Chapter 34

Lower Bounds

By Sariel Har-Peled, November 28, 2018% Version: 1.0

34.1. Sorting

We all know that sorting can be done in O(nlogn) time. Interestingly enough, one can show that one
needs Q(nlogn) time to solve this.

Rules of engagement. We need to define exactly what the sorting algorithm can do, or can not
do. In the comparison model, we allow the sorting algorithm to do only one operation: it compare two
elements. To this end, we provide the sorting algorithm a black box compare(i, j) that compares the ith
element in the input to the jth element.

Problem statement. Our purpose is to solve the following problem.

Problem 34.1.1. Consider an input of n distinct elements, with an ordering defining over them. In the
worst, how many calls to the comparison subroutine (i.e., compare) a deterministic sorting algorithm
have to perform?

34.1.1. Decision trees

Well, we can think about a sorting algorithm as a decision procedure, at each stage, it has the current
collection of comparisons it already resolved, and it need to decide which comparison to perform next.
We can describe this as a decision tree, see Figure 34.1. The algorithm starts at the root.

But what is a sorting algorithm? The output of a sorting algorithm is the input elements is a

certain order. That is, a sorting algorithm for n elements outputs a permutation 7 of [n] = {1,. . .,n}.
Formally, if the input is xi,...,x, the output is a permutation 7 of [n], such that xz1) < xz2) < ... <
xﬂ(n).

Initially all n! permutations are possible, but as the algorithm performs comparisons, and as the
algorithm descend in the tree it rules out some of these orderings as not being feasible. For example,
the root r of the decision tree of Figure 34.1 have all possible 6 permutations as a possible output;

that is, ®(r) = {(1,2, 3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1)} . But after the comparison in the root is

performed and algorithm decides that x; < x», then the algorithm descends into the node u, and the
possible ordering of the output that are still valid (in light of the comparison the algorithm performed),

is D) = {(1, 2,3), (1,3,2), (3, 1,2)} .

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

T T < X2

Similar

Figure 34.1: A decision tree for sorting three elements.

In particular, for a node v of the decision tree, let ®(v) be the set of feasible permutations; that
is, it is the set of all permutations that are compatible with the set of comparisons that were performed
from the root to v.

Example 34.1.2. Assume the input is x1, xo, x3, x4. If the permutation {(3,4,1,2)} is in ®(v) then as far as
the comparisons the algorithm performed in traveling from the root to v, it might be that this specific
ordering of the input is a valid ordering. That is, it might be that x3 < x4 < x1 < x3.

Lemma 34.1.3. Given a permutation of [n], an input that is sorted in the ordering specified by pi is
the following: x; = n71(i), fori=1,...,n.

Proof: The input we construct would be made out of the numbers of [n]. Now, clearly, x(1) must be the
smaller number, that is 1, namely x,) = 1. Applying this argument repeatedly, we have that x.; =i,
for all i. In particular, take j = 771(i), and observe that x; = Xe(n-1()) = Xx(j) = J = a71(), as claimed. m

Example 34.1.4. A convenient way to do the above transformation is the following. Write the permuta-
tion as a function [n] by writing it as matrix with two rows, the top row having 1,...,n, and the second
row having the real permutation. Computing the inverse permutation is then no more than exchanging

the two lines, and sorting the columns. For example, for 7 = (3,4,2,1) = (é i ; 411) Then the input
1 2 3 4

realizing this permutation, is the input 771 = (3,4,1,2) = (43 1 2

). Specifically, the input x; = 4,

xo =3, x3=1,and x4 = 2.

Observation 34.1.5. Assume the algorithm had arrived to a node v in the decision tree, where |®(v)| >
1. Namely, there are more than one permutation of the input that comply with the comparisons performed
so far by the algorithm. Then, the algorithm must continue performing comparisons (otherwise, it would
not know what to output — there are still at least two possible outputs).

Lemma 34.1.6. Any deterministic sorting algorithm in the comparisons model, must perform Q(nlog n)
comparisons.

Proof: An algorithm in the comparison model is a decision tree. Indeed, an execution of the sorting
algorithm on a specific input is a path in this tree. Imagine running the algorithm on all possible inputs,
and generating this decision tree.

Now, the idea is to use an adversary argument, which would pick the worse possible input for the
given algorithm. Importantly, the adversary need to show the input it used only in the end of the
execution of the algorithm — that is, it can change the input of the algorithm on the fly, as long as it
does not change the answer to the comparisons already seen so far.

So, let T be the decision tree associated with the algorithm, and observe that |®(r)| = n!, where
r = root(7).

The adversary, at the beginning, has no commitment on which of the permutations of ®(r) it is using
for the input. Specifically, the adversary computes the sets ®(u), for all the nodes u € V(7).

Imagine, that the algorithm performed k comparisons, and it is currently at a node v; of the decision
tree. The algorithm call compare to perform the comparison of x; to x; associated with vx. The adversary
can now decide what of the two possible results this comparison returns. Let uy,ug be the two children
of v;, where uy (resp. Ug) is the child if the result of the comparison is x; > x; (resp. x; < x;).

The adversary computes ®(Uy) and ®(Ug). There are two cases:

(I) If |®(UL)| < |®(Ug)|, the adversary prefers the algorithm to continue into Ug, and as such it
returns the result of comparison of x; and x; as x; < x;.
IT) If |®(UL)| = |®(Ug)|, the adversary returns the comparison results x; > x;.
j

The adversary continues the traversal down the tree in this fashion, always picking the child that

has more permutations associated with it. Let vi,...,v; be the path taken by the algorithm. The input
the adversary pick, is the input realizing the single permutation of ®(vy).
D(v D
Note, that 1 = |(D(vk)| > w > .2 |2£\111)| Thus, 21 > |®(vy)| = n!. Implying that
k > lg(n!) +1 = Q(nlogn). We conclude that the depth of T is Q(nlogn). Namely, there is an input
which forces the given sorting algorithm to perform Q(nlogn) comparisons.]

34.1.2. An easier direct argument

Proof: (Proof of Lemma 34.1.6.) Consider the set IT of all permutations of [n] (each can be interpreted
as a sequence of the n numbers 1,...,n). We treat an element (xi,...,x,) € I as an input to the
algorithm. Next, stream the inputs one by one through the decision tree. Each such input ends up in
a leaf of the decision tree. Note, that no leaf can have two different inputs that arrive to it — indeed, if
this happened, then the sorting algorithm would have failed to sort correctly one of the two inputs.
Now, the decision tree is a binary tree, it has at least n! leafs, and as such, if 4 is the maximum depth
of a node in the decision tree, we must have that 2" > n!. That is, & > lgn! = Q(nlogn), as desired. =

The reader might wonder why we bothered to show the original proof of Lemma 34.1.6. First,
the second proof is simpler because the reader is already familiar with the language of decision trees.
Secondly, the original proof brings to the forefront the idea of computation as a gave against an adversary
— this is a rather powerful and useful idea.

34.2. Uniqueness

Problem 34.2.1 (Uniqueness). Given an input of n real numbers xi,...,x,. Decide if all the numbers are
unique (i.e., different).

Intuitively, this seems significantly easier than sorting. In particular, one can solve this in expected
linear time. Nevertheless, this problem is as hard as sorting.

Theorem 34.2.2. Any deterministic algorithm in the comparison model that solves Uniqueness, has
Q(nlogn) running time in the worst case.

Note, that the linear time algorithm mentioned above is in a different computation model (allowing
floor function, randomization, etc). The proof of the above theorem is similar to the sorting case, but
it is trickier. As before, let T be the decision tree (note that every node has three children).

Lemma 34.2.3. For a node v in the decision tree T for the given deterministic algorithm solving Unique-
ness, if the set ®(v) contains more than one permutation, then there exists two inputs which arrive to v,
where one is unique and other is not.

Proof: Let o and o’ be any two different permutations in ®(v), and let X = xi,...,x, be an input
realizing o, and let Y = yq,...,y, be an input realizing o’. Let Z(t) = z1(¢),...,z,(t) be an input where
zi(t) = tx; + (1 = t)y;. Clearly, Z(0) = x1,...,x, and Z(1) = y1,..., Vu-

We claim that for any ¢ € [0,1] the input Z(¢) will arrive to the node v in 7.

Indeed, assume for the sake contradiction that this is false, and : Ys
assume that for + = @, that algorithm did not arrive to v in 7. :
Assume that the algorithm compared the ith element of the input
to the jth element in the input, when it decided to take a different
path in T than the one taken for X and Y. The claim is that then
x; < xj and y; > y;j or x; > x; and y; < y;. Namely, in such a case
either X or Y will not arrive to v in 7.

to this end, consider the functions z;(¢) and z;(¢), depicted on the — ; _
right. The ordering between the z;(¢) and z;(¢) is either the ordering
between x; and x; or the ordering between y; and y;. As such, if is Z(¢) followed a different path than
X in T, then Y would never arrive to v. A contradiction.

Thus, all the inputs Z(z), for all ¢t € [0,1] arrive to the same node v.

Now, X and Y are both made of unique numbers and have a different ordering when sorted. In
particular, there must be two indices, say f and g, such that, either:

(i) xf <xg and ys > y,, or

(ii) xf > x, and yr < y,.
Indeed, if there where no such indices f and g, then X and Y would have the same sorted ordering,
which is a contradiction.

Now, arguing as in the above figure, there must be g € (0,1) such z7(8) = z4(B).

This is a contradiction. Indeed, there are two inputs Z(0) and Z(8) where one is unique and the
other is not, such that they both arrive to the node v in the decision tree. The algorithm must continue
performing comparisons to figure out what is the right output, and v can not be a leaf. []

t::oz t=1

Proof: (of Theorem 34.2.2) We apply the same argument as in Lemma 34.1.6. If in the decision tree T
for Uniqueness, the adversary arrived to a node containing more than one permutation, it continues into
the child that have more permutations associated with it. As in the sorting argument it follows that
there exists a path in T of length Q(nlog n). []

34.3. Other lower bounds

34.3.1. Algebraic tree model

In this model, at each node, we are allowed to compute a polynomial, and ask for its sign at a certain
point (i.e., comparing x; to x; is equivalent to asking if the polynomial x; — x; is positive/negative/zero).
One can prove things in this model, but it requires considerably stronger techniques.

Problem 34.3.1 (Degenerate points). Given a set P of n points in R?, deciding if there are d + 1 points in
P which are co-linear (all lying on a common plane).

Theorem 34.3.2 (Jeff Erickson and Raimund Seidel [ES95]). Solving the degenerate points prob-
lem requires Q(n?) time in a “reasonable” model of computation.

34.3.2. 3Sum-Hard

Problem 34.3.3 (3SUM). Given three sets of numbers A, B,C are there three numbers a € A, b € B and
c € C, such that a+ b = c.

We leave the following as an exercise to the interested reader.

Lemma 34.3.4. One can solve the 3SUM problem in O(n?) time.

Somewhat surprisingly, no better solution is known. An interesting open problem is to find a sub-
quadratic algorithm for 3SUM. It is widely believed that no such algorithm exists. There is a large
collection problems that are 3SUM-Hard: if you solve them in subquadratic time, then you can solve
3SUM in subquadratic time Those problems include:

(I) For n points in the plane, is there three points that lie on the same line.

(IT) Given a set of n triangles in the plane, do they cover the unit square
(III) Given two polygons P and Q can one translate P such that it is contained inside Q7
So, how does one prove that a problem is 3SUM-Hard? One uses reductions that have subquadratic
running time. The details are interesting, but are omitted. The interested reader should check out the
research on the topic [GO95].

Bibliography

[ES95] J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies.
Discrete Comput. Geom., 13:41-57, 1995.

[GO95] A. Gajentaan and M. H. Overmars. On a class of O(n?) problems in computational geometry.
Comput. Geom. Theory Appl., 5:165-185, 1995.

http://compgeom.cs.uiuc.edu/~jeffe/
http://www-tcs.cs.uni-sb.de/seidel/
http://compgeom.cs.uiuc.edu/~jeffe/pubs/degen.html
http://link.springer.com/journal/454
http://www.cs.uu.nl/people/markov/
http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-1993/1993-15.ps.gz

	Lower Bounds
	Sorting
	Decision trees
	An easier direct argument

	Uniqueness
	Other lower bounds
	Algebraic tree model
	3Sum-Hard

	Bibliography

