HW 10 (due Monday, 6pm, November 30, 2015)

NEW CS 473: Theory II, Fall 2015

Collaboration Policy: This homework can be worked in groups of up to three students. Submission is online on moodle.

1. (50 PTS.) Adding numbers.

In the following we work with multisets. For an element x in a multiset X, we denote by $\#_X(x)$ its **multiplicity** in X. For a multiset S, we denote by $\operatorname{set}(S)$ the set of distinct elements appearing in S. The **size** of a multiset S is the number of distinct elements in S (i.e., $|\operatorname{set}(S)|$. The **cardinality** of S, denoted by $\operatorname{card}(S) = \sum_{s \in S} \#_S(s)$.

Version: 1.2

We use $[\![x:y]\!] = \{x, x+1, \ldots, y\}$ to denote the set of integers in the interval [x,y]. Similarly, $[\![U]\!] = [\![1:U]\!]$.

Abusing notation, we denote by $S \cap \llbracket x : y \rrbracket$ the multiset resulting from removing from S all the elements that are outside $\llbracket x : y \rrbracket$. We denote that a multiset S has all its elements in the interval $\llbracket x : y \rrbracket$ by $S \subseteq \llbracket x : y \rrbracket$. For two multisets X and Y, we denote by $X \oplus Y$ the multiset with the ground set being

$$\{x+y \mid x \in X \text{ and } y \in Y\},\$$

where the multiplicity of x+y is the number of different ways to get this sum (in particular, $x \in X$ and $y \in Y$ contribute the element x+y with multiplicity $\#_X(x) \cdot \#_Y(y)$ to the resulting multiset).

For a multiset S of integers, let $\Sigma_S = \sum_{\alpha \in S} \#_S(\alpha) * \alpha$ denote the total **sum** of the elements of S. The multiset of all **subset sums** is

$$\sum(S) = \operatorname{set}\Big(\{\Sigma_T \mid T \subseteq S\}\Big).$$

Here, we would be interested in the subset sums up to U; that is $\sum_{\leq U}(S) = \sum(S) \cap [0:U]$. Formally, we want to compute set $(\sum_{\leq U}(S))$.

- (A) (5 PTS.) Let $S \subseteq \llbracket u \rrbracket$ be a multiset of cardinality n. Describe an algorithm that computes, in $O(n\mathsf{U})$ time, the set of subset sums up to U ; that is, $\operatorname{set}\Bigl(\sum_{\leq \mathsf{U}}(S)\Bigr)$.
- (B) (5 PTS.) Given two sets $S, T \subseteq \llbracket \mathsf{U} \rrbracket$, present an algorithm that computes $S \oplus T$ in $O(\mathsf{U} \log \mathsf{U})$ time.
- (C) (5 PTS.) Given a multiset S of non-negative integers of cardinality n, present an algorithm that, in $O(n \log n)$ time, computes a multiset T, such that $\operatorname{set}(\sum(S)) = \operatorname{set}(\sum(T))$, and no number appears in T more than twice.
- (D) (5 PTS.) Given a multiset $X \subseteq \llbracket \Delta \rrbracket$, of cardinality n, show how to compute the $\sum(X)$ in time $O(n\Delta \log(n\Delta) \log n)$.
- (E) (5 PTS.) Given a multiset $S \subseteq [x:2x]$ of cardinality n', which is at most $\lfloor U/x \rfloor$, show how to compute all possible subset sums of S, in time $O(U \log U \log n')$.
- (F) (5 PTS.) Given a multiset $S \subseteq \llbracket x : 2x \rrbracket$ of cardinality $n \geq \mathsf{U}/x$, show how to compute all possible subset sums of S that are at most U (i.e., $\sum_{\leq \mathsf{U}}(S)$). The running time of your algorithm should be $O(nx\log^2\mathsf{U})$. (Hint: Use (1E).)
- (G) (10 PTS.) [Hard.] Given a set $S \subseteq [x: x+\ell]$ of cardinality n, show an algorithm that compute all possible subset sums of multisets of cardinality at most t in S, in time $O(n\ell t \log(n\ell t) \log n)$.
- (H) (10 PTS.) [Hard.] Given a multiset $S \subseteq \llbracket \mathsf{U} \rrbracket$ of cardinality n, show how to compute $\sum_{\leq \mathsf{U}}(S)$ in $O(\mathsf{U}\sqrt{n}\log^2\mathsf{U})$ time. For credit, your solution has to be self contained, and use the above. (Hint: Partition the set S into intervals $I_i = \llbracket a_i : b_i \rrbracket$, for $i = 1, \ldots t$ (for some t), and compute the subset sums of the sets $S_i = S \cap \llbracket a_i : b_i \rrbracket$ using the above. Then combine them into subsets sums of

¹For more information about multisets, see wikipedia.

all the numbers of S, again using the above. Observe that for S_i we care only about subsets sums involving at most U/a_i terms (why?).)

In the above, you can assume that n < U.

$2.~(25~{ m PTS.})$ Sorting networks stuff

- (A) (5 PTS.) Prove that an n-input sorting network must contain at least one comparator between the ith and (i + 1)st lines for all i = 1, 2, ..., n - 1.
- (B) (10 PTS.) Prove that in a sorting network for n inputs, there must be at least $\Omega(n \log n)$ gates. For full credit, your answer should be short, and self contained (i.e., no reduction please).

As an exercise, you should think why your proof does not imply that a regular sorting algorithm takes $\Omega(n \log n)$ time in the worst case.]

(C) (5 PTS.)

Suppose that we have 2n elements $\langle a_1, a_2, ..., a_{2n} \rangle$ and wish to partition them into the n smallest and the n largest. Prove that we can do this in constant additional depth after separately sorting $\langle a_1, a_2, ..., a_n \rangle$ and $\langle a_{n+1}, a_{n+2}, ..., a_{2n} \rangle$.

(D) (5 PTS.)

Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a merging network with 2k inputs. Suppose that we have a sequence of n numbers to be sorted and we know that every number is within k positions of its correct position in the sorted order, which means that we need to move each number at most (k-1) positions to sort the inputs. For example, in the sequence 3 2 1 4 5 8 7 6 9, every number is within 3 positions of its correct position. But in sequence 3 2 1 4 5 9 8 7 6, the number 9 and 6 are outside 3 positions of its correct position.

Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your answer is correct.)

$oldsymbol{3.}$ (25 PTS.) Computing Polynomials Quickly

In the following, assume that given two polynomials p(x), q(x) of degree at most n, one can compute the polynomial remainder of $p(x) \mod q(x)$ in $O(n \log n)$ time. The **remainder** of $r(x) = p(x) \mod q(x)$ is the unique polynomial of degree smaller than this of q(x), such that p(x) = q(x) * d(x) + r(x), where d(x) is a polynomial.

- Let $p(x) = \sum_{i=0}^{n-1} a_i x^i$ be a given polynomial. (A) (6 PTS.) Prove that $p(x) \mod (x-z) = p(z)$, for all z.
- (B) (6 PTS.) We want to evaluate $p(\cdot)$ on the points $x_0, x_1, \ldots, x_{n-1}$. Let

$$P_{ij}(x) = \prod_{k=i}^{j} (x - x_k)$$

and

$$Q_{ij}(x) = p(x) \bmod P_{ij}(x).$$

Observe that the degree of Q_{ij} is at most j-i.

Prove that, for all x, $Q_{kk}(x) = p(x_k)$ and $Q_{0,n-1}(x) = p(x)$.

(C) (6 PTS.) Prove that for $i \leq k \leq j$, we have

$$\forall x \ Q_{ik}(x) = Q_{ij}(x) \bmod P_{ik}(x)$$

and

$$\forall x \ Q_{kj}(x) = Q_{ij}(x) \bmod P_{kj}(x).$$

(D) (7 PTS.) Given an $O(n \log^2 n)$ time algorithm to evaluate $p(x_0), \ldots, p(x_{n-1})$. Here x_0, \ldots, x_{n-1} are n given real numbers.