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10.1: Subset Sum



Subset Sum

Subset Sum

Instance: X = {x,...,x,} — n integer positive
numbers, t - target number

Question: 3 subset of X s.t. sum of its elements
is t?

Assume x1,...,x, are all < n. Then this problem can
be solved in

(A) The problem is still NP-Hard, so probably
exponential time.

(B) O(n).
(C) 200ee™m),
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M: Max
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numbers.
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is t7

SolveSubsetSum (X, t, M)
b[0... Mn] < false
// blx] is true if x can be
M: ax // realized by subset of X.
value  input b[0] « true.
numbers. | o i —1,...,n do
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Subset Sum

Instance: X = {x;,...,x,} — n integer positive
numbers, t - target number
Question: 3 subset of X s.t. sum of its elements

is t7
SolveSubsetSum (X, t, M)
b[0... Mn] < false
]\Jl. ¥ s/ bla] is true if x can be
va ueb input // realized by subset of X.
numbers. b[0] < true.
RT fori:]_,...,’n,do

7/ n @ O\

for 1 — Mmn down to = do
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Algorithm solving Subset Sum in O(Mn?).

M might be prohibitly large...

if M = 2" —> algorithm is not polynomial time.
Subset Sum is NPC.

Still want to solve quickly even if M huge.
Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of n positive inte-
gers, and a target number t.

Question: The largest number ~,p one can
represent as a subset sum of X which is smaller
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1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.
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Subset Sum
2

Lemma

1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.

2. = Compute legal subset with sum > ~opt /2.

3. Running time O(nlog n).

Proof.

1. Sort numbers in X in decreasing order.

2. Greedily - add numbers from largest to smallest (if
possible).

3. s: Generates sum.



].O 1.1: On the complexity of

g-approximation algorithms



Polynomial Time Approximation Schemes

Definition ( )

PROB: Maximization problem.

€ > 0: approximation parameter.

A(I,€) is a polynomial time approximation
scheme (PTAS) for PROB:

1. VI (1 —¢) ’opt(I)‘ < ‘A(I, s)’ < ’opt(I)

9

2. |opt(I)|: opt price,
3. |A(I,€)]: price of solution of A.
4. A running time polynomial in n for fixed €.



Polynomial Time Approximation Schemes

Definition ( )

PROB: Maximization problem.

€ > 0: approximation parameter.

A(I,€) is a polynomial time approximation
scheme (PTAS) for PROB:

1. VI (1 —¢) ’opt(I)‘ < ‘A(I, s)] < ’opt(I)
2. |opt(I)|: opt price,

3. |A(I,€)]: price of solution of A.

4. A running time polynomial in n for fixed €.

9

For minimization problem:
jopt(I)| < JA(I,€)| < (1+ &)lopt(I)].
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Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running
time O(n'/¢) is a PTAS.
Algorithm with running time O(1/€™) is not.
2. Fully polynomial...

Definition ( )
An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in m and 1/e.
3. Example: PTAS with running time O(n'/¢) is not
a FPTAS.
4. Example: PTAS with running time O(n?/e?) is a
FPTAS



Approximating Subset Sum

Subset Sum Approx

Instance: (X, t,e): A set X of n positive inte-
gers, a target number ¢, and parameter € > 0.

Question: A number z that one can represent as
a subset sum of X, such that (1 — &)vopt < 2 <

70pt S t.
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Approximating Subset Sum

ExactSubsetSum(S, )
n < |S|
P, + {0}
for t=1...mn do
P; < P;_1 U (Pi_1 + ;)

Remove from P; all elements > ¢

return largest element in P,

1. S={a1,...,a,}
zr+S={a1+z,a2+z,...0a,+ z}

2. Lists might explode in size.



Trim the lists...

Definition
L’: Inc. sorted list of num-For two positive real
bers numbers z < y, the
Trim (L, 6) gumber yis a f
I = . rapproximation to z i
curr<<y—1 1 ) 1Y <z<uy.
1+6 = —

Lout <~ {yl}
for i=2...m do Qbservation
if y; > curr- (14 6)fx € L’ then there
Append y; to Lout exists a number
Curr < y; Yy € Ly such that
return L, y<z<y(l+)9),
where




Trim the lists...

ApproxSubsetSum(S, t)

Trim(L/, ) /S ={x1,..., 2},
L=(yi...ym) / n<n<l...<z
curr < n < |S|, Lo < {0},

Loyt < {y1} d=¢/2n
for t=2...m do for i=1...7n do

if Y; > curr - (]_ 1 6) E; +— Li—l U (Li—l + 1131)
Append y; to L,y | L; < Trim(E;, 6)
curr < y; Remove from L; elems > t.

return L,,;

return largest element in L,

E;: Computed by merging two sorted lists in linear time.



Understanding trimming
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Remark

1. Can assume that trimmed lists L; are sorted...

2. Algorithm: E; +— Li—l U (Li—l + IL',L)

3. So, this is just copy, shift, and merge of two sorted
lists.

. resulting in a sorted lest.

5. takes linear time in size of lists.

15/41



Analysis
1. E; list generated by algorithm in 4th iteration.

2. P;: list of numbers (no trimming).

Claim
For any x € P; there exists y € L; such that

y<z<(1+9)'y.
Proof

1. If & € P then follows by observation above.
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Analysis

1. E; list generated by algorithm in 4th iteration.
2. P;: list of numbers (no trimming).

Claim
For any x € P; there exists y € L; such that
y <z < (1+9)%y.

Proof

1. If & € P then follows by observation above.

2. If ¢ € P;_y = (induction) 3y’ € L;_; s.t.
Y <z < (14+6) 1y

3. By observation y € L;st. y <y < (14 6)y,
As such,
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Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (149t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
o < o4z < otz =x < (140) o+ <
A+0) o' +z) < (1+6)ix. n
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Running time of ApproxSubsetSum

Lemma
For x € [0,1], it holds exp(x/2) < (1 + x).

Lemma
For0 < é <1, and x > 1, we have

1 < 2lnx 0<lnw)
o €T = — .
814+ T > 5 5

See notes for a proof of lemmas.
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Running time of ApproxSubsetSum

Observation

In a list generated by Trim, for any number x, there are
no two numbers in the trimmed list between x and

(14 9)=.

Lemma
|L;| = O((n/s) log n) fort =1,...,n.

20/41



Running time of ApproxSubsetSum

Proof.
1. Li—y 4+ x; C [z, iz;].

2. Trimming L;_1 + x; results in list of size

1x; In ¢ Inn
e = ) TS



Running time of ApproxSubsetSum

Proof.
1. Li—y 4+ x; C [z, iz;].

2. Trimming L;_1 + x; results in list of size

1 ix; O(IHi) (ln n)
0 pr— = —_— 9
S1+e 5 5

3. Now, d = €/2n, and

In nlnn
|L;| < |Li— 1|—|—O( 3 )<|Ll 1|—|—0( - )

[ n*logn) -




Running time of ApproxSubsetSum

Lemma
The running time of ApproxSubsetSum is

0("?3 log n) )
Proof.

1.

Running time of ApproxSubsetSum dominated by
total length of Ly, ..., L,.

. Above lemma implies

2 3
E |L;| = 0<n X n—logn) = O(n—logn)
. € €

Trim runs in time proportional to size of lists.

~ "N T f\/n31 \



ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:?:: S u S 70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.
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ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:f):: S u S ’70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.

2. Yopt € Py: optimal solution.
3. 3z € L,, such that z < opt < (14 9)"2
4

(140" =1+¢/2n)" <exp(§) <1+e¢,
since 1 + x < e for x > 0.



ApproxSubsetSum

Theorem
ApproxSubsetSum returns u < t, s.t.

“Yopt

14

SUS'YoptSta

Yopt: Opt solution.
Running time is O((n®/¢) log n).

Proof.

1.

Running time from above.

2. Yopt € Py: optimal solution.
3.
4. (14060)"=1+¢e/2n)" <exp(5) < 1+e,

Jz € L, such that z < opt < (14 9)"2

since 1 + x < e for x > 0.

P L1 | _N & m et — 4



10.2: Maximal matching



Maximal matching
.G = (V,E)
. Compute maximal matching...

1

2

3. X C E which is maximal and independent.

4. Maximal = can not improved by adding an edge.
5

. Maximum = largest possible set among all possible
sets.

6. Computing the maximum is hard then computing
maximal solution.

7. Q: Find maximal matching quickly and of large
size...



An example of the greedy algorithm...
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Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...



Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.



Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.

5. Because...



Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.

5. Because...

6. Every edge in M “kills” two edges of X in the
worst case.

~N=7 /a1



Maximal matching: Result

Theorem

Given a graph G one can compute in O(n + m) time, a
maximal matching with at least | X|/2 edges, where X
is the size of the maximum (optimal) matching.

28,41
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Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
Siy...,8p of S, such that Vj Zmesj < w.
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Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
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Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
S1,...,8p of S, such that Vj Zmesj < w.

NP-Hard from Partition.
NP-Hard to approximate within 3/2.
Natural problem...
How to approximate?

O N

.



Bin packing: First fit

Lemma
First fit is a 2-approximation.

Proof.

Observe that only one bin can have less than v/2
content in it... [l
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10.3: Independent set of
axis-parallel rectangles



An example

Input Independent set of rectangles.
Assume: Open rectangles.




An example

L

| | [ ]

- -

Input Independent set of rectangles.
Assume: Open rectangles.




Independent set of intervals

Given n intervals on the real line, computing the largest
independent set of intervals on the real line, can be done
in:

(A) O(n) time.

(B) O(nlogn) time.
(C) O(n3/?) time.
(D) O(n?) time.

(E) NP-Hard.

AN /A1
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Independent set of rectangles

R: A set of axis parallel rectangles.

Rectindep(R) :
if |R| <10 then
Solve by brute force
return size of solution
Zpr: Median of right z-coordinate of rects in R
£: Vertical line through x,;.
Roar: Rects of R intersecting £
Ri, Rgr: Rectangles in R left/ right of £.
St <= Rectindep(R )
Sr <= Rectindep(Rg)
Sy < compute opt solution for Ry (intervals!)

/o~ —~ O\




Analysis
1. If Syy > Opt/(21gn)... done.
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1. If Syy > Opt/(21gn)... done.

2. Opt; 4+ Optyp > (1 —1/(21gn))Opt.

3. By induction: S; > Opt;/(21g(n/2)) and
Sr > Optg/(21g(n/2)).



Analysis

N

. 1f Sy > Opt/(21g n)... done.

Opt; + Optg > (1 —1/(21gn))Opt.
By induction: S, > Opt;/(21g(n/2)) and
Sr 2 Optgr/(21g(n/2)).

(1—1/(21gn))Opt
S1+ Sk 2 T getn/2)
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N

If Spr > Opt/(21gn)... done.
Opt; + Optg > (1 —1/(21gn))Opt.

. By induction: S, > Opt;/(21g(n/2)) and

Sr > Optg/(21g(n/2)).

(1—1/(21gn))Opt
Su+ Sk 2 T pt2)

(1-1/(21gn)) _
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