HW 9 (due Monday, 6pm, November 16, 2015)

NEW CS 473: Theory II, Fall 2015 Version: 1.31

Collaboration Policy: This homework can be worked in groups of up to three students. Submission is online on moodle.

- 1. (50 PTS.) Many cover problem.
 - Let (X, \mathcal{F}) be a set system with n = |X| elements, and $m = |\mathcal{F}|$ sets. Furthermore, for every elements $u \in X$, there is a positive integer c_u . In the ManyCover problem, you need to find a minimum number of sets $\mathcal{G} \subseteq \mathcal{F}$, such that every element of $u \in X$ is covered at least c_u times. (You are not allowed to use the same set more than once in the cover \mathcal{G} .)
 - (A) (10 PTS.) Let y_1, \ldots, y_n be numbers in [0,1], such that $t = \sum_{i=1}^n y_i \ge 3$. Let Y_i be a random variable that is one with probability y_i (and zero otherwise), for all i. Prove, that $\Pr[t/2 \le \sum_i Y_i \le 3t/2] \ge 1 f(t)$, where f(t) is a function that goes to zero as t increases (the smaller the f(t) is, the better your solution is).
 - (B) (20 PTS.) Describe in detail a polynomial approximation algorithms that provides a $O(\log n)$ approximation to the optimal solution for this problem (as usual, you can assume that solving a polynomially sized LP takes polynomial time). (Hint: See the algorithm provided in class for set Cover.)
 - (C) (20 PTS.) Provide a polynomial time algorithm, that provides a O(1) approximation to the problem, if we know that $c_u \ge \log n$, for all $u \in X$.
- 2. (50 PTS.) Independent set via interference.

Let G = (V, E) be a graph with n vertices, and m edges. Assume we have a feasible solution to the natural independent set for G:

$$\max \sum_{v \in V} x_v$$

s.t. $x_v + x_u \le 1$ $\forall uv \in E$
 $x_u > 0$ $\forall u \in V$.

This solution assigns the value $\widehat{x_v}$ to x_v , for all v. Furthermore, assume that $\alpha = \sum_{v \in V} \widehat{x_v}$ and, importantly, $\sum_{uv \in E} \widehat{x_u} \widehat{x_v} \le \alpha/8$.

(A) (10 PTS.) Let S be a subset of the vertices of the graph being generated by picking (independently) each vertex $u \in \mathsf{V}$ to be in S with probability $\widehat{x_u}$.

Prove, that with probability at least 9/10, we have $|S| \ge \alpha/2$ (you can safely assume that $\alpha \ge n_0$, where n_0 is a sufficiently large constant).

- (B) (20 PTS.) Let G_S be the induced subgraph of G on S. Prove that $\mathbf{Pr} \left[|\mathsf{E}(G_S)| \ge \alpha/4 \right] \le 1/2$.
- (C) (20 PTS.) Present an algorithm, as fast as possible, that outputs an independent set in G of size at least $c\alpha$, where c>0 is some fixed constant. What is the running time of your algorithm? What is the value of c for your algorithm?