CS 473: Algorithms

Chandra Chekuri Ruta Mehta

University of Illinois, Urbana-Champaign

Fall 2016

Lecture 11 September 28, 2016

Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data for all practical purposes.

Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data for all practical purposes.

Typically used to avoid comparison and transmission of bulky data.

Eg: Web browser can store/fetch file fingerprints to check if it is changed.

Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data for all practical purposes.

Typically used to avoid comparison and transmission of bulky data.

Eg: Web browser can store/fetch file fingerprints to check if it is changed.

As you may have guessed, fingerprint functions are hash functions.

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- To lookup y in dictionary check contents of location h(y)

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with non-uniform sizes.
- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)

4

3 To lookup y if bit in location h(y) is 1 say yes, else no.

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- ② To lookup y if bit in location h(y) is 1 say yes, else no
- No false negatives but false positives possible due to collisions

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- To lookup y if bit in location h(y) is 1 say yes, else no
- No false negatives but false positives possible due to collisions

Reducing false positives:

- **1** Pick **k** hash functions h_1, h_2, \ldots, h_k independently
- ② To insert x for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1
- To lookup y compute h_i(y) for 1 ≤ i ≤ k and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is α < 1 then with k independent hash function it is
 </p>

Bloom Filter: tradeoff space for false positives

- To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- To lookup y if bit in location h(y) is 1 say yes, else no
- No false negatives but false positives possible due to collisions

Reducing false positives:

- **1** Pick **k** hash functions h_1, h_2, \ldots, h_k independently
- ② To insert x for $1 \le i \le k$ set bit in location $h_i(x)$ in table i to 1
- To lookup y compute h_i(y) for 1 ≤ i ≤ k and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is α < 1 then with k independent hash function it is α^k.

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

Outline

Use of hash functions for designing fast algorithms

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

- Sampling a prime
- String equality via mod p arithmetic
- Rabin's fingerprinting scheme rolling hash
- Karp-Rabin pattern matching algorithm: O(m + n) time.

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- **1** Sample a number **p** uniformly at random from $\{1, \ldots, x\}$.
- ② If **p** is a prime, then output **p**. Else go to Step (1).

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- **1** Sample a number **p** uniformly at random from $\{1, \ldots, x\}$.
- ② If **p** is a prime, then output **p**. Else go to Step (1).

Checking if p is prime

- Agrawal-Kayal-Saxena primality test: deterministic but slow
- Miller-Rabin randomized primality test: fast but randomized outputs 'prime' when it is not with very low probability.

Is the returned prime sampled uniformly at random?

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \le x$, $Pr[algorithm outputs p^*] = 1/\pi(x)$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \le x$, $Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

A: Event that a prime is picked in a round. $Pr[A] = \pi(x)/x$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \le x$, $Pr[algorithm outputs <math>p^*] = 1/\pi(x)$.

Proof.

A: Event that a prime is picked in a round. $Pr[A] = \pi(x)/x$.

B: Number (prime) p^* is picked. Pr[B] = 1/x. $B \subset A$.

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \le x$, $\Pr[algorithm \ outputs \ p^*] = 1/\pi(x)$.

Proof.

A: Event that a prime is picked in a round. $Pr[A] = \pi(x)/x$.

B: Number (prime) p^* is picked. Pr[B] = 1/x. $B \subset A$.

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{Pr[B]}{Pr[A]} = \frac{1/x}{\pi(x)/x} = \frac{1}{\pi(x)}$$

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^* \le x$, $Pr[algorithm outputs <math>p^*] = 1/\pi(x)$.

Proof.

A: Event that a prime is picked in a round. $Pr[A] = \pi(x)/x$.

B: Number (prime) p^* is picked. Pr[B] = 1/x. $B \subset A$.

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{Pr[B]}{Pr[A]} = \frac{1/x}{\pi(x)/x} = \frac{1}{\pi(x)}$$

Running time in expectation

Q: How many samples in expectation before termination?

A: $x/\pi(x)$. Exercise.

 $\pi(x)$: Number of primes between **0** and **x**.

Prime Number Theorem

$$\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$$

By Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896

 $\pi(x)$: Number of primes between **0** and **x**.

Prime Number Theorem

$$\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$$

By Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896

Chebyshev (from 1848)

$$\pi(\mathsf{x}) \geq \frac{7}{8} \frac{\mathsf{x}}{\ln \mathsf{x}} = (1.262..) \frac{\mathsf{x}}{\lg \mathsf{x}} > \frac{\mathsf{x}}{\lg \mathsf{x}}$$

 $\pi(x)$: Number of primes between **0** and **x**.

Prime Number Theorem

$$\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$$

By Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

• $\mathbf{y} \sim \{1, \dots, \mathbf{x}\}$ u.a.r., then \mathbf{y} is a prime w.p. $\frac{\pi(\mathbf{x})}{\mathbf{x}} > \frac{1}{\lg \mathbf{x}}$.

 $\pi(x)$: Number of primes between **0** and **x**.

Prime Number Theorem

$$\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$$

By Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896

Chebyshev (from 1848)

$$\pi(\mathsf{x}) \geq \frac{7}{8} \frac{\mathsf{x}}{\ln \mathsf{x}} = (1.262..) \frac{\mathsf{x}}{\lg \mathsf{x}} > \frac{\mathsf{x}}{\lg \mathsf{x}}$$

- ullet y $\sim \{1,\ldots, {\sf x}\}$ u.a.r., then y is a prime w.p. ${\pi({\sf x})\over {\sf x}}>{1\over \lg {\sf x}}$.
- If we want $k \ge 4$ primes then $x \ge 2k \lg k$ suffices.

$$\pi(\mathsf{x}) \geq \pi(2\mathsf{k}\lg\mathsf{k}) = \frac{\mathsf{k}(2\lg\mathsf{k})}{\lg 2 + \lg \mathsf{k} + \lg \lg \mathsf{k}} \geq \mathsf{k}$$

Problem

Alice, the captain of a Mars lander, receives an N-bit string \mathbf{x} , and Bob, back at mission control, receives a string \mathbf{y} . They know nothing about each others strings, but want to check if $\mathbf{x} = \mathbf{y}$.

Problem

Alice, the captain of a Mars lander, receives an N-bit string \mathbf{x} , and Bob, back at mission control, receives a string \mathbf{y} . They know nothing about each others strings, but want to check if $\mathbf{x} = \mathbf{y}$.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Problem

Alice, the captain of a Mars lander, receives an N-bit string \mathbf{x} , and Bob, back at mission control, receives a string \mathbf{y} . They know nothing about each others strings, but want to check if $\mathbf{x} = \mathbf{y}$.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then O(lg N) may suffice!!!

Problem

Alice, the captain of a Mars lander, receives an N-bit string \mathbf{x} , and Bob, back at mission control, receives a string \mathbf{y} . They know nothing about each others strings, but want to check if $\mathbf{x} = \mathbf{y}$.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then O(lg N) may suffice!!!
 - If x = y, then Pr[Bob says equal] = 1.
 - If $x \neq y$, then Pr[Bob says un-equal] = 0.9999.

HOW?

(Recall) 5N primes in $\{1, ..., M\}$ if $M = \lceil 2(5N) \lg 5N \rceil$.

```
(Recall) 5N primes in \{1,\ldots,M\} if M=\lceil 2(5N)\lg 5N\rceil. Define h_p(x)=x\mod p
```

• Alice picks a random prime **p** from $\{1, \dots M\}$.

```
(Recall) 5N primes in \{1,\ldots,M\} if M=\lceil 2(5N)\lg 5N\rceil. Define h_p(x)=x\mod p
```

- Alice picks a random prime **p** from $\{1, \dots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

(Recall) 5N primes in
$$\{1,\ldots,M\}$$
 if $M=\lceil 2(5N)\lg 5N\rceil$. Define $h_p(x)=x\mod p$

- Alice picks a random prime **p** from $\{1, \dots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If x = y then Bob always says equal.

(Recall) 5N primes in
$$\{1,\ldots,M\}$$
 if $M=\lceil 2(5N)\lg 5N\rceil$. Define $h_p(x)=x\mod p$

- Alice picks a random prime p from $\{1, \dots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If x = y then Bob always says equal.

Lemma

If $x \neq y$ then, $Pr[Bob \ says \ equal] \leq 1/5$ (error probability).

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If $x \neq y$ then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given $x \neq y$, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

• D = |x - y|, then $D \mod p = 0$, and $D < 2^N$.

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N divisors.

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N divisors.
- ullet Probability that a random prime ullet from $\{1,\ldots,M\}$ is a divisor,

$$\leq \frac{\mathsf{N}}{\pi(\mathsf{M})}$$

Error probability

Let
$$M = \lceil 2(sN) \lg sN \rceil$$
 and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[\textit{Bob says} \; \text{equal}] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N divisors.
- ullet Probability that a random prime ullet from $\{1,\ldots,M\}$ is a divisor,

$$\leq \frac{\mathsf{N}}{\pi(\mathsf{M})} \leq \frac{\mathsf{N}}{\mathsf{M}/\lg\mathsf{M}} = \frac{\mathsf{N}}{2(\mathsf{sN})\lg\mathsf{sN}}\lg\mathsf{M} \leq \frac{1}{\mathsf{s}}$$

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$.

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$. For s = 5, R = 10, $\frac{1}{5^{10}} \le 0.000001$.

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}.$ For $s=5, R=10, \, \frac{1}{5^{10}} \leq 0.000001.$

$$M = [2(sN) \lg sN]$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits $2 \lg M \leq 4(\lg s + \lg N)$.

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}.$ For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001.$

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers \leq M. # bits $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Low Error Probability

- **1** Choose large enough **s**. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}.$ For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001.$

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers \leq M. # bits $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Second approach will send $10(2 \lg 10N \lg 5N) \le 1280$ bits.

Part I

Karp-Rabin Pattern Matching Algorithm

Given a string **T** of length **m** and pattern **P** of length **n**, s.t. $\mathbf{m} \gg \mathbf{n}$, find all occurrences of **P** in **T**.

Example

T=abracadabra, **P**=ab.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$, find all occurrences of P in T.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

Given a string **T** of length **m** and pattern **P** of length **n**, s.t. $\mathbf{m} \gg \mathbf{n}$, find all occurrences of **P** in **T**.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

For
$$j > i$$
, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Given a string **T** of length **m** and pattern **P** of length **n**, s.t. $\mathbf{m} \gg \mathbf{n}$, find all occurrences of **P** in **T**.

Example

T=abracadabra, **P**=ab.

Solution $S = \{1, 8\}$.

For
$$j > i$$
, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Brute force algorithm

 $S = \emptyset$. For each $i = 1 \dots m - n + 1$

• If $T_{i...i+n-1} = P$ then $S = S \cup \{i\}$.

Given a string **T** of length **m** and pattern **P** of length **n**, s.t. $\mathbf{m} \gg \mathbf{n}$, find all occurrences of **P** in **T**.

Example

T=abracadabra, P=ab.

Solution $S = \{1, 8\}$.

For
$$j > i$$
, let $T_{i...j} = T[i]T[i+1]...T[j]$.

Brute force algorithm

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If
$$T_{i...i+n-1} = P$$
 then $S = S \cup \{i\}$.

O(mn) run-time.

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

$$\bullet \ \text{If} \ h_p(T_{i\dots i+n-1}) = h_p(P) \ \text{then} \ S = S \cup \{i\}.$$

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

$$\bullet \ \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{ then } S = S \cup \{i\}.$$

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall **O(mn)** running time.

Using Hash Function

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using hash function

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

$$\bullet \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{ then } S = S \cup \{i\}.$$

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall **O(mn)** running time.

Can we compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ fast?

Rolling Hash

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

Rolling Hash

$$x = T_{i...i+n-1}$$
 and $x' = T_{i+1...i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$x' = 2(x - x_{hb}2^{n-1}) + x'_{lb}$$

Rolling Hash

$$\mathbf{x} = \mathbf{T}_{i\dots i+n-1}$$
 and $\mathbf{x}' = \mathbf{T}_{i+1\dots i+n}$.

Example

x = 1011001, and x' = 0110010 (or x' = 0110011).

$$x' = 2(x - x_{hb}2^{n-1}) + x'_{lb}$$

$$\begin{array}{ll} h_p(x') & = & x' \bmod p \\ & = & (2(x \bmod p) - x_{hb}(2^n \bmod p) + x'_{lb}) \bmod p \\ & = & (2h_p(x) - x_{hb}h_p(2^n) + x'_{lb}) \bmod p \end{array}$$

- p: a random prime from $\{1,\ldots,M\}$.
 - ① Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - $\bullet \ \text{If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

- p: a random prime from $\{1,\ldots,M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - $\bullet \ \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

- p: a random prime from $\{1,\ldots,M\}$.
 - Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - $\bullet \ \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

 Since h_p(.) produces Ig M bit numbers, both steps inside for loop can be done in O(1) time.

- p: a random prime from $\{1,\ldots,M\}$.
 - ① Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - $\bullet \ \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - ① Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - $\bullet \ \text{ If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in **S**.

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in S.

Can it contain unmatched positions?

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in S.

Can it contain unmatched positions? YES!

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T_{i...i+n-1} = P$, then $i \in S$.

All matched positions are in S.

Can it contain unmatched positions? YES! With what probability?

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each $i = 1, \ldots, m n + 1$
 - $\bullet \ \text{If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - Ompute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- ② For each i = 1, ..., m n + 1

 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- 2 For each $i = 1, \ldots, m n + 1$
 - $\bullet \ \text{If } h_p(T_{i\dots i+n-1}) = h_p(P) \text{, then } S = S \cup \{i\}.$
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

False positive: Pr[S contains an i, while no match at i]

• Given $T_{i...i+n-1} \neq P$, $Pr[i \in S] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- 2 For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i...i+n-1} \neq P$, $Pr[i \in S] \leq 1/s$.
- **Pr**[Any index in **S** is wrong]

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- 2 For each $i = 1, \ldots, m n + 1$
 - $\textbf{0} \ \text{ If } h_p(\mathsf{T}_{i\dots i+n-1}) = h_p(\mathsf{P}) \text{, then } \mathsf{S} = \mathsf{S} \cup \{i\}.$
 - ② Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i...i+n-1} \neq P$, $Pr[i \in S] \leq 1/s$.
- $Pr[Any index in S is wrong] \le m/s$ (Union bound).

Pr[S contains an index i, while there is no match at i]

- Set $S = \emptyset$. Compute $h_p(T_{1...n})$, $h_p(2^n)$, and $h_p(P)$.
- 2 For each $i = 1, \ldots, m n + 1$
 - If $h_p(T_{i...i+n-1}) = h_p(P)$, then $S = S \cup \{i\}$.
 - 2 Compute $h_p(T_{i+1...i+n})$ using $h_p(T_{i...i+n-1})$ and $h_p(2^n)$.

Set $M = \lceil 2(sn) \lg sn \rceil$. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- Given $T_{i...i+n-1} \neq P$, $Pr[i \in S] \leq 1/s$.
- $Pr[Any index in S is wrong] \le m/s$ (Union bound).
- To ensure S is correct with at least 0.99 probability, we need

$$1 - \frac{\mathsf{m}}{\mathsf{s}} = 0.99 \Leftrightarrow \frac{\mathsf{m}}{\mathsf{s}} = \frac{1}{100} \Leftrightarrow \mathsf{s} = 100\mathsf{m}$$

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if **T** is entire Wikipedia, with bit length $m \approx 2^{38}$,

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if **T** is entire Wikipedia, with bit length $m \approx 2^{38}$,

$$\lg M \approx 64$$
 (assuming bit-length of $n \leq 2^{16}$)

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

- Since h_p(.) produces lg M bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m + n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if **T** is entire Wikipedia, with bit length $m \approx 2^{38}$,

$$\lg M \approx 64$$
 (assuming bit-length of $n \leq 2^{16}$)

64-bit arithmetic is doable on laptops!

Take away points

- Hashing is a powerful and important technique. Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.