CS 473: Algorithms, Fall 2018

Approximation
Algorithms ||

Lecture 10
September 24, 2018

1/41

10.1: Subset Sum

Subset Sum

Subset Sum

Instance: X = {x,...,x,} — n integer positive
numbers, t - target number

Question: 3 subset of X s.t. sum of its elements
is t?

Assume x1,...,x, are all < n. Then this problem can
be solved in

(A) The problem is still NP-Hard, so probably
exponential time.

(B) O(n).
(C) 200ee™m),

N\ N7 1 - .\

Subset Sum

Subset Sum

Instance: X = {x;,...,x,} — n integer positive
numbers, t - target number
Question: 3 subset of X s.t. sum of its elements

is t7

Subset Sum

Subset Sum

Instance: X = {x;,...,x,} — n integer positive
numbers, t - target number
Question: 3 subset of X s.t. sum of its elements

is t7

M: Max
value input
numbers.

Subset Sum

Subset Sum

Instance: X = {x;,...,x,} — n integer positive
numbers, t - target number
Question: 3 subset of X s.t. sum of its elements

is t7

SolveSubsetSum (X, t, M)
b[0... Mn] < false
// blx] is true if x can be
M: ax // realized by subset of X.
value input b[0] « true.
numbers. | o i —1,...,n do
for 1 — Mmn down to = do

Subset Sum

Subset Sum

Instance: X = {x;,...,x,} — n integer positive
numbers, t - target number
Question: 3 subset of X s.t. sum of its elements

is t7
SolveSubsetSum (X, t, M)
b[0... Mn] < false
]\Jl. ¥ s/ bla] is true if x can be
va ueb input // realized by subset of X.
numbers. b[0] < true.
RT fori:]_,...,’n,do

7/ n @ O\

for 1 — Mmn down to = do

Subset Sum

Algorithm solving Subset Sum in O(Mn?).
M might be prohibitly large...

if M = 2" —> algorithm is not polynomial time.
Subset Sum is NPC.

B

Subset Sum

ok W=

Algorithm solving Subset Sum in O(Mn?).

M might be prohibitly large...

if M = 2" —> algorithm is not polynomial time.
Subset Sum is NPC.

Still want to solve quickly even if M huge.

Subset Sum

oo E W=

Algorithm solving Subset Sum in O(Mn?).

M might be prohibitly large...

if M = 2" —> algorithm is not polynomial time.
Subset Sum is NPC.

Still want to solve quickly even if M huge.
Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of n positive inte-
gers, and a target number t.

Question: The largest number ~,p one can
represent as a subset sum of X which is smaller

Subset Sum
2

Lemma

1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.

Subset Sum
2

Lemma
1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.
2. = Compute legal subset with sum > ~opt /2.
3. Running time O(nlog n).

Proof.

Subset Sum
2

Lemma

1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.

2. = Compute legal subset with sum > ~opt /2.

3. Running time O(nlog n).

Proof.

1. Sort numbers in X in decreasing order.

Subset Sum
2

Lemma
1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.
2. = Compute legal subset with sum > ~opt /2.
3. Running time O(nlog n).

Proof.

1. Sort numbers in X in decreasing order.

2. Greedily - add numbers from largest to smallest (if
possible).

Subset Sum
2

Lemma

1. (X, t); Given instance of Subset Sum. ~,p < t:
Opt.

2. = Compute legal subset with sum > ~opt /2.

3. Running time O(nlog n).

Proof.

1. Sort numbers in X in decreasing order.

2. Greedily - add numbers from largest to smallest (if
possible).

3. s: Generates sum.

].O 1.1: On the complexity of

g-approximation algorithms

Polynomial Time Approximation Schemes

Definition ()

PROB: Maximization problem.

€ > 0: approximation parameter.

A(I,€) is a polynomial time approximation
scheme (PTAS) for PROB:

1. VI (1 —¢) ’opt(I)‘ < ‘A(I, s)’ < ’opt(I)

9

2. |opt(I)|: opt price,
3. |A(I,€)]: price of solution of A.
4. A running time polynomial in n for fixed €.

Polynomial Time Approximation Schemes

Definition ()

PROB: Maximization problem.

€ > 0: approximation parameter.

A(I,€) is a polynomial time approximation
scheme (PTAS) for PROB:

1. VI (1 —¢) ’opt(I)‘ < ‘A(I, s)] < ’opt(I)
2. |opt(I)|: opt price,

3. |A(I,€)]: price of solution of A.

4. A running time polynomial in n for fixed €.

9

For minimization problem:
jopt(I)| < JA(I,€)| < (1+ &)lopt(I)].

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running
time O(n'/¢) is a PTAS.
Algorithm with running time O(1/€™) is not.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running
time O(n'/¢) is a PTAS.
Algorithm with running time O(1/€™) is not.
2. Fully polynomial...
Definition ()

An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in m and 1/e.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running
time O(n'/¢) is a PTAS.
Algorithm with running time O(1/€™) is not.
2. Fully polynomial...
Definition ()

An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in m and 1/e.

3. Example: PTAS with running time O(n'/¢) is not
a FPTAS.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running
time O(n'/¢) is a PTAS.
Algorithm with running time O(1/€™) is not.
2. Fully polynomial...

Definition ()
An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in m and 1/e.
3. Example: PTAS with running time O(n'/¢) is not
a FPTAS.
4. Example: PTAS with running time O(n?/e?) is a
FPTAS

Approximating Subset Sum

Subset Sum Approx

Instance: (X, t,e): A set X of n positive inte-
gers, a target number ¢, and parameter € > 0.

Question: A number z that one can represent as
a subset sum of X, such that (1 — &)vopt < 2 <

70pt S t.

10/41

Approximating Subset Sum

ExactSubsetSum(S,)
n < |S|
P, + {0}
for t=1...mn do
P; < P;_1 U (Pi_1 + ;)

Remove from P; all elements > ¢

return largest element in P,

1. S={a1,...,a,}
zr+S={a1+z,a2+z,...0a,+ z}

2. Lists might explode in size.

Trim the lists...

Definition
L’: Inc. sorted list of num-For two positive real
bers numbers z < y, the
Trim (L, 6) gumber yis a f
I = . rapproximation to z i
curr<<y—1 1) 1Y <z<uy.
1+6 = —

Lout <~ {yl}
for i=2...m do Qbservation
if y; > curr- (14 6)fx € L’ then there
Append y; to Lout exists a number
Curr < y; Yy € Ly such that
return L, y<z<y(l+)9),
where

Trim the lists...

ApproxSubsetSum(S, t)

Trim(L/,) /S ={x1,..., 2},
L=(yi...ym) / n<n<l...<z
curr < n < |S|, Lo < {0},

Loyt < {y1} d=¢/2n
for t=2...m do for i=1...7n do

if Y; > curr - (]_ 1 6) E; +— Li—l U (Li—l + 1131)
Append y; to L,y | L; < Trim(E;, 6)
curr < y; Remove from L; elems > t.

return L,,;

return largest element in L,

E;: Computed by merging two sorted lists in linear time.

Understanding trimming

I—OOO—O—O—O—OO—O—O—O-O—CDO-O—O—O—O—O—O

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Understanding trimming

ﬂo—o—o—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

ﬂo—o—o—oo—o—o—o-o—oooo—o—o-o-o-o

14/41

Understanding trimming

|ﬂ0—o—o—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|ﬂ0—o—o—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—a—o—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—oo—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—w—o—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—wO—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—wO—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—wO—o—o—o—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—wO—a—@—oooo—o—o—o—o—o

14/41

Understanding trimming

|—OzO—O—&—O—wO—a—@—oooo—o—o—o—o—o

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Understanding trimming

14/41

Remark

1. Can assume that trimmed lists L; are sorted...

Remark

1. Can assume that trimmed lists L; are sorted...
2. Algorithm: E; +— Li—l U (Li—l + .’L',L)

Remark

1. Can assume that trimmed lists L; are sorted...

2. Algorithm: E; +— Li—l U (Li—l + IL',L)

3. So, this is just copy, shift, and merge of two sorted
lists.

Remark

1. Can assume that trimmed lists L; are sorted...
2. Algorithm: E; +— Li—l U (Li—l + IL',L)

3. So, this is just copy, shift, and merge of two sorted
lists.

4. ... resulting in a sorted lest.

Remark

1. Can assume that trimmed lists L; are sorted...

2. Algorithm: E; +— Li—l U (Li—l + IL',L)

3. So, this is just copy, shift, and merge of two sorted
lists.

. resulting in a sorted lest.

5. takes linear time in size of lists.

15/41

Analysis
1. E; list generated by algorithm in 4th iteration.

2. P;: list of numbers (no trimming).

Claim
For any x € P; there exists y € L; such that

y<z<(1+9)'y.
Proof

1. If & € P then follows by observation above.

Analysis

1. E; list generated by algorithm in 4th iteration.
2. P;: list of numbers (no trimming).

Claim
For any x € P; there exists y € L; such that

y<z<(1+9)'y.
Proof
1. If & € P then follows by observation above.

2. If ¢ € P;_y = (induction) 3y’ € L;_; s.t.
y <z< (1+9) 1y,

Analysis

1. E; list generated by algorithm in 4th iteration.
2. P;: list of numbers (no trimming).

Claim
For any x € P; there exists y € L; such that
y <z < (1+9)%y.

Proof

1. If & € P then follows by observation above.

2. If ¢ € P;_y = (induction) 3y’ € L;_; s.t.
Y <z < (14+6) 1y

3. By observation y € L;st. y <y < (14 6)y,
As such,

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
aEPi_l.

Proof continued

Proof continued
1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.
2. By induction, da’ € L;_; s.t.
o <a< (149t
3. Thus, &’ + x; € E;.

Proof continued

Proof continued
1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.
2. By induction, da’ € L;_; s.t.
o <a< (149t
3. Thus, &’ + x; € E;.
4. ' € List. ¢ < o' 4+x; < (1L +0)x.

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (149t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
r <ad+z < atx;

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (148t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
< o4z < atr ==z

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (149t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
< d4z < atr =z < (1+6) o'+

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (149t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
o < o4z < otz =x < (140) o/ +x; <
1+ + x;)

Proof continued

Proof continued

1. fee P;\ P,y — x = «+ x;, for some
oa e P;_;.

2. By induction, da’ € L;_; s.t.
o <a< (149t

3. Thus, &’ + x; € E;.

4. ' € List. ¢ < o' 4+x; < (1L +0)x.

5. Thus,
o < o4z < otz =x < (140) o+ <
A+0) o' +z) < (1+6)ix. n

].O.]..]..].:Running time

Running time of ApproxSubsetSum

Lemma
For x € [0,1], it holds exp(x/2) < (1 + x).

Lemma
For0 < é <1, and x > 1, we have

1 < 2lnx 0<lnw)
o €T = — .
814+ T > 5 5

See notes for a proof of lemmas.

19/41

Running time of ApproxSubsetSum

Observation

In a list generated by Trim, for any number x, there are
no two numbers in the trimmed list between x and

(14 9)=.

Lemma
|L;| = O((n/s) log n) fort =1,...,n.

20/41

Running time of ApproxSubsetSum

Proof.
1. Li—y 4+ x; C [z, iz;].

2. Trimming L;_1 + x; results in list of size

1x; In ¢ Inn
e =) TS

Running time of ApproxSubsetSum

Proof.
1. Li—y 4+ x; C [z, iz;].

2. Trimming L;_1 + x; results in list of size

1 ix; O(IHi) (ln n)
0 pr— = —_— 9
S1+e 5 5

3. Now, d = €/2n, and

In nlnn
|L;| < |Li— 1|—|—O(3)<|Ll 1|—|—0(-)

[n*logn) -

Running time of ApproxSubsetSum

Lemma
The running time of ApproxSubsetSum is

0("?3 log n))
Proof.

1.

Running time of ApproxSubsetSum dominated by
total length of Ly, ..., L,.

. Above lemma implies

2 3
E |L;| = 0<n X n—logn) = O(n—logn)
. € €

Trim runs in time proportional to size of lists.

~ "N T f\/n31 \

ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:?:: S u S 70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.

ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:?:: S u S 70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.

2. Yopt € Py: optimal solution.

ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:?:: S u S 70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.

2. Yopt € Py: optimal solution.
3. 3z € L,, such that z < opt < (14 9)"2

ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
F])_l:f):: S u S ’70pt S t,
Yopt: Opt solution.

Running time is O((n®/¢) log n).
Proof.

1. Running time from above.

2. Yopt € Py: optimal solution.
3. 3z € L,, such that z < opt < (14 9)"2
4

(140" =1+¢/2n)" <exp(§) <1+e¢,
since 1 + x < e for x > 0.

ApproxSubsetSum

Theorem
ApproxSubsetSum returns u < t, s.t.

“Yopt

14

SUS'YoptSta

Yopt: Opt solution.
Running time is O((n®/¢) log n).

Proof.

1.

Running time from above.

2. Yopt € Py: optimal solution.
3.
4. (14060)"=1+¢e/2n)" <exp(5) < 1+e,

Jz € L, such that z < opt < (14 9)"2

since 1 + x < e for x > 0.

P L1 | _N & m et — 4

10.2: Maximal matching

Maximal matching
.G = (V,E)
. Compute maximal matching...

1

2

3. X C E which is maximal and independent.

4. Maximal = can not improved by adding an edge.
5

. Maximum = largest possible set among all possible
sets.

6. Computing the maximum is hard then computing
maximal solution.

7. Q: Find maximal matching quickly and of large
size...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.

5. Because...

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and
remove it.

2. M: Generated matching. X: Maximal matching.
3. Clearly a maximal matching...

4. This is a 2-approximation to the maximum
matching.

5. Because...

6. Every edge in M “kills” two edges of X in the
worst case.

~N=7 /a1

Maximal matching: Result

Theorem

Given a graph G one can compute in O(n + m) time, a
maximal matching with at least | X|/2 edges, where X
is the size of the maximum (optimal) matching.

28,41

10.2.1: Bin packing

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
Siy...,8p of S, such that Vj Zmesj < w.

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
Siy...,8p of S, such that Vj Zmesj < w.

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
Siy...,8p of S, such that Vj Zmesj < w.

2. NP-Hard from Partition.

Bin packing

Bin Packing

Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.

Target: Find min # B, and a decomposition
Siy...,8p of S, such that Vj Zmesj < w.

2. NP-Hard from Partition.
3. NP-Hard to approximate within 3/2.

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
S1,...,8p of S, such that Vj Zmesj < w.

2. NP-Hard from Partition.
3. NP-Hard to approximate within 3/2.
4. Natural problem...

Bin packing

Bin Packing

Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.

Target: Find min # B, and a decomposition
S1,...,8p of S, such that Vj Zmesj < w.

NP-Hard from Partition.
NP-Hard to approximate within 3/2.
Natural problem...

How to approximate?

O W=

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
S1,...,8p of S, such that Vj Zmesj < w.

NP-Hard from Partition.
NP-Hard to approximate within 3/2.
Natural problem...
How to approximate?

O N

.

Bin packing

Bin Packing
Instance: v: Bin size. S = {a1,...,a,}: n
items

«;: size of 7th item.
Target: Find min # B, and a decomposition
S1,...,8p of S, such that Vj Zmesj < w.

NP-Hard from Partition.
NP-Hard to approximate within 3/2.
Natural problem...
How to approximate?

O N

.

Bin packing: First fit

Lemma
First fit is a 2-approximation.

Proof.

Observe that only one bin can have less than v/2
content in it... [l

31/41

10.3: Independent set of
axis-parallel rectangles

An example

Input Independent set of rectangles.
Assume: Open rectangles.

An example

L

| | []

- -

Input Independent set of rectangles.
Assume: Open rectangles.

Independent set of intervals

Given n intervals on the real line, computing the largest
independent set of intervals on the real line, can be done
in:

(A) O(n) time.

(B) O(nlogn) time.
(C) O(n3/?) time.
(D) O(n?) time.

(E) NP-Hard.

AN /A1

Independent set of rectangles

Independent set of rectangles

=

Independent set of rectangles

Independent set of rectangles

Independent set of rectangles

Independent set of rectangles

Independent set of rectangles

Independent set of rectangles

Independent set of rectangles

R: A set of axis parallel rectangles.

Rectindep(R) :
if |R| <10 then
Solve by brute force
return size of solution
Zpr: Median of right z-coordinate of rects in R
£: Vertical line through x,;.
Roar: Rects of R intersecting £
Ri, Rgr: Rectangles in R left/ right of £.
St <= Rectindep(R)
Sr <= Rectindep(Rg)
Sy < compute opt solution for Ry (intervals!)

/o~ —~ O\

Analysis
1. If Syy > Opt/(21gn)... done.

Analysis

1. If Syy > Opt/(21gn)... done.
2. Opt; 4+ Optyp > (1 —1/(21gn))Opt.

Analysis

1. If Syy > Opt/(21gn)... done.

2. Opt; 4+ Optyp > (1 —1/(21gn))Opt.

3. By induction: S; > Opt;/(21g(n/2)) and
Sr > Optg/(21g(n/2)).

Analysis

N

. 1f Sy > Opt/(21g n)... done.

Opt; + Optg > (1 —1/(21gn))Opt.
By induction: S, > Opt;/(21g(n/2)) and
Sr 2 Optgr/(21g(n/2)).

(1—1/(21gn))Opt
S1+ Sk 2 T getn/2)

Analysis

N

If Spr > Opt/(21gn)... done.
Opt; + Optg > (1 —1/(21gn))Opt.

. By induction: S, > Opt;/(21g(n/2)) and

Sr > Optg/(21g(n/2)).

(1—1/(21gn))Opt
Su+ Sk 2 T pt2)

(1-1/(21gn)) _
211g(n/2)

2lgn —2 (21gn)(21gn — 2)

Analysis

N

If Spr > Opt/(21gn)... done.
Opt; + Optg > (1 —1/(21gn))Opt.

. By induction: S, > Opt;/(21g(n/2)) and

Sr > Optg/(21g(n/2)).

(1—1/(21gn))Opt
Su+ Sk 2 T pt2)

(1-1/(21gn)) _
211g(n/2)

2lgn —2 (21gn)(21gn — 2)
2lgn —1

>
— (2lgn)(2lgn — 2)

Analysis

N

If Spr > Opt/(21gn)... done.

Opt; + Optgp > (1 — 1/(21gn))Opt.
By induction: S, > Opt;/(21g(n/2)) and
Sr > Optg/(21g(n/2)).

SL + SR Z (1—1/(21g n))Opt

21g(n/2)
(1-1/@21gn)
21g(n/2)
1
2lgn — 2 (2lgn)(21gn—2)
2lgn —1
~ (2lgn)(2lgn — 2)
2lgn — 2

(1. o N/ . AN — o1 _°

Analysis

N

If Spr > Opt/(21gn)... done.

Opt; + Optgp > (1 — 1/(21gn))Opt.
By induction: S, > Opt;/(21g(n/2)) and
Sr > Optg/(21g(n/2)).

SL + SR Z (1—1/(21g n))Opt

21g(n/2)
(1-1/@21gn)
21g(n/2)
1
2lgn — 2 (2lgn)(21gn—2)
2lgn —1
~ (2lgn)(2lgn — 2)
2lgn — 2

(1. o N/ . AN — o1 _°

Analysis

N

If Spr > Opt/(21gn)... done.

Opt; + Optgp > (1 — 1/(21gn))Opt.
By induction: S, > Opt;/(21g(n/2)) and
Sr > Optg/(21g(n/2)).

SL + SR Z (1—1/(21g n))Opt

21g(n/2)
(1-1/@21gn)
21g(n/2)
1
2lgn — 2 (2lgn)(21gn—2)
2lgn —1
~ (2lgn)(2lgn — 2)
2lgn — 2

(1. o N/ . AN — o1 _°

Notes

38,41

Notes

39/41

Notes

40/41

Notes

41/41

	Subset Sum
	On the complexity of -approximation algorithms

	Maximal matching
	Bin packing

	Independent set of axis-parallel rectangles

