NEW CS 473: Theory II, Fall 2015

Lower bounds

Lecture 22 November 12, 2015

1/35

Sorting...

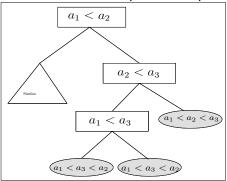
- 1. n items: x_1, \ldots, x_n .
- 2. Can be sorted in $O(n \log n)$ time.
- 3. Claim: $\Omega(n \log n)$ time to solve this.
- 4. Rules of engagement: What can an algorithm do???

Decision tree for sorting

1. sorting algorithm: a decision procedure.

2. Each stage: has current collection of comparisons done.

3. ... need to decide which comparison to perform next.



Comparison model

- 1. In the comparison model:
 - 1.1 Algorithm only allowed to compare two elements.
 - 1.2 **compare**(i, j): Compare ith item in input to jth item in input.
- 2. **Q:** # calls to **compare** a deterministic sorting algorithm has to perform?

2/3

Sorting algorithm...

- 1. sorting algorithm outputs a permutation.
- 2. ... order of the input elements so sorted.
- 3. Example: Input

$$x_1 = 7, x_2 = 3, X_3 = 1, x_4 = 19, x_5 = 2.$$

- 3.1 Output: 1, 2, 3, 7, 19.
- 3.2 Output: x_3, x_5, x_2, x_1, x_4 .
- 3.3 Output: $\pi = (3, 5, 2, 1, 4)$
- 3.4 Output as permutation:

$$\pi(1) = 3, \pi(2) = 5, \pi(3) = 2, \pi(4) = 1, \pi(5) = 4.$$

- 4. **Interpretation**: $x_{\pi(i)}$ is the *i*th smallest number in x_1, \ldots, x_n .
- 5. v: Node of decision tree.

P(v): A set of all permutations compatible with the set of comparisons from root to v.

5/35

What are permutations?

- 1. $\pi = (3, 4, 1, 2)$ is permutation in P(v).
- 2. Formally $\pi: \llbracket n \rrbracket \to \llbracket n \rrbracket$ is a one-to-one function. $\llbracket n \rrbracket = \{1, \ldots, n\}$ can be written as:

$$\pi = (3,4,1,2) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

- 3. Input is: x_1, x_2, x_3, x_4
- 4. If arrived to v and $\pi \in P(v)$ then $x_3 < x_4 < x_1 < x_2$.

 a possible ordering (as far as what seen so far).
- 5.

6/35

Input realizing a permutation, by example

1. Let
$$\pi = (3,4,2,1) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

- 2. Then the input $\pi^{-1} = (3,4,1,2) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$
- 3. ... would generate this permutation.
- 4. Formally

$$x_1 = \pi^{-1}(1) = 4 \dots x_i = \pi^{-1}(i) \dots$$

Back to sorting...

- 1. v: a node in decision tree.
- 2. If |P(v)| > 1: more than one permutation associated with it...
- 3. algorithm must continue performing comparisons
- 4. ...otherwise, not know what to output...
- 5. **Q:** What is the worst running time of algorithm?
- 6. Answer: Longest path from root in the decision tree. ...because we count only comparisons!

Lower bound on sorting...

Lemma

Any deterministic sorting algorithm in the comparisons model, must perform $\Omega(n \log n)$ comparisons.

Proof

- 1. Algorithm in the comparison model \equiv a decision tree.
- 2. Use an adversary argument.
- 3. Adversary pick the worse possible input for the algorithm.
- 4. Input is a permutation.
- 5. \mathfrak{T} : the optimal decision tree.
- 6. |P(r)| = n!, where $r = \text{root}(\mathfrak{I})$.

9/35

Proof continued...

1. Note, that

$$1 = |P(v_k)| \geq \frac{|P(v_{k-1})|}{2} \geq \ldots \geq \frac{|P(v_1)|}{2^{k-1}}.$$

- 2. $2^{k-1} \ge |P(v_1)| = n!$
- 3. $k > \lg(n!) + 1 = \Omega(n \log n)$.
- 4. Depth of \mathfrak{T} is $\Omega(n \log n)$.

Proof continued...

- 1. \boldsymbol{u} , \boldsymbol{v} : children of \boldsymbol{r} .
- 2. Adversary: no commitment on which of the permutations of P(r) it is using.
- 3. Algorithm perform compares x_i to x_i in root...
- 4. Adversary computes P(u) and P(v) [Adversary has infinite computation power!]
- 5. Adversary goes to u if $|P(u)| \ge |P(v)|$, and to v otherwise.
- 6. Adversary traversal: always pick child with more permutations.
- 7. v_1, \ldots, v_k : path taken by adversary.
- 8. Adversary input:
 The input realizing the single permutation of $P(v_k)$.

10/35

Uniqueness

Problem

Given an input of n real numbers x_1, \ldots, x_n . Decide if all the numbers are unique.

- 1. Intuitively: easier than sorting.
- 2. Can be solved in linear time!
- 3. ...but in a strange computation model.
- 4. Surprisingly...

Theorem

Any deterministic algorithm in the comparison model that solves Uniqueness, has $\Omega(n \log n)$ running time in the worst case.

5. Different models, different results.

Uniqueness lower bound

Proof similar but trickier.

 \mathfrak{I} : decision tree (every node has three children).

Lemma

 \mathbf{v} : node in decision tree. If $P(\mathbf{v})$ contains more than one permutation, then there exists two inputs which arrive to \mathbf{v} , where one is unique and other is not.

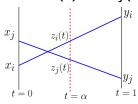
Proof

- 1. σ , σ' : any two different permutations in P(v).
- 2. $X = x_1, \dots, x_n$ be an input realizing σ .
- 3. $Y = y_1, \dots, y_n$: input realizing σ' .
- 4. Let $Z(t) = (z_1(t), \dots, z_n(t))$ an input where $z_i(t) = tx_i + (1 t)y_i$, for $t \in [0, 1]$.

13/35

Proof of claim...

- 1. Assume false.
- 2. Assume for $t = \alpha \in [0, 1]$ the input Z(t) did not get to v in \mathfrak{T} .
- 3. Assume: compared the ith to jth input element, when paths diverted in \Im .
- 4. I.e., Different path in $\mathfrak T$ then the one for $\boldsymbol X$ and $\boldsymbol Y$.
- 5. Claim: $x_i < x_j$ and $y_i > y_j$ or $x_i > x_j$ and $y_i < y_j$.
- 6. In either case \boldsymbol{X} or \boldsymbol{Y} will not arrive to \boldsymbol{v} in $\boldsymbol{\Im}$.
- 7. Consider the functions $z_i(t)$ and $z_i(t)$:



Proof continued...

- 1. $Z(t) = (z_1(t), \dots, z_n(t))$ an input where $z_i(t) = tx_i + (1-t)y_i$, for $t \in [0,1]$.
- 2. $Z(0) = (x_1, \ldots, x_n)$ and $Z(1) = (y_1, \ldots, y_n)$.
- 3. Claim: $\forall t \in [0,1]$ the input Z(t) will arrive to the node v in \mathfrak{T} .

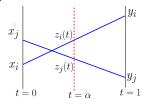
14/35

Proof of claim continued...

- 1. Ordering between $z_i(t)$ and $z_j(t)$ is either ordering between x_i and x_j or the ordering between y_i and y_j .
- 2. Conclusion: $\forall t$: inputs Z(t) arrive to the same node $v \in \mathcal{T}$.

Back to proof of Lemma...

- 1. Recap:
 - 1.1 Recall: X, Y to different permutations that their distinct input arrives to the same node $v \in \mathcal{T}$.
 - 1.2 Proved: $\forall t \in [0,1]$: $Z(t) = (z_1(t), \dots, z_n(t))$ arrives to same node $v \in \mathcal{T}$.
- 2. However: There must be $\beta \in (0,1)$ where $Z(\beta)$ has two numbers equal:



3. $Z(\beta)$: has a pair of numbers that are not unique.

17/35

Uniqueness takes $\Omega(n \log n)$ time

- 1. Apply the same argument as before.
- 2. If in the decision tree, the adversary arrived to a node...
- 3. containing more than one permutation, it continues into the child with more permutations.
- 4. As in the sorting argument, it follows that there exists a path in \mathfrak{T} of length $\Omega(n \log n)$.
- 5. We conclude:

Theorem

Solving Uniqueness for a set of n real numbers takes $\Theta(n \log n)$ time in the comparison model.

Proof of Lemma continued...

- 1. Done: Found inputs Z(0) and $Z(\beta)$
- 2. such that one is unique and the other is not.
- 3. ... both arrive to \mathbf{v} .

Proved the following:

Lemma

v: node in decision tree. If P(v) contains more than one permutation, then there exists two inputs which arrive to v, where one is unique and other is not.

18/3

Algebraic tree model

- 1. At each node, allowed to compute a polynomial, and ask for its sign at a certain point
- 2. Example: comparing x_i to x_j is equivalent to asking if the polynomial $x_i x_j$ is positive/negative/zero).
- 3. One can prove things in this model, but it requires considerably stronger techniques.

Problem

(Degenerate points) Given a set P of n points in \mathbb{R}^d , deciding if there are d+1 points in P which are co-linear (all lying on a common plane).

4. Jeff Erickson and Raimund Seidel: Solving the degenerate points problem requires $\Omega(n^d)$ time in a "reasonable" model of computation.

3Sum-Hard

1. Consider the following problem:

Problem

(3SUM): Given three sets of numbers A, B, C are there three numbers $a \in A$, $b \in B$ and $c \in C$, such that a + b = c.

2. One can show...

Lemma

One can solve the **3SUM** problem in $O(n^2)$ time.

Proof.

Exercise...

21/35

3SUM-hard problems

- 1. Those problems include:
 - 1.1 For **n** points in the plane, is there three points that lie on the same line.
 - 1.2 Given a set of *n* triangles in the plane, do they cover the unit square
 - 1.3 Given two polygons **P** and **Q** can one translate **P** such that it is contained inside **Q**?
- 2. So, how does one prove that a problem is 3SUM hard?
- 3. Reductions.
- 4. Reductions must have subquadratic running time.
- 5. The details are interesting, but are omitted.

3Sum-Hard continued

- 1. Somewhat surprisingly, no better solution is known.
- 2. Open Problem: Find a subquadratic algorithm for **3SUM**.
- 3. It is widely believed that no such algorithm exists.
- 4. There is a large collection problems that are 3SUM-Hard: if you solve them in subquadratic time, then you can solve 3SUM in subquadratic time.

22/25		
23/35		