
CS 473: Fundamental Algorithms, Fall 2014

Discussion 6

October 7, 2014

6.1 Stock Picking.

You have a group of investor friends who are looking at n consecutive days of a given
stock at some point in the past. The days are numbered. i = 1, 2, . . . , n. For each day
i, they have a price p(i) per share for the stock on that day.

For certain (possibly large) values of k, they want to study what they call k-shot strate-
gies. A k-shot strategy is a collection of m pairs of days (b1, s1), . . . , (bm, sm), where
0 ≤ m ≤ k and

1 ≤ b1 < s1 < b2 < s2 · · · < bm < sm ≤ n.

We view these as a set of up to k nonoverlapping intervals, during each of which the
investors buy 1,000 shares of the stock (on day bi) and then sell it (on day si). The return
of a given k-shot strategy is simply the profit obtained from the m buy-sell transactions,
namely,

1000 ·
m∑
i=1

(p(si)− p(bi)) .

(A) Design an efficient algorithm that determines, given the sequence of prices, the k-
shot strategy with the maximum possible return. Since k may be relatively large,
your running time should be polynomial in both n and k.

(B) Now, modify your algorithm to only use O(n) space.

6.2 Weighted Scheduling.

We have n jobs J1, J2, . . . , Jn which we need to schedule on a machine. Each job Ji has
a processing time ti and a weight wi. A schedule for the machine is an ordering of the
jobs. Given a schedule, let Ci denote the finishing time of job Ji. For example, if job Jj
is the first job in the schedule, its finishing time Cj is equal to tj; if job Jj follows job Ji
in the schedule, its finishing time Cj is equal to Ci + tj. The weighted completion time
of the schedule is

∑n
i=1wiCi.

(A) For the case when wi = 1 for all i, show that choosing the shortest job first is
optimal.

(B) Give an efficient algorithm that finds a schedule with minimum weighted completion
time given arbitrary weights.

6.3 Minimum Spanning Tree. Consider the following graph:

1

(A) Draw the edges in the Minimum Spanning Tree for the following graph.
(B) Given G and MST T , suppose you decrease the weight of an edge e not in T . Give

an algorithm to recompute the MST in O(n) time.

6.4 Bor̊uvka’s algorithm.

Bor̊uvka’s algorithm computes the MST of a graph G = (V,E), by repeatedly picking
for every vertex in the graph the cheapest edge adjacent to it. Let F ⊆ E be the
set of edges picked by this process. The Bor̊uvka’s algorithm then collapse every con-
nected component of (V, F) into a single vertex. It continues this process iteratively till
remaining with a single vertex. The set of edges picked formed the required MST.

Formally, the collapsing of the graph is done as follows: An edge in the original graph
that connects two vertices in the same connected component disappears in the new
graph. And edge of the original graph that connects two different connected compo-
nents, now connects the two respective connected components. Naturally, if there are
several edges connecting the same pair of connected components, we remember only the
cheapest one.

(A) Show how to compute the collapsed graph in linear time (i.e., O(|V | + |E|)), for
any set of edges F ⊆ E.

(B) Show that Bor̊uvka’s algorithm decreases the number of vertices by two at each
iteration.

(C) Conclude that Bor̊uvka’s algorithm takes O((n + m) log n) time in the worst case.
Why is the running time not O(n log n + m)?

2

