More NP-Complete Problems

Lecture 23 November 16, 2016

Recap

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, $L' \leq_P L$.

Theorem (Cook-Levin)

SAT is NP-Complete.

Recap contd

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Establish NP-Completeness via reductions:

- **SAT** is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Mamilton Cycle and Hamiltonian Path are NP-Complete

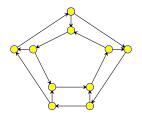
3

3-Color is NP-Complete

Today

Prove

- Hamiltonian Cycle is NP-Complete
- 3-Coloring is NP-Complete
- Subset Sum is NP-Complete

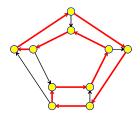

All via reductions from 3-SAT

Part I

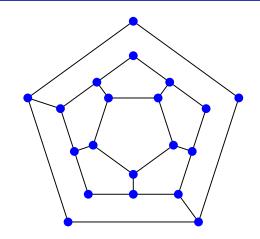
NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?



6


Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Is the following graph Hamiltonianan?

- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is NP-Complete

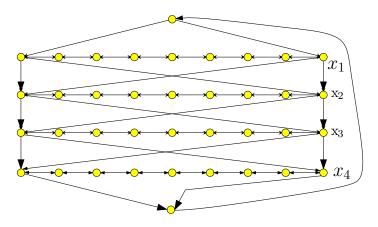
- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge

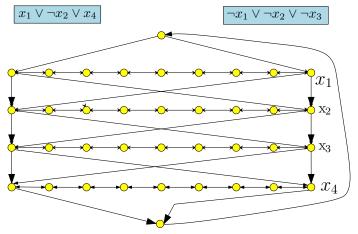
8

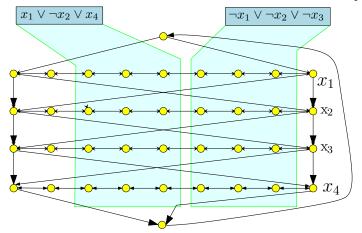
- Hardness: We will show
 - 3-SAT \leq_P Directed Hamiltonian Cycle

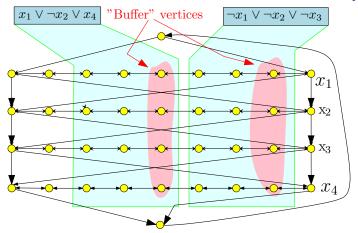
Reduction

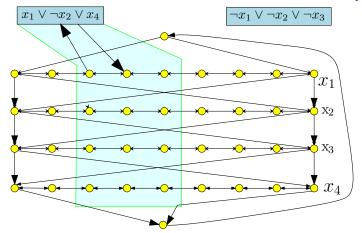
Given 3-SAT formula arphi create a graph $extbf{\emph{G}}_{arphi}$ such that

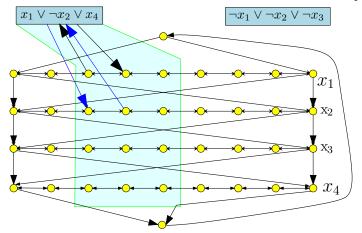

- ullet G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- $oldsymbol{G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm $oldsymbol{\mathcal{A}}$

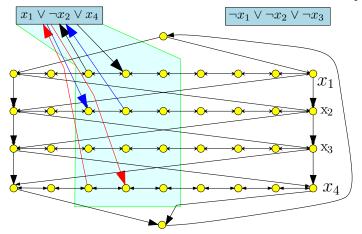

Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

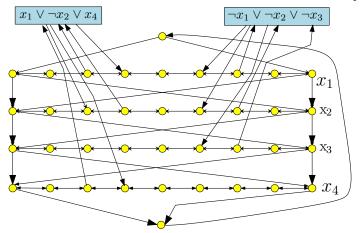

Reduction: First Ideas


- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.


- Traverse path i from left to right iff x_i is set to true
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)





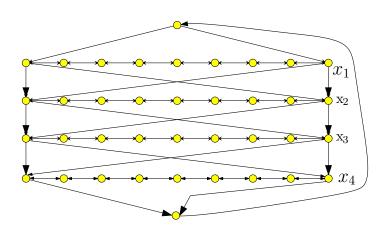


Correctness Proof

Proposition

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.


- \Rightarrow Let **a** be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example

Hamiltonian Cycle ⇒ Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Is covering by cycles hard?

Given a directed graph G, deciding if G can be covered by vertex disjoint cycles (each of length at least two) is

- (A) NP-Hard.
- (B) NP-Complete.
- (C) P.
- (D) IDK.

Hamiltonian Cycle

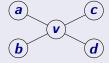
Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

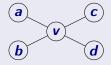
Theorem


Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

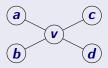
- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path


Reduction

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction


• Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction


- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Hamiltonian Path

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian path?

 A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Exercise: Modify the reduction from **3-SAT** to **Hamilton cycle** to prove that **3-SAT** reduces to **Hamilton path**.

Exercise: Also prove that **Hamilton path** in undirected graphs is **NP-Complete**.

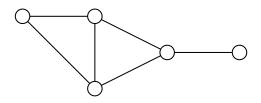
Part II

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

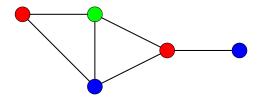

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do

not get the same color?


Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do

not get the same color?

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite!

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any k > 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

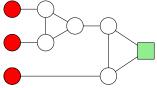
Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

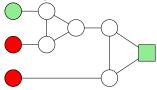
Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)


- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.


You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

- (A) Yes.
- **(B)** No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

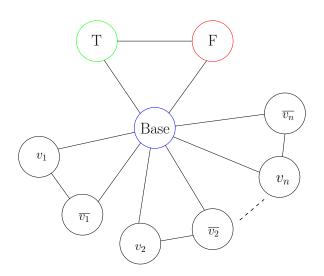
- (A) Yes.
- **(B)** No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

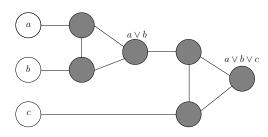

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

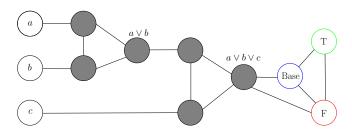


Clause Satisfiability Gadget

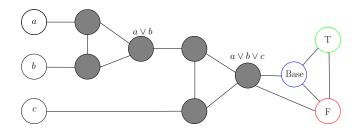
For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:

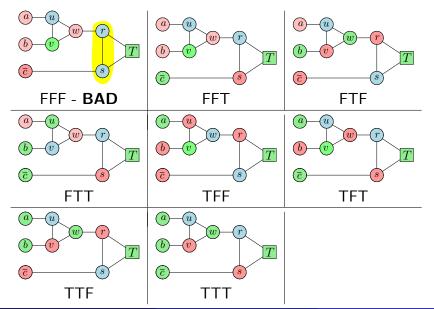

OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.


Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

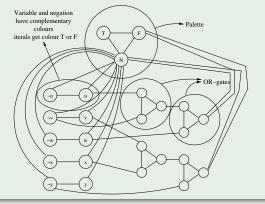
Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base


Reduction

Claim

No legal **3**-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal **3**-coloring of above graph.


3 coloring of the clause gadget

Reduction Outline

Example

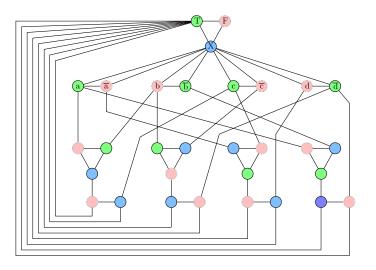
$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.


 G_{φ} is 3-colorable implies φ is satisfiable

• if v_i is colored True then set x_i to be True, this is a legal truth assignment

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR

Part III

Hardness of Subset Sum

Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers, **t**: - an integer

number (Target)

Question: Is there a subset $X \subseteq S$ such that

$$\sum_{x \in X} x = t?$$

Claim

Subset Sum *is* NP-Complete.

Vec Subset Sum

We will prove following problem is **NP-Complete**...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{X} \in X} \overrightarrow{X} = \overrightarrow{t}$?

Reduction from 3SAT.

Vec Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
<i>a</i> ₁	??	??	01	??
a ₂	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

Handling a clause...

We will have a column for every clause...

	<i>_</i>	
	$C \equiv a \lor b \lor \overline{c}$	
	01	
	00	
	01	
	00	
	00	
	01	
000	07	000
000	08	000
000	09	000
	10	
		00 01 00 00 01 01 000 07 000 08 000 09

3SAT to Vec Subset Sum

numbers	$a \vee \overline{a}$	$b \vee \overline{b}$	$c \vee \overline{c}$	$d \vee \overline{d}$	$D \equiv \overline{b} \vee c \vee \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
а	1	0	0	0	00	01
ā	1	0	0	0	00	00
Ь	0	1	0	0	00	01
<u></u>	0	1	0	0	01	00
С	0	0	1	0	01	00
c	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
00000010101
000000000007
80000000000
000000000009
000000000700
000000000800
000000000900

Other **NP-Complete** Problems

- 3-Dimensional Matching
- 3-Partition

Read book.

Subset Sum and Knapsack

Knapsack: Given n items with item i having non-negative integer size s_i and non-negative integer profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?

Exercise: Show **Knapsack** is **NP-Complete** via reduction from **Subset Sum**

Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NP-Complete**.

Number problems which are **NP-Complete** even when the numbers are written in unary are **strongly NP-Complete**.

A Strongly NP-Complete Number Problem

3-Partition: Given 3n numbers a_1, a_2, \ldots, a_{3n} and target B can the numbers be partitioned into n groups of 3 each such that the sum of numbers in each group is exactly B?

Can further assume that each number a_i is between B/3 and 2B/3.

Can reduce 3-D-Matching to 3-Partition in polynomial time such that each number a_i can be written in unary.

Need to Know NP-Complete Problems

- SAT and 3-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum and Knapsack