP into slack form. max c'z

@ Every inequality becomes equality. st. Az =b.
© All variables must be positive. z > 0.
@ See resulting form on the right.

@ New slack var.. Rewrite: 7 | a;x; < b. As:
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Slack Form

@ Rewrite LP into slack form. max c'z

@ Every inequality becomes equality. st. Az =b.
© All variables must be positive. z > 0.
@ See resulting form on the right.

© New slack var.. Rewrite: 370 | a;@; < b. As:
Tpy1 — b— Z a;x; and Tn+1 2 0.
i=1

cA



Slack Form

Rewrite LP into slack form. max clz
Every inequality becomes equality. st. Az =b.
All variables must be positive. z > 0.
See resulting form on the right.

New slack var.. Rewrite: >0, a;x; < b. As:
Tpy1 — b— Z a;x; and Tn+1 2 0.
i=1
Value of slack variable x,,;1 encodes how far is the original
inequality for holding with equality.

29/58
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Slack form...

@ LP now made of equalities of the form:
n
Tpp1 = b— 3, aiw;

56



Slack form...

@ LP now made of equalities of the form:
n
Toy1 = b— D 1L, a;x;
@ Variables on left: basic variables.
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Slack form...

@ LP now made of equalities of the form:
n
Tpp1 = b— 3, aiw;
© Variables on left: basic variables.
© Variables on right: nonbasic variables.
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Slack form...

@ LP now made of equalities of the form:
Tpp1 = b— 1
© Variables on left: basic variables.
© Variables on right: nonbasic variables.
@ LP in this form is in slack form.
Linear program in slack form.

max z:v—l—chazj,
JEN
s.t. m,-zb,-—Zaijazj for i€ B,
JEN
x>0, Vi=1,...,n4+ m.

30,58
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Basic/nonbasic

Nonbasic variables

973 97 97"

1 1
=8+65L’3+ s — —Tg

1
6 3

2
373~ 375 + 376

1o 1
=35 o~
2L g

Basic variables

31/58
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Slack form formally

The slack form is defined by a tuple (N, B, A, b, ¢, v).
B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N| - number of original variables
b, c - two vectors of constants
m = | B| - number of basic variables
(i.e., number of inequalities)
A = {a;} - The matrix of coefficients
NuB={1,...,n+ m}
v - objective function constant.

32/58
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Slack form formally

JEN

s.t. €Tr; = bz — Z Qi T fO‘T' 1€ B,

x>0, Vi=1,...,n4+m.

33,58
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Consider the following LLP which is in slack form.

29 1 1 2
max z = —_ — P — — I — —
9™ T g T g"®
8—|—1 +1 1
T = —x —I5 — —
1 63 65 3336
4 8 2 +1
Lo — — —QLa — — —
2 33 35 31’6
18 ! +
Ty — — —x —@
4 23 25

34/58
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...translated into tuple form (N, B, A, b, ¢, v).

B ={1,2,4} ,N = {3,5,6}

aijz ais Qaie —1/6 —1/6

A= az3 agz5 0az¢ = 8/3 2/3
a43 Q45 Q46 1/ 2 —1/ 2
b1 8

C3
Cs
Ce

b2
by

v = 29.

4
18

J(i) =(2)-

1/3
~1/3
0
—~1/9
~1/9
—2/9

|
|

Note that indices depend on the sets N and B, and also that the
entries in A are negation of what they appear in the slack form.

64
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Another example...

max 5x; + 4xs + 3x3
sit. 2x; +3xx+x3< 5
4z, + T + 223 < 11
3z, + 4wy + 223 < 8

T4 L2,23 >0

Transform into slack form...

max 2z = bx; + 4z + 33
s.t. wq = 55— 21 — 353 — 3
wy = 11 —4x; — x5 — 223
wy = 8 —3x; — 4x3 — 223
Ty T2,T3, W1, W2, W3 >0

36,58
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21.2.4: The Simplex algorithm by example

66



The Simplex algorithm by example

Next, we introduce
max 52, + 4z, + 3 slack variables, . .for
example, rewriting
sit. 2x; + 3+ a3< 5 22, 4 315 + 25 < 5 as the
4x) + @2 + 223 < 11 constraints: w; > 0 and
3x; +4xs + 223 < 8 w; = 5—2x; — 3 — I3.
Ty, 2y 23 > 0 The resulting LP in slack

form is

max z= bz + 4z + 3x3
s.t. wg = 5 —2x; — 313 — T3
= wy, = 11 —4xy — 3 — 223
wy = 8 — 31 —4xs — 225

Ty, m2,m3a w1, W2, W3 Z 0
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Example continued I...

max

s.t.

z =
w, =
Wy =

w3y =

5ry + 4xy + 373

5 —2x; — 315 — T3
11 —4x; — 2 — 225
8 — 31y —4xy — 213

Iy, L2,T3, W1,y W2, W3 2 0

68



Example continued I...

max

s.t.

z =
w, =
Wy =

w3y =

Q@ wy, ws, ws: slack variables.
(Also currently basic

5@y + 4w, + 3 variables)

5 —2x; — 315 — T3
11 —4x; — 2 — 225
8 — 31y —4xy — 213

Iy, L2,T3, W1,y W2, W3 2 0

60



Example continued I...

max

s.t.

z =
w, =
Wy =

w3y =

5ry + 4xy + 373

5 —2x; — 315 — T3
11 —4x; — 2 — 225
8 — 31y —4xy — 213

Iy, L2,T3, W1,y W2, W3 2 0

70

wy, We, ws: slack variables.
(Also currently basic
variables).

Consider the slack
representation trivial
solution...

all non-basic variables
assigned zero:

ry = T2 = 23 = 0.



Example continued I...

Q@ wy, ws, ws: slack variables.
(Also currently basic

max z= bx; + 4xs + 3x3 )
variables).

b wy = 5—2m — 3w, — @3 @ Consider the slack
wy = 11 —dz; — 2 — 273 representation trivial
wy = 8 — 31 — 4z — 273 solution...

Ty, Tp Tz, Wy, Wy, wg > 0 all non-basic variables

assigned zero:
ry = T2 = 23 = 0.

o —— w1:5,w2=113ndw3:8.

71



Example continued I...

Q@ wy, ws, ws: slack variables.
(Also currently basic

max z= bx; + 4xs + 3x3 )
variables).

b wy = 5—2m — 3w, — @3 @ Consider the slack
wy = 11 —dz; — 2 — 273 representation trivial
wy = 8 — 31 — 4z — 273 solution...

Ty, Tp Tz, Wy, Wy, wg > 0 all non-basic variables

assigned zero:
ry = T2 = 23 = 0.

o —— w1:5,w2=113ndw3:8.

@ Feasiblel!
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Example continued I...

Q@ wy, ws, ws: slack variables.
(Also currently basic

max z= bx; + 4xs + 3x3 )
variables).

b wy = 5—2m — 3w, — @3 @ Consider the slack
wy = 11 —dz; — 2 — 273 representation trivial
wy = 8 — 31 — 4z — 273 solution...

Ty, Tp Tz, Wy, Wy, wg > 0 all non-basic variables

assigned zero:
ry = T2 = 23 = 0.

o —— w1:5,w2=113ndw3:8.

@ Feasiblel!

© Objection function value: z = 0.
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Example continued I...

max z= bx; + 4xs + 3x3

s.t. wi = 5 —2x1 — 313 — 13
wy = 11 —4x; — 3 — 223 °
wy = 8 — 31 — 4xy — 213

Iy, L2,T3, W1,y W2, W3 2 0

wy, We, ws: slack variables.
(Also currently basic
variables).

Consider the slack
representation trivial
solution...

all non-basic variables
assigned zero:

ry = T2 = 23 = 0.

o —— w1:5,w2=113ndw3:8.

Q Feasible!
© Objection function value: z = 0.

© Further improve the value of objective function (i.e., z). While

keeping feasibility.

74

39/58



Example continued II...

max z= 5x; + 4xs + 3x3
s.t. wg = 5—2x1 — 322 — 13
we = 11 —4x; — x5 — 223
w3 = 8 —3x; — 4z — 2x3

T14y L2,T35 W1,y W2, W3 2 0
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Example continued II...

max
s.t.

z =
wy =
Wo =

wg =

5%‘1 + 4:112 + 3563
5—2$1—3$2—$3
11 — 4:131 — T — 22123

8 — 3%1 — 4:132 — 2333

T14y L2,T35 W1,y W2, W3 2 0

76

Qz=x,=23=0

wy = 11 and 'w3 = 8.



Example continued II...

max

s.t.

z =
wy =
Wo =

wg =

5%‘1 + 4:112 + 3563
5—2$1—3$2—$3
11 — 4$1 — T — 22123

8 — 3%1 — 4:132 — 2333

T14y L2,T35 W1,y W2, W3 2 0

77

wy = 11 and w3 = 8.

© All w; positive — change
x; a bit does not change
feasibility.



Example continued II...

max z =
s.t. wp =
Wo =

wg =

T14y L2,T35 W1,y W2, W3 2 0

52, + 4xy + 3 Quz=z=ax3=
5 —2x; — 313 — 23
11 — day — 2 — 24 wy = 11 and w3 = 8.
8 — 3@, — 4wy — 23 © All w; positive — change
x; a bit does not change

feasibility.

Q@ z=5x + 4z, + 3x3: want to increase values of x;s... since
z increases (since 5 > 0).
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Example continued II...

max z =
s.t. wp =
Wo =

wg =

Ty, T2, T3, W1, W2, W3 > 0

5(111+41112—|—3£C3 ewl:%: 3:0
5—2$1—3$2—$3
11— 4y — 29 — 224 wy = 11 and w3 = 8.
© All w; positive — change

x; a bit does not change

feasibility.

8 — 3%1 — 4:132 — 2333

Q@ z=5x + 4z, + 3x3: want to increase values of x;s... since
z increases (since 5 > 0).

@ How much to increase ;777
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Example continued II...

max z =
s.t. wp =
Wo =

wg =

Ty, T2, T3, W1, W2, w3 > 0

52, + 4xy + 3 Quz=z=ax3=
5 —2x; — 313 — 23
11 — day — 2 — 24 wy = 11 and w3 = 8.
8 — 3@, — 4wy — 23 © All w; positive — change
x; a bit does not change

feasibility.

Q@ z=5x + 4z, + 3x3: want to increase values of x;s... since
z increases (since 5 > 0).

@ How much to increase ;777
© Careful! Might break feasibility.
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Example continued II...

max z =
s.t. wp =
Wo =

wg =

Ty, T2, T3, W1, W2, W3 > 0

5(111+41112—|—3£C3 °$1:$2:.'B3:0
— 'w1:5,

5—2$1—3$2—$3
wy = 11 and w3 = 8.

11 — 42y — 2 — 223

© All w; positive — change
x; a bit does not change
feasibility.

8 — 3%1 — 4:132 — 2333

Q@ z=5x + 4z, + 3x3: want to increase values of x;s... since
z increases (since 5 > 0).

@ How much to increase ;777
© Careful! Might break feasibility.

@ Increase x; as much as possible without breaking feasibility!

40,58
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Example continued IlI...

Set xy = 23 =0

max z= bz + 4z + 3x3
s.t. wg = 5 —2x1 — 33 — I3
Wo = 11—4%1—(132—2%3

w3 = 8—311}1—4582—2933

T14 L2,T35 W1y W2, W3 >0

89



Example continued IlI...

Set xy = 23 =0

max z= 5z + 4z + 3z3 =5—2x
s.t. wy = 5—2x; —3x2 — 73 wy =11 — 4xy — x5 — 213
Wo = 11—4%1—(132—2%3 _11_4:1:
w3 = 8 —3x; — 42 — 223 8 3 ! 4 9
Wa = — oL — — 4
Ty, T2, T3, W1, W2, w3 > 0 3 ! T2 3
=8 — 3:1,'1.

fo3es



Example continued IlI...

Set xy = 23 =0

max z =
s.t. wp =
Wo =

w3z =

5(1,'1 + 4122 + 32133

5—2:121—31132—333
11—4%1—(132—2(173
8—311}1—4582—2133

T1, T2, T3, W1, w2, w3 > 0

w =5 —2x; — 31y — 3
=5—-2x

wy = 11 — 4x; — x5 — 223
=11 —4x;

wy =8 — 3y — 4xy — 213
=8 — 3x;.

@ Want to increase x; as much as possible, as long as:
w, =5—2x; >0,
we = 11 — 4x; > 0,

and ws = 8 — 3z, > 0.
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Example continued V...

@ Constraints:

max
s.t.

’LU1:5—2111120,

z= 5z +4x3 + 33

w = 5— 21 — 313 — T3 wy =11 — 4z, > 0,
we = 11 — 4z — x5 — 213 andw3:8—3:13120.
wy = 8 —3xr; —4xs — 223

Ty, T2, T3, W1, W2, w3 > 0

Fo15Y



Example continued V...

max
s.t.

z= 5z +4x3 + 33

wyp = 5—2(1:1—3332—2113
Wo = 11—4(D1—CC2—2$3
wg = 8—3561—4$2—25B3

Ty, T2, T3, W1, W2, w3 > 0

86

@ Constraints:

’LU1:5—2111120,
’U)2:11—4CC120,
and wz3 = 8 — 3x; > 0.

Q Iy S 2.5,
x <11/4 = 2.75 and
2, < 8/3 = 2.66



Example continued V...

@ Constraints:

wy; = 5 — 2:131 > O,
max z= 5x; + 4z + 3x3 _>
s.t. wg = 5—2x1 — 313 — T3 ’w2_11—43;1_0,
wy = 11 — 4z — @ — 23 and wg = 8 — 3x; > 0.
w3 = 8 — 31y —4xs — 223
T1, T2, T3, W1, W2, w3 > 0 Q@ z; <25,
x; < 11/4 = 2.75 and

© Maximum we can increase x; is 2.5. ; < 8/3 = 2.66
e w1:2.5, ZBzZO, .’133:0, w1=0, ’UJ2:]_, w3=O.5
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Example continued V...

@ Constraints:

wy; = 5 — 2:131 > O,
max z= 5x; + 4z + 3x3 _>
s.t. wg = 5—2x1 — 313 — T3 ’w2_11—43;1_0,
wy = 11 — 4z — @ — 23 and wg = 8 — 3x; > 0.
w3 = 8 — 31y —4xs — 223
T1, T2, T3, W1, W2, w3 > 0 Q@ z; <25,
x; < 11/4 = 2.75 and

© Maximum we can increase x; is 2.5. ; < 8/3 = 2.66
9:1:1:2.5,:1:2:(),333:0,w1=0,w2=1,w3=O.5
= z=5x + 4xs + 323 = 12.5.
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Example continued V...

@ Constraints:

wy; = 5 — 2:131 > O,
max z= 5x; + 4z + 3x3 _>
s.t. wg = 5—2x1 — 313 — T3 ’w2_11—43;1_0,
wy = 11 — 4z — @ — 23 and wg = 8 — 3x; > 0.
w3 = 8 — 31y —4xs — 223
T1, T2, T3, W1, W2, w3 > 0 Q@ z; <25,
x; < 11/4 = 2.75 and

© Maximum we can increase x; is 2.5. ; < 8/3 = 2.66

Q@ =25, o=0, z3=0, w; =0, wy =1, w3 =0.5
= z=5x + 4xs + 323 = 12.5.

© Improved target!

fo{e]



Example continued V...

@ Constraints:

wy; = 5 — 2:131 > O,
max z= 5x; + 4z + 3x3 _>
s.t. wg = 5—2x1 — 313 — T3 ’w2_11—4$1_0,
wy = 11 — 4z — @ — 23 and wg = 8 — 3x; > 0.
w3 = 8 — 31y —4xs — 223
T1, T2, T3, W1, W2, w3 > 0 Q@ z; <25,
x; < 11/4 = 2.75 and

© Maximum we can increase x; is 2.5. ; < 8/3 = 2.66
Q@ =25, o=0, z3=0, w; =0, wy =1, w3 =0.5
= z=5x + 4xs + 323 = 12.5.
© Improved target!
@ A nonbasic variable x; is now non-zero. One basic variable (w-)
became zero.
42/58
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Example continued V...

max
s.t.

wyp =
Wo =

w3z =

511:1 + 4:112 + 3:173
5—2$1—3$2—$3
11 — 4:131 — T — 2(133

8—3$1 —4.’132 —2m3

Ty, T2, T3, W1, W2, W3 2 0

91

Q x; = 2.5, & =
0, Ir3 = 0, wy, =
0, Wy = 1, w3 = 0.5



Example continued V...

max
s.t.

°$1:2.5, Iy =

z= Bxy +4xs + 313 0, ©3 =0, w; =
0, ’LU2:1, ’lU3:0.5

wy = 5—2$1—3$2—$3

wy = 11 —4x; — x — 223 | @ A nonbasic variable x; is

ws = 8 — 3@ — dxy — 273 now non-zero. One basic
T1, T2, T3, Wi, Wa, wg > 0 variable (w;) became

ZEro.

(o))



Example continued V...

Q= 2.5, ¢y =
max z= 5x; + 4xs + 313 0, z3 =0, w =
st. wy = 5—2x; — 3wy — T3 0, wp =1, wsg =0.5
wy = 11 —4x; — x — 223 | @ A nonbasic variable x; is
ws = 8 — 3@ — dxy — 273 now non-zero. One basic
T1, T2, T3, Wi, Wa, wg > 0 variable (w;) became
Zero.

@ Want to keep invariant: All non-basic variables in current
solution are zero...

@ Idea: Exchange x; and wy!

© Consider equality LP with w; and x;.
w =5 —2x; — 3z — x3.

03



Example continued V...

Q= 2.5, ¢y =
max z= 5x; + 4xs + 313 0, z3 =0, w =
st. wy = 5—2x; — 3wy — T3 0, wp =1, wsg =0.5
wy = 11 —4x; — x — 223 | @ A nonbasic variable x; is
ws = 8 — 3@ — dxy — 273 now non-zero. One basic
T1, T2, T3, Wi, Wa, wg > 0 variable (w;) became
Zero.

@ Want to keep invariant: All non-basic variables in current
solution are zero...

@ Idea: Exchange x; and wy!
© Consider equality LP with w; and x;.
w =5 —2x; — 3z — x3.
© Rewrite as: ; = 2.5 — 0.5w; — 1.5 — 0.5 x3.
43/58
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Example continued VI...

max z= 12.5—2.5w; — 3.5 + 0.5x3
x 2.5 — 0.5w; — 1.5, — 0.5x3
Wy = 142w + 5x
wg = 0.5+ 1.5w; + 0.5 — 0.5x3.
@ nonbasic variables: {wq, @3, 3}

basic variables: {x;, wa, w3 }.

(0]




Example continued VI...

max z= 12.5—2.5w; — 3.5 + 0.5x3
x 2.5 — 0.5w; — 1.5, — 0.5x3
Wy = 142w + 5x
wg = 0.5+ 1.5w; + 0.5 — 0.5x3.
@ nonbasic variables: {wq, @3, 3}

basic variables: {x;, wa, w3 }.

@ Trivial solution: all nonbasic variables = 0 is feasible

06




Example continued VI...

max z =

12.5 — 2.5w; — 3.5z + 0.5x3
2.5 — 0.5w; — 1.5 — 0.5x5

Wy = 142w + 5x

ws 0.5 4+ 1.5w; + 0.5 — 0.5x3.

Iry =

@ nonbasic variables: {wq, @3, 3}
basic variables: {x;, wa, w3 }.

@ Trivial solution: all nonbasic variables = 0 is feasible
Q@ w, = 2 = x3 = 0. Value: z = 12.5.

Q7
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Example continued VII...

© Rewriting stop done is called pivoting.
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Example continued VII...

© Rewriting stop done is called pivoting.

© pivoted on ;.
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Example continued VII...

© Rewriting stop done is called pivoting.
© pivoted on ;.

© Continue pivoting till reach optimal solution.
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Example continued VII...

© Rewriting stop done is called pivoting.
© pivoted on ;.

© Continue pivoting till reach optimal solution.

max z= 12.5— 2.5w; — 3.5x2 + 0.5x3
T = 2.5 —0.5w; — 1.5 — 0.5x3
Wy = 1+ 2w, + 5x2
wz = 0.54 1.5w; + 0.5 — 0.5x3.

101



Example continued VII...

© Rewriting stop done is called pivoting.
© pivoted on ;.

© Continue pivoting till reach optimal solution.

max z= 12.5— 2.5w; — 3.5x2 + 0.5x3
xr = 2.5 —0.5w; — 1.5 — 0.5x3
Wy = 142w + 5z
wz = 0.54 1.5w; + 0.5 — 0.5x3.
© Can not pivot on w4, since if w; increase, then z decreases.

Bad.

102



Example continued VII...

© Rewriting stop done is called pivoting.
© pivoted on ;.

© Continue pivoting till reach optimal solution.

max z= 12.5— 2.5w; — 3.5x2 + 0.5x3
xr = 2.5 —0.5w; — 1.5 — 0.5x3
Wy = 142w + 5z
wz = 0.54 1.5w; + 0.5 — 0.5x3.
© Can not pivot on w4, since if w; increase, then z decreases.

Bad.

@ Can not pivot on x» (coefficient in objective function is —3.5).
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Example continued VII...

Rewriting stop done is called pivoting.
pivoted on ;.

Continue pivoting till reach optimal solution.

max z= 12.5— 2.5w; — 3.5x2 + 0.5x3
xr = 2.5 —0.5w; — 1.5 — 0.5x3
Wy = 1+ 2w, + 5x2
wz = 0.54 1.5w; + 0.5 — 0.5x3.

Can not pivot on wy, since if w; increase, then z decreases.
Bad.

Can not pivot on x, (coefficient in objective function is —3.5).
Can only pivot on x3 since its coefficient ub objective 0.5.
Positive number.
45/58
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Example continued VIII...

max z =

12.5 — 2.5’11]1 — 3.51132 —|— 0.5:1:3

xr = 2.5 —0.5w; — 1.5 — 0.5x3
wyo = 142w + 5z
wg = 0.54+1.5w; + 0.5 — 0.5x3.
© Can only pivot on x3...

© x; can only be increased to 1 before ws = 0.

105



Example continued VIII...

max z= 12.5— 2.5w; — 3.523 + 0.5x3
xr = 2.5 —0.5w; — 1.5 — 0.5x3
Wy = 14+ 2w; + 5o
wg = 0.54+1.5w; + 0.5 — 0.5x3.
© Can only pivot on x3...
© x; can only be increased to 1 before ws = 0.
© Rewriting the equality for w3z in LP:
ws = 0.5 4+ 1.5w; + 0.5 — 0.5x3,
Q .forxs: &3 =1+ 3wy + 2 — 2w;.
© Substituting into LLP, we get the following LP.

max z= 13 — w; — 32 — w3
s.t. x = 2 — 2w, — 2x + ws

wy = 14+ 2w; + 5
1+ 3w + 2 — 2w
106
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Example continued — can this be further improved?

max z= 13— w; —3xx — ws

s.t. x = 2 — 2w, — 2x + ws
wy, = 142w, + 5z
3= 14 3w; + x — 2ws

107



Example continued — can this be further improved?

max z= 13— w; —3xx — ws

s.t. x = 2 — 2w, — 2x + ws
wy, = 142w, + 5z
3= 14 3w; + x — 2ws

Q@ NO!
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Example continued — can this be further improved?

max z= 13— w; —3xx — ws

s.t. x = 2 — 2w, — 2x + ws
wy, = 142w, + 5z
3= 14 3w; + x — 2ws

Q@ NO!

@ All coefficients in objective negative (or zero).

100



Example continued — can this be further improved?

max z= 13— w; —3xx — ws

s.t. x = 2 — 2w, — 2x + ws
wy, = 142w, + 5z
3= 14 3w; + x — 2ws

@ NO!
@ All coefficients in objective negative (or zero).

@ trivial solution (all nonbasic variables zero) is maximal.

47/58
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Pivoting changes nothing

Observation

Every pivoting step just rewrites the LP into EQUIVALENT LP.
When LP objective can no longer be improved because of rewrite, it
implies that the original LLP objective function can not be increased
any further.

4858
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Simplex algorithm — summary

@ This was an informal description of the simplex algorithm.

© At each step pivot on a nonbasic variable that improves
objective function.

© Till reach optimal solution.

© Problem: Assumed that the starting (trivial) solution (all zero
nonbasic vars) is feasible.

49/58
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21.2.4.1 -Starting somewhere
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Starting somewhere...

@ L: Transformed LP to slack

form.
max =z=17v-+ Z cjxj,
JEN
st. x =b; — Z QT for i € B,
JEN

x; > 0, Vi=1,...,n4+ m.
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Starting somewhere...

@ L: Transformed LP to slack
form.

max zZ =7 C;; . .
* Z I @ Simplex starts from feasible

jEN
. solution and walks around till
st. x =b; — Z QT for i € B,
Pyt reaches opt.

x; > 0, Vi=1,...,n4+ m.
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Starting somewhere...

@ L: Transformed LP to slack

form.
max  z=vt J.EZN Ak @ Simplex starts from feasible
st @ — b _J;v aya; for i € B, ?Z;l::’;]lzsn ;;tc.i walks around till
x; > 0, Vi=1,...,n+ m.| @ L might not be feasible at

all.
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Starting somewhere...

@ L: Transformed LP to slack
form.

max zZ =7 C;; . .
* Z I @ Simplex starts from feasible

jEN . .
st om=bi— ayyforic B, solution and walks around till
jew reaches opt.
z; >0, Vi=1,...,n+ m.| @ L might not be feasible at

all.

@ Example on left, trivial sol is
not feasible, if 3b; < O.
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Starting somewhere...

@ L: Transformed LP to slack
form.

max zZ =7 C;; . .
* Z I @ Simplex starts from feasible

jEN . .
st om=bi— ayyforic B, solution and walks around till
jew reaches opt.
z; >0, Vi=1,...,n+ m.| @ L might not be feasible at

all.

@ Example on left, trivial sol is

not feasible, if 3b; < O.
Idea: Add a variable g, and minimize it!

118



Starting somewhere...

@ L: Transformed LP to slack
form.

max zZ =7 C;; . .
* Z I @ Simplex starts from feasible

jEN . .
st om=bi— ayyforic B, solution and walks around till
jew reaches opt.
z; >0, Vi=1,...,n+ m.| @ L might not be feasible at

all.

@ Example on left, trivial sol is

not feasible, if 3b; < O.
Idea: Add a variable g, and minimize it!

min To
s.t. T; = X9 + b; — Zaijmj for ¢ € B,
JEN
>0, Vi=1,...,n+ m.
119 51/58




Finding a feasible solution...

© L’ = Feasible(L) (see previous slide).
© Add new variable oy and make it large enough.
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Finding a feasible solution...

© L’ = Feasible(L) (see previous slide).
© Add new variable oy and make it large enough.
@ 1y = max(— min; b;,0), Vi > 0, z; = 0: feasible!
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Finding a feasible solution...

© L’ = Feasible(L) (see previous slide).

© Add new variable oy and make it large enough.

@ 1y = max(— min; b;,0), Vi > 0, z; = 0: feasible!
© LPStartSolution(L’): Solution of Simplex to L.
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Finding a feasible solution...

© L’ = Feasible(L) (see previous slide).

© Add new variable oy and make it large enough.

@ 1y = max(— min; b;,0), Vi > 0, z; = 0: feasible!
© LPStartSolution(L’): Solution of Simplex to L.

@ If zz = 0 in solution then L feasible. Have valid basic solution.
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Finding a feasible solution...

© L’ = Feasible(L) (see previous slide).

© Add new variable oy and make it large enough.

@ 1y = max(— min; b;,0), Vi > 0, z; = 0: feasible!

© LPStartSolution(L’): Solution of Simplex to L.

@ If zz = 0 in solution then L feasible. Have valid basic solution.
Q If &g > 0 then LP not feasible. Done.

52/58
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Lemma...
LP L is feasible <= optimal objective value of LP L' is zero. l

A feasible solution to L is immediately an optimal solution to L’ with
o = 0, and vice versa. Namely, given a solution to L’ with g = 0
we can transform it to a feasible solution to L by removing xy. ]

53,/58
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Technicalities, technicalities everywhere

© Starting solution for L’, generated by LPStartSolution(L)..
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Technicalities, technicalities everywhere

© Starting solution for L’, generated by LPStartSolution(L)..

@ .. not legal in slack form as non-basic variable g assigned
non-zero value.
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Technicalities, technicalities everywhere

© Starting solution for L’, generated by LPStartSolution(L)..

@ .. not legal in slack form as non-basic variable g assigned
non-zero value.

@ Trick: Immediately pivoting on g when running Simplex(L’).
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Technicalities, technicalities everywhere

© Starting solution for L’, generated by LPStartSolution(L)..

@ .. not legal in slack form as non-basic variable g assigned
non-zero value.

@ Trick: Immediately pivoting on g when running Simplex(L’).
@ First try to decrease oy as much as possible.

54/58
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