Network flow, duality and Linear Programming

Lecture 20 November 5, 2015

20.1: Network flow via linear programming

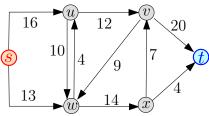
20.1.1: Network flow: Problem definition

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- 3 Limited capacities.

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- Limited capacities.



- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- 3 The flow is **splitable**.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

- $\star G = (V, E)$: a directed graph.
- $\star \ orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

- $\star G = (V, E)$: a **directed** graph.
- $\star \ orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- \star s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

- $\star G = (V, E)$: a directed graph.
- $\star\ orall (u,v)\in \mathsf{E}(\mathsf{G})$: capacity $c(u,v)\geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

- $\star G = (V, E)$: a directed graph.
- $\star \ orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- \star s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

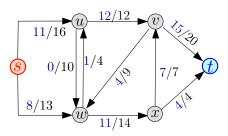
- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- **3** The flow is **splitable**.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

- $\star G = (V, E)$: a directed graph.
- $\star \ orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

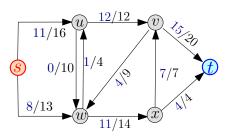
- $\star G = (V, E)$: a directed graph.
- $\star \ orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u,v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form flow network or network.

Network Example



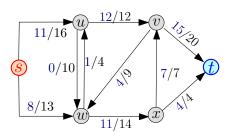
- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity ≤ capacity of edge.

Network Example



- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity \leq capacity of edge.

Network Example



- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity \leq capacity of edge.

Sariel (UIUC) New CS473 6 Fall 2015 6 / 39

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) Bounded by capacity:

$$orall (u,v) \in \mathsf{E} \hspace{0.5cm} f(u,v) \leq c(u,v)$$

(B) Anti symmetry:

$$orall u,v \qquad f(u,v)=-f(v,u)$$
 .

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) Conservation of flow (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s,v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) Bounded by capacity:

$$orall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v)$$
 .

(B) Anti symmetry

$$orall u,v \qquad f(u,v)=-f(v,u).$$

- (C) Two special vertices: (i) the source s and the sink t.
- (D) Conservation of flow (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s,v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) Bounded by capacity:

$$\forall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

(B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s,v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) Bounded by capacity:
 - $\forall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$
- (B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law $\forall u \in V \setminus \{s,t\}$ $\sum f(u,v) = 0$.

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s,v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) Bounded by capacity:
 - $orall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$
- (B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s,v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) Bounded by capacity:
 - $orall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$
- (B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) Conservation of flow (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum_v f(u,v) = 0.$$

$$\mathsf{flow}/\mathsf{value} \; \mathsf{of} \; f \colon |f| = \sum_{v \in V} f(s,v).$$

Problem: Max Flow

• Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow f such that |f| is maximized.

Sariel (UIUC) New CS473 8 Fall 2015 8 / 39

20.1.2: Network flow via linear programming

Network flow via linear programming

Input: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source \mathbf{s} and sink \mathbf{t} , and capacities $\mathbf{c}(\cdot)$ on the edges. Compute max flow in \mathbf{G} .

The edges. Compute max now in
$$\mathbf{G}$$
:
$$\forall (u,v) \in E \qquad 0 \leq x_{u \to v} \\ x_{u \to v} \leq \mathbf{c}(u \to v)$$

$$\forall v \in V \setminus \{\mathbf{s},\mathbf{t}\} \quad \sum_{(u,v) \in E} x_{u \to v} - \sum_{(v,w) \in E} x_{v \to w} \leq 0$$

$$\sum_{(u,v) \in E} x_{u \to v} - \sum_{(v,w) \in E} x_{v \to w} \geq 0$$
 maximizing
$$\sum_{(\mathbf{s},u) \in E} x_{\mathbf{s} \to u}$$

Sariel (UIUC) New CS473 10 Fall 2015 10 / 39

20.1.3: Min-Cost Network flow via linear programming

Min cost flow

Input:

```
G = (V, E): directed graph.
```

s: source.

t: sink

 $\mathbf{c}(\cdot)$: capacities on edges,

 ϕ : Desired amount (value) of flow.

 $\kappa(\cdot)$: Cost on the edges.

Definition - cost of flow

$$\operatorname{cost} \text{ of flow } \operatorname{f} \colon \operatorname{cost}(\operatorname{\mathbf{f}}) = \sum_{e \in E} \kappa(e) * \operatorname{\mathbf{f}}(e).$$

Min cost flow problem

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Min cost flow problem

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges.

(All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Min cost flow problem

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges.

(All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

20.2: Duality and Linear Programming

Duality...

- **1** Every linear program L has a **dual linear program** L'.
- Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
- Lets look an example..

20.2.1: Duality by Example

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- ② Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- **5** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- ② Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- $ext{ } ext{ } ext$
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- ② Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- ② Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- **2** Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- **5** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

Duality by Example

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- **1** η : maximal possible value of target function.
- **2** Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

• Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1 + 4x_2) \le 2(1) +3(3x_1 - x_2 + x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. (1)$$

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

• Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1 + 4x_2) \le 2(1) +3(3x_1 - x_2 + x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. \tag{1}$$

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- @ inequality must hold for any feasible solution of L.
- Inequality above has larger coefficients than objective (for corresponding variables)

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $oldsymbol{\circ}$ inequality must hold for any feasible solution of $oldsymbol{L}$.
- Inequality above has larger coefficients than objective (for corresponding variables)
- $oxed{ ilde{ ilde{9}}}$ For any feasible solution: $z=4x_1+x_2+3x_3\leq 11x_1+5x_2+3x_3\leq 11,$

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $oldsymbol{\circ}$ inequality must hold for any feasible solution of $oldsymbol{L}$.
- **3** Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- $oldsymbol{\circ}$ For any feasible solution: $z=4x_1+x_2+3x_3\leq 11x_1+5x_2+3x_3\leq 11,$

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $oldsymbol{\circ}$ inequality must hold for any feasible solution of $oldsymbol{L}$.
- **3** Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $oldsymbol{\circ}$ inequality must hold for any feasible solution of $oldsymbol{L}$.
- ullet Objective: $z=4x_1+x_2+3x_3$ and $x_{1,}x_2$ and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- ② Opt solution is LP $m{L}$ is somewhere between 9 and 11.
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- ② Opt solution is LP L is somewhere between 9 and 11.
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- ② Opt solution is LP L is somewhere between 9 and 11.
- **3** Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$\implies z = 4x_1 + x_2 + 3x_3 \leq (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2.$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$4 \leq y_1 + 3y_2
1 \leq 4y_1 - y_2
3 \leq y_2,$$

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$4 \leq y_1 + 3y_2
1 \leq 4y_1 - y_2
3 \leq y_2,$$

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$4 \leq y_1 + 3y_2
1 \leq 4y_1 - y_2
3 \leq y_2,$$

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Primal LP:

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Dual LP: $\widehat{m{L}}$

min
$$y_1 + 3y_2$$

s.t. $y_1 + 3y_2 \ge 4$
 $4y_1 - y_2 \ge 1$
 $y_2 \ge 3$
 $y_1, y_2 \ge 0$.

- ① Best upper bound on η (max value of z) then solve the $\operatorname{LP} \widehat{L}$.
- ② $\widehat{m{L}}$: Dual program to $m{L}$.
- ullet opt. solution of $\widehat{m{L}}$ is an upper bound on optimal solution for $m{L}$.

Primal LP:

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Dual LP: $\widehat{\boldsymbol{L}}$

$$egin{array}{lll} egin{array}{lll} egin{arra$$

- **1** Best upper bound on η (max value of z) then solve the \widehat{LP} \widehat{L} .
- ② $\widehat{m{L}}$: Dual program to $m{L}$
- ullet opt. solution of $\widehat{oldsymbol{L}}$ is an upper bound on optimal solution for $oldsymbol{L}$.

Primal LP:

$$egin{array}{ll} rac{1}{2} & x_1 + x_2 + 3x_3 \ & z = 4x_1 + x_2 + 3x_3 \ & z_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Dual LP: $\widehat{m{L}}$

$$egin{array}{lll} egin{array}{lll} egin{arra$$

- **1** Best upper bound on η (max value of z) then solve the \widehat{LP} \widehat{L} .
- $\widehat{\boldsymbol{L}}$: Dual program to \boldsymbol{L} .
- ullet opt. solution of $\widehat{m{L}}$ is an upper bound on optimal solution for $m{L}.$

Primal LP:

$$egin{array}{ll} \overline{\max} & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Dual LP: $\hat{\boldsymbol{L}}$

$$egin{array}{cccc} \min & y_1+3y_2 \ & ext{s.t.} & y_1+3y_2 \geq 4 \ & 4y_1-y_2 \geq 1 \ & y_2 \geq 3 \ & y_1,y_2 \geq 0. \end{array}$$

- **1** Best upper bound on η (max value of z) then solve the $\operatorname{LP} \widehat{L}$.
- ② $\widehat{\boldsymbol{L}}$: Dual program to \boldsymbol{L} .
- lacktriangle opt. solution of $\widehat{m{L}}$ is an upper bound on optimal solution for $m{L}$.

Primal program/Dual program

$$egin{array}{lll} \max & \sum_{j=1}^n c_j x_j & \min _i \\ ext{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & ext{s.t.} \\ & ext{for } i=1,\ldots,m, \\ & x_j \geq 0, & ext{for } j=1,\ldots,n. \end{array}$$

$$\min \sum_{i=1}^m b_i y_i$$

s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$
for $j=1,\dots,n,$
 $y_i \geq 0,$
for $i=1,\dots,m.$

Primal program/Dual program

Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$	 $x_n \ge 0$	Primal relation	Min v
$y_1 \ge 0$	a ₁₁	a ₁₂	a ₁₃	 a_{1n}	≦	b_1
$y_2 \ge 0$	a ₂₁	a_{22}	a_{23}	 a_{2n}	≦	b_2
:	:	Ė	:	÷	:	
$y_m \ge 0$	a_{m1}	a_{m2}	a_{m3}	 a_{mn}	≦	b_m
Dual Relation	IIV	IIV	IIV	IIV		
Max z	c_1	c_2	c_3	 C_n		

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s. t.} & Ax \leq b. \\
& x > 0.
\end{array}$$

$$egin{array}{ll} \min & y^T b \ & ext{s. t.} & y^T A \geq c^T. \ & y \geq 0. \end{array}$$

Primal program/Dual program

What happens when you take the dual of the dual?

$$egin{array}{lll} \max & \sum_{j=1}^n c_j x_j & \min \sum_{i=1}^n a_{ij} x_j \leq b_i, & ext{s.t.} \sum_{i=1}^n a_{ij} x_j \leq b_i, & e$$

$$rac{1}{\min\sum_{i=1}^m b_i y_i}$$
 s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$ for $j=1,\ldots,n,$ $y_i \geq 0,$ for $i=1,\ldots,m.$

Primal program / Dual program in standard form

$$egin{array}{ll} \max & \sum_{j=1}^n \, c_j x_j \ & ext{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, \ & ext{for } i=1,\ldots,m, \ x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{array}$$

$$egin{array}{ll} \max & \sum_{i=1}^m (-b_i) y_i \ & ext{s.t.} & \sum_{i=1}^m (-a_{ij}) y_i \leq -c_j, \ & ext{for } j=1,\ldots,n, \ y_i \geq 0, \ & ext{for } i=1,\ldots,m. \end{array}$$

Dual program in standard form

Dual of a dual program

$$egin{aligned} \max && \sum_{i=1}^m (-b_i) y_i \ & ext{s.t.} & \sum_{i=1}^m (-a_{ij}) y_i \leq -c_j, \ & ext{for } j=1,\ldots,n, \ y_i \geq 0, \ & ext{for } i=1,\ldots,m. \end{aligned}$$

$$\min \ \sum_{j=1}^n -c_j x_j$$
 s.t. $\sum_{j=1}^n (-a_{ij}) x_j \geq -b_i,$ for $i=1,\ldots,m,$ $x_j \geq 0,$ for $j=1,\ldots,n.$

Dual of dual program

Dual of a dual program written in standard form

$$\min \sum_{j=1}^n -c_j x_j$$

s.t. $\sum_{j=1}^n (-a_{ij}) x_j \geq -b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

$$\max \sum_{j=1}^n c_j x_j$$

s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

 \implies Dual of the dual LP is the primal LP!

Dual of dual program

Dual of a dual program written in standard form

$$\min \sum_{j=1}^n -c_j x_j$$

s.t. $\sum_{j=1}^n (-a_{ij}) x_j \geq -b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

$$\max \sum_{j=1}^n c_j x_j$$

s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

 \implies Dual of the dual LP is the primal LP!

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L'' be the dual to L'. Then L and L'' are the same LP.

Sariel (UIUC) New CS473 29 Fall 2015 29 / 39

20.2.2: The Weak Duality Theorem

Sariel (UIUC) New CS473 30 Fall 2015 30 / 39

Weak duality theorem

Theorem

If (x_1, x_2, \ldots, x_n) is feasible for the primal LP and (y_1, y_2, \ldots, y_m) is feasible for the dual LP, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem – proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j \Biggl(\sum_{i=1}^m y_i a_{ij} \Biggr) x_j \leq \sum_i \Biggl(\sum_j a_{ij} x_j \Biggr) y_i \leq \sum_i b_i y_i \; .$$

- $extbf{1} extbf{y}$ being dual feasible implies $c^T \leq y^T A$
- ② x being primal feasible implies $Ax \leq b$

Weak duality theorem – proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j \Biggl(\sum_{i=1}^m y_i a_{ij}\Biggr) x_j \leq \sum_i \Biggl(\sum_j a_{ij} x_j\Biggr) y_i \leq \sum_i b_i y_i \;.$$

- lacksquare y being dual feasible implies $c^T \leq y^T A$
- ② x being primal feasible implies $Ax \leq b$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

$$\implies \sum_{i=1}^m (-b_i) y_i \le \sum_{j=1}^n -c_j x_j,$$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

$$\implies \sum_{i=1}^m (-b_i) y_i \le \sum_{j=1}^n -c_j x_j,$$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

$$\implies \sum_{i=1}^m (-b_i) y_i \le \sum_{j=1}^n -c_j x_j,$$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

20.3: The strong duality theorem

Sariel (UIUC) New CS473 34 Fall 2015 34 / 39

The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = (x_1^*, \dots, x_n^*)$ then the dual also has an optimal solution, $y^* = (y_1^*, \dots, y_m^*)$, such that

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Proof is tedious and omitted.

20.4: Some duality examples

Sariel (UIUC) New CS473 36 Fall 2015 36 / 39

20.4.1: Maximum matching in Bipartite graph

Max matching in bipartite graph as LP

$$\mathsf{Input:} \mathbf{G} = (L \cup R, \mathbf{E}).$$

$$egin{array}{lll} \max & & \sum_{uv \in \mathsf{E}} x_{uv} \ s.t. & & \sum_{uv \in \mathsf{E}} x_{uv} \leq 1 & & orall v \in \mathsf{G}. \ & & x_{uv} \geq 0 & & orall uv \in \mathsf{E} \end{array}$$

Max matching in bipartite graph as LP (Copy)

 $\mathsf{Input:} \mathbf{G} = (L \cup R, \mathbf{E}).$

max	$\sum_{uv\in E} x_{uv}$	
s.t.		$orall v \in {\sf G}.$
	$egin{aligned} uv \in E \ x_{uv} \geq 0 \end{aligned}$	$orall uv \in E$

Sariel (UIUC) New CS473 39 Fall 2015 39 / 39

Max matching in bipartite graph as LP (Notes)

Sariel (UIUC) New CS473 40 Fall 2015 40 / 39

20.4.2: Shortest path

Sariel (UIUC) New CS473 41 Fall 2015 41 / 39

- G = (V, E): graph. s: source ,t: target
- $\forall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- Mo edges into s/out of t.
- $orall \ orall (u,v) \in \mathsf{E} : \ d_u + \omega(u,v) \geq d_v.$
- extstyle ext
- Trivial solution: all variables 0.
- ① Target: find assignment max $d_{
 m t}$
- LP to solve this

- G = (V, E): graph. s: source ,t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- extstyle ext
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source, t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- extstyle ext
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $egin{aligned} lackbox{lack} & orall (u,v) \in \mathbf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- $m{o}$ Also $d_{
 m s}=0$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source ,t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $egin{aligned} lackbr{o} & orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
- $m{o}$ Also $m{d}_{
 m s}=0$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source, t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $egin{aligned} lackbr{o} & orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
- o Also $d_{
 m s}=0$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- IP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source, t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $egin{aligned} lackbr{o} & orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
- \mathbf{O} Also $d_{s}=\mathbf{0}$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $egin{aligned} lackbr{o} & orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
- $\mathbf{0}$ Also $d_{\mathrm{s}}=\mathbf{0}$.
- Trivial solution: all variables 0.
- $oldsymbol{0}$ Target: find assignment max $d_{
 m t}$.
- LP to solve this

- G = (V, E): graph. s: source, t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v.$
- \mathbf{O} Also $d_{s} = \mathbf{O}$.
- Trivial solution: all variables 0.
- $oldsymbol{0}$ Target: find assignment max $d_{
 m t}$.
- LP to solve this!

$$egin{array}{ll} \max & d_{\mathsf{t}} \ & \mathsf{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_u + \omega(u,v) \geq d_v \ & orall (u,v) \in \mathsf{E}, \ & d_x \geq 0 & orall x \in \mathsf{V}. \end{array}$$

- G = (V, E): graph. s: source ,
 t: target
- $\forall (u,v) \in \mathbf{E}$: weight $\omega(u,v)$ on edge.
- **3** Q: Comp. shortest **s-t** path.
- No edges into s/out of t.
- $egin{aligned} lackbr{\circ} & orall (u,v) \in \mathsf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- $\mathbf{0}$ Also $d_{\mathrm{s}}=\mathbf{0}$.
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

$$\begin{aligned} \max & \ d_{\mathsf{t}} \\ \text{s.t.} & \ d_{\mathsf{s}} \leq 0 \\ & \ d_u + \omega(u,v) \geq d_v \\ & \ \forall (u,v) \in \mathsf{E}, \\ & \ d_x \geq 0 \quad \forall x \in \mathsf{V}. \end{aligned}$$

Equivalently:

s.t. $d_{\rm s} \leq 0$

$$\max d_t$$

$$d_v \overset{-}{-} d_u \leq \omega(u,v) \ orall (u,v) \in \mathsf{E},$$

$$d_x \geq 0 \quad \ \, orall x \in \mathsf{V}.$$

- G = (V, E): graph. s: source ,t: target
- $orall (u,v) \in \mathbf{E}$: weight $\omega(u,v)$ on edge.
- **3** Q: Comp. shortest **s-t** path.
- No edges into s/out of t.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

The dual

$$\min \qquad \sum_{(u,v) \in \mathsf{E}} y_{uv} \omega(u,v)$$
 s.t. $y_{\mathsf{s}} - \sum_{(\mathsf{s},u) \in \mathsf{E}} y_{\mathsf{s}u} \geq 0$
$$\sum_{\mathsf{max}} y_{ux} - \sum_{(x,v) \in \mathsf{E}} y_{xv} \geq 0$$
 s.t. $d_{\mathsf{s}} \leq 0$
$$\forall x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\}$$

$$d_v - d_u \leq \omega(u,v)$$

$$\forall (u,v) \in \mathsf{E},$$

$$d_x \geq 0 \quad \forall x \in \mathsf{V}.$$

$$y_{uv} \geq 0, \quad \forall (u,v) \in \mathsf{E},$$

$$y_{\mathsf{s}} \geq 0.$$

min

Sariel (UIUC) New CS473 43 Fall 2015 43 / 39

(*)

(**)

(***)

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- LP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- $\bigcirc (*)$ implies that at least y_s units of flow leaves the source.
- @ Remaining of LP implies that $y_{\mathsf{s}} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- LP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- $\bigcirc (*)$ implies that at least y_s units of flow leaves the source.
- @ Remaining of LP implies that $y_{\mathsf{s}} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- $\bigcirc (*)$ implies that at least y_s units of flow leaves the source.
- $_{0}$ Remaining of LP implies that $y_{
 m s} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- $\bigcirc (*)$ implies that at least y_s units of flow leaves the source.
- $_{\odot}$ Remaining of LP implies that $y_{
 m s} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- ullet ullet implies that at least $y_{
 m s}$ units of flow leaves the source.
- $_{\odot}$ Remaining of LP implies that $y_{
 m s} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- ullet Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- ullet (*) implies that at least y_s units of flow leaves the source.
- $_{0}$ Remaining of LP implies that $y_{
 m s} \geq 1$.

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- ullet Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- IP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- ullet (*) implies that at least y_s units of flow leaves the source.
- lacktriangle Remaining of $\overline{\mathrm{LP}}$ implies that $y_{\mathsf{s}} \geq 1$.

- In the previous example there is always an optimal solution with integral values.
- 2 This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

Sariel (UIUC) New CS473 45 Fall 2015 45 / 39

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- @ If it were true we could solve NPC problems with LP .

Sariel (UIUC) New CS473 45 Fall 2015 45 / 39

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

Sariel (UIUC) New CS473 45 Fall 2015 45 / 39

Set cover...

Details in notes...

Set cover LP:

$$egin{array}{ll} \min & \sum_{F_j\in \mathcal{F}} x_j \ & ext{s.t.} & \sum_{\substack{F_j\in \mathcal{F},\ u_i\in F_j}} x_j \geq 1 & orall u_i\in \mathbf{S}, \end{array}$$

Set cover dual is a packing LP...

Details in notes...

$$egin{array}{ll} \max & \sum_{u_i\in { t S}} y_i \ & ext{s.t.} & \sum_{u_i\in F_j} y_i \leq 1 \ & ext{} orall F_j\in { t F}, \ & y_i\geq 0 \ & ext{} orall u_i\in { t S}. \end{array}$$

Sariel (UIUC) New CS473 47 Fall 2015 47 / 39

Network flow

$$\begin{split} &\sum_{(\mathsf{s},v)\in\mathsf{E}} x_{\mathsf{s}\to v} \\ &x_{u\to v} \leq \mathsf{c}(u\to v) \qquad \qquad \forall (u,v)\in\mathsf{E} \\ &\sum_{(u,v)\in\mathsf{E}} x_{u\to v} - \sum_{(v,w)\in\mathsf{E}} x_{v\to w} \leq 0 \qquad \forall v\in\mathsf{V}\setminus\{\mathsf{s},\mathsf{t}\} \\ &-\sum_{(u,v)\in\mathsf{E}} x_{u\to v} + \sum_{(v,w)\in\mathsf{E}} x_{v\to w} \leq 0 \quad \forall v\in\mathsf{V}\setminus\{\mathsf{s},\mathsf{t}\} \\ &0\leq x_{u\to v} \qquad \qquad \forall (u,v)\in\mathsf{E}. \end{split}$$

Sariel (UIUC) New CS473 48 Fall 2015 48 / 39

Dual of network flow...

$$egin{aligned} \min \sum_{(u,v) \in \mathsf{E}} \mathsf{c}(u o v) \, y_{u o v} \ d_u - d_v & \leq y_{u o v} & orall (u,v) \in \mathsf{E} \ y_{u o v} & \geq 0 & orall (u,v) \in \mathsf{E} \ d_\mathsf{s} & = 1, \quad d_\mathsf{t} & = 0. \end{aligned}$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

Sariel (UIUC) New CS473 50 Fall 2015 50 / 39

Sariel (UIUC) New CS473 51 Fall 2015 51 / 39

Sariel (UIUC) New CS473 52 Fall 2015 52 / 39

Sariel (UIUC) New CS473 53 Fall 2015 53 / 39

Sariel (UIUC) New CS473 54 Fall 2015 54 / 39