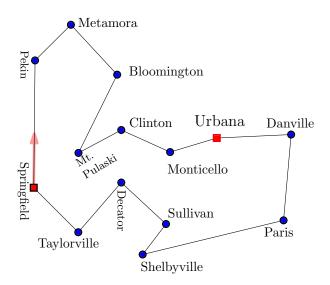
# **Approximation Algorithms for TSP**

Lecture 26 Dec 2, 2016

Chandra & Ruta (UIUC)

### Lincoln's Circuit Court Tour



# Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

**Input:** A graph G = (V, E) with edge costs  $c : E \to \mathbb{R}_+$ . **Goal:** Find a Hamiltonian Cycle of minimum total edge cost

Graph can be undirected or directed. Problem differs substantially. We will first focus on undirected graphs.

# Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

**Input:** A graph G = (V, E) with edge costs  $c : E \to \mathbb{R}_+$ . **Goal:** Find a Hamiltonian Cycle of minimum total edge cost

Graph can be undirected or directed. Problem differs substantially. We will first focus on undirected graphs.

**Assumption for simplicity:** Graph G = (V, E) is a complete graph. Can add missing edges with infinite cost to make graph complete.

**Observation:** Once graph is complete there is always a Hamiltonian cycle but only Hamiltonian cycles of finite cost are Hamiltonian cycles in the original graph.

# Important Special Cases

**Metric-TSP**: G = (V, E) is a complete graph and c defines a metric space. c(u, v) = c(v, u) for all u, v and  $c(u, w) \le c(u, v) + c(v, w)$  for all u, v, w.

**Geometric-TSP**: V is a set of points in some Euclidean d-dimensional space  $\mathbb{R}^d$  and the distance between points is defined by some norm such as standard Euclidean distance,  $L_1$ /Manhatta distance etc.

Another interpretation of Metric-TSP: Given G = (V, E) with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once.

# Inapproximability of TSP

**Observation:** In the general setting TSP does not admit any bounded approximation.

- Finding or even deciding whether a graph G = (V, E) has Hamiltonian Cycle is NP-Hard
- Alternatively, suppose G = (V, E) is a simple graph that we complete with infinite cost edges. If G has a Hamilton Cycle then there is a TSP tour of cost n else it is cost  $\infty$ .

### Metric-TSP

Metric-TSP is simpler and perhaps a more natural problem in some settings.

#### **Theorem**

Metric-TSP is NP-Hard.

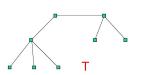
#### Proof.

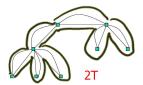
Given G = (V, E) we create a new complete graph G' = (V, E') with the following costs. If  $e \in E$  cost c(e) = 1. If  $e \in E' - E$  cost c(e) = 2. Easy to verify that c satisfies metric properties. Moreover, G' has TSP tour of cost n iff G has a Hamiltonian Cycle.

### Approximation for Metric-TSP

#### MST-Heuristic(G = (V, E), c)

Compute an minimum spanning tree (MST) T in GObtain an Eulerian graph H = 2T by doubling edges of TAn Eulerian tour of H gives a tour of GObtain Hamiltonian cycle by shortcutting the tour





# Analyzing MST-Heuristic

#### Lemma

Let  $c(T) = \sum_{e \in T} c(e)$  be cost of MST. We have  $c(T) \leq OPT$ .

# Analyzing MST-Heuristic

#### Lemma

Let  $c(T) = \sum_{e \in T} c(e)$  be cost of MST. We have  $c(T) \leq OPT$ .

### Proof.

A TSP tour is a connected subgraph of  ${\it G}$  and MST is the cheapest connected subgraph of  ${\it G}$ .

# Analyzing MST-Heuristic

#### Lemma

Let  $c(T) = \sum_{e \in T} c(e)$  be cost of MST. We have  $c(T) \leq OPT$ .

### Proof.

A TSP tour is a connected subgraph of  ${\it G}$  and MST is the cheapest connected subgraph of  ${\it G}$ .

#### Theorem

MST-Heuristic gives a 2-approximation for Metric-TSP.

### Proof.

Cost of tour is at most 2c(T) and hence MST-Heuristic gives a 2-approximation.

# Background on Eulerian graphs

#### **Definition**

An Euler tour of an undirected multigraph G = (V, E) is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.



# Background on Eulerian graphs

### **Definition**

An Euler tour of an undirected multigraph G = (V, E) is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.

### Theorem (Euler)

An undirected multigraph G = (V, E) is Eulerian iff G is connected and every vertex degree is even.

# Background on Eulerian graphs

### **Definition**

An Euler tour of an undirected multigraph G = (V, E) is a closed walk that visits each edge exactly once. A graph is Eulerian if it has an Euler tour.

### Theorem (Euler)

An undirected multigraph G = (V, E) is Eulerian iff G is connected and every vertex degree is even.

#### Theorem

A directed multigraph G = (V, E) is Eulerian iff G is weakly connected and for each vertex v, indeg(v) = outdeg(v).

### Improved approximation for Metric-TSP

How can we improve the MST-heuristic?

**Observation:** Finding optimum TSP tour in G is same as finding minimum cost Eulerian subgraph of G (allowing duplicate copies of edges).

# Improved approximation for Metric-TSP

How can we improve the MST-heuristic?

**Observation:** Finding optimum TSP tour in G is same as finding minimum cost Eulerian subgraph of G (allowing duplicate copies of edges).

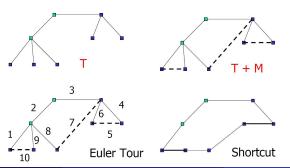
```
Christofides-Heuristic(G = (V, E), c)
Compute an minimum spanning tree (MST) T in G
Add edges to T to make Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
```

How do we edges to make *T* Eulerian?

# Christofides Heuristic: 3/2 approximation

#### Christofides-Heuristic(G = (V, E), c)

Compute an minimum spanning tree (MST) T in GLet S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in GAdd M to T to obtain Eulerian graph HAn Eulerian tour of H gives a tour of GObtain Hamiltonian cycle by shortcutting the tour



# Analysis of Christofides Heuristic

Main lemma:

#### Lemma

$$c(M) \leq OPT/2$$
.

Assuming lemma:

#### **Theorem**

Christofides heuristic returns a tour of cost at most 3OPT/2.

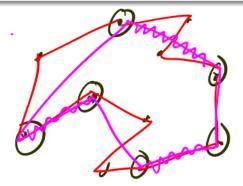
#### Proof.

$$c(H) = c(T) + c(M) \le OPT + OPT/2 \le 3OPT/2$$
. Cost of tour is at most cost of  $H$ .

## Analysis of Christofides Heuristic

#### Lemma

Suppse G = (V, E) is a metric and  $S \subset V$  be a subset of vertices. Then there is a TSP tour in G[S] (the graph induced on S) of cost at most OPT.



## Analysis of Christofides Heuristic

#### Lemma

Suppse G = (V, E) is a metric and  $S \subset V$  be a subset of vertices. Then there is a TSP tour in G[S] (the graph induced on S) of cost at most OPT.

#### Proof.

Let  $C = v_1, v_2, \ldots, v_n, v_1$  be an optimum tour of cost OPT in G and let  $S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}$  where, without loss of generality  $i_1 < i_2 \ldots < i_k$ . Then consider the tour  $C' = v_{i_1}, v_{i_2}, \ldots, v_{i_k}, v_{i_1}$  in G[S]. The cost of this tour is at most cost of C by shortcutting.  $\square$ 

### Proof of lemma for Christofides heuristic

#### Lemma

$$c(M) \leq OPT/2$$
.

Recall that M is a matching on S the set of odd degree nodes in T. Recall that |S| is even.

#### Proof.

```
From previous lemma, there is tour of cost OPT for S in G[S]. Wlog let this tour be v_1, v_2, \ldots, v_{2k}, v_1 where S = \{v_1, v_2, \ldots, v_{2k}\}. Consider two matchings M_a and M_b where M_a = \{(v_1, v_2), (v_3, v_4), \ldots, (v_{2k-1}, v_{2k}) \text{ and } M_b = \{(v_2, v_3), (v_4, v_5), \ldots, (v_{2k}, v_1). M_a \cup M_b is set of edges of tour so c(M_a) + c(M_b) \leq OPT and hence one of them has cost less than OPT/2.
```

### Other comments

Christofides heuristic has not been improved since 1976! Major open problem in approximation algorithms.

For points in any fixed dimension d there is a polynomial-time approximation scheme. For any fixed  $\epsilon > 0$  a tour of cost  $(1+\epsilon)OPT$  can be computed in polynomial time. [Arora 1996, Mitchell 1996].

Excellent practical code exists for solving large scale instances of TSP that arise in several applications. See Concorde TSP Solver by Applegate, Bixby, Chvatal, Cook.

# Directed Graphs and Asymmetric TSP (ATSP)

Question: What about directed graphs?

Equivalent of Metric-TSP is Asymmetric-TSP (ATSP)

- Input is a complete directed graph G = (V, E) with edge costs  $c : E \to \mathbb{R}_+$ .
- Edge costs are not necessarily symmetric. That is c(u, v) can be different from c(v, u)
- Edge costs satisfy assymetric triangle inequality:  $c(u, w) \le c(u, v) + c(v, w)$  for all  $u, v, w \in V$ .

# Directed Graphs and Asymmetric TSP (ATSP)

Question: What about directed graphs?

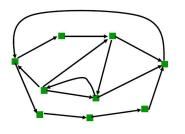
Equivalent of Metric-TSP is Asymmetric-TSP (ATSP)

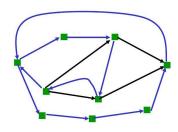
- Input is a complete directed graph G = (V, E) with edge costs  $c : E \to \mathbb{R}_+$ .
- Edge costs are not necessarily symmetric. That is c(u, v) can be different from c(v, u)
- Edge costs satisfy assymetric triangle inequality:  $c(u, w) \le c(u, v) + c(v, w)$  for all  $u, v, w \in V$ .

Alternate interpretation: given directed graph G = (V, E) find a closed walk that visits all vertices (can visit a vertex more than once).

### **ATSP**

Alternate interpretation: given directed graph G = (V, E) find a closed walk that visits all vertices (can visit a vertex more than once).





Same as finding a minimum cost connected Eulerian subgraph of G.

# Approximation for ATSP

#### Harder than Metric-TSP

- Simple  $\log_2 n$  approximation from 1980.
- Improved to  $O(\log n / \log \log n)$ -approximation in 2010.
- Further improved to  $O((\log \log n)^c)$ -approximation in 2015.

Believed that a constant factor approximation exists via a natural LP relaxation.

# The $O(\log n)$ Approximation

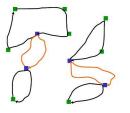
Recall that a cycle cover is a collection of node disjoint cycles that contain all nodes.

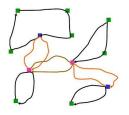
```
CycleShrinkingAlgorithm(G(V,A),c:A\to\mathcal{R}^+):

If |V|=1 output the trivial cycle consisting of V
Find a minimum cost cycle cover with cycles C_1,\ldots,C_k
From each C_i pick an arbitrary proxy node v_i
Let S=\{v_1,v_2,\ldots,v_k\}
Recursively solve problem on G[S] to obtain a solution C
C'=C\cup C_1\cup C_2\ldots C_k is a Eulerian graph.
Shortcut C' to obtain a cycle on V and output C'.
```

# Illustration







# **Analysis**

### Lemma

Cost of a cycle cover is at most **OPT**.

# Analysis

#### Lemma

Cost of a cycle cover is at most **OPT**.

#### Lemma

Suppse G = (V, E) is a directed graph with edge costs that satisfies asymmetric triangle inequality and  $S \subset V$  be a subset of vertices. Then there is a TSP tour in G[S] (the graph induced on S) of cost at most OPT.

#### Lemma

The number of vertices shrinks by half in each iteration and hence total of at most  $\lceil \log n \rceil$  cycle covers.

Hence total cost of all cycle covers is at most  $\lceil \log n \rceil \cdot OPT$ .