
CS 473: Fundamental Algorithms, Fall 2014

Discussion 5

September 30 / October 1, 2014 Version: 1.12

5.1. Longest Common Subsequence.
Let X[1...m] and Y [1...n] be two arbitrary arrays. A common subsequence of X and Y
is another sequence that is a subsequence of both X and Y . Describe an efficient algorithm
to compute the length of the longest common subsequence of X and Y .
A subsequence is anything obtained from a sequence by extracting a subset of elements, but
keeping them in the same order; the elements of the subsequence need not be contiguous in
the original sequence. For example, the strings C, DAMN, and YAIOAI, and DYNAMICPROGRAMMING

are all subsequences of the sequence DYNAMICPROGRAMMING.

5.2. Minimum Weight Vertex Cover in Trees.
Given a graph G = (V,E), a vertex cover of G is a subset S ⊆ V of vertices such that, for
each edge e = uv in G, u or v is in S. That is, the vertices in S covers all the edges. It
is known that finding the minimum size vertex cover is NP-Hard in general graphs but it
can be solved in trees using dynamic programming.
This is the goal of this problem. Given a tree T = (V,E) and a non-negative weight w(v)
for each vertex v ∈ V, give an algorithm that computes the minimum weight vertex cover of
T . In the tree below, {B,E,G} is a vertex cover while {C,E, F} is not a vertex cover. It is
helpful to root the tree.

196 Algorithms

with which keywords are accessed, we can use an even more fine-tuned cost function, the average
number of comparisons to look up a word. For the search tree on the left, it is

cost = 1(0.04) + 2(0.40 + 0.10) + 3(0.05 + 0.08 + 0.10 + 0.23) = 2.42.

By this measure, the best search tree is the one on the right, which has a cost of 2.18.
Give an efficient algorithm for the following task.

Input: n words (in sorted order); frequencies of these words: p1, p2, . . . , pn.
Output: The binary search tree of lowest cost (defined above as the expected number
of comparisons in looking up a word).

6.21. A vertex cover of a graph G = (V, E) is a subset of vertices S ⊆ V that includes at least one
endpoint of every edge in E. Give a linear-time algorithm for the following task.

Input: An undirected tree T = (V, E).
Output: The size of the smallest vertex cover of T .

For instance, in the following tree, possible vertex covers include {A, B, C, D, E, F, G} and {A, C, D, F}
but not {C, E, F}. The smallest vertex cover has size 3: {B, E, G}.

E

DA

B

C F

G

6.22. Give an O(nt) algorithm for the following task.

Input: A list of n positive integers a1, a2, . . . , an; a positive integer t.
Question: Does some subset of the ai’s add up to t? (You can use each ai at most once.)

(Hint: Look at subproblems of the form “does a subset of {a1, a2, . . . , ai} add up to s?” )
6.23. A mission-critical production system has n stages that have to be performed sequentially; stage

i is performed by machine Mi. Each machine Mi has a probability ri of functioning reliably and
a probability 1 − ri of failing (and the failures are independent). Therefore, if we implement
each stage with a single machine, the probability that the whole system works is r1 · r2 · · · rn.
To improve this probability we add redundancy, by having mi copies of the machine Mi that
performs stage i. The probability that all mi copies fail simultaneously is only (1 − ri)mi , so the
probability that stage i is completed correctly is 1− (1− ri)mi and the probability that the whole
system works is ∏n

i=1(1 − (1 − ri)mi). Each machineMi has a cost ci, and there is a total budget
B to buy machines. (Assume that B and ci are positive integers.)
Given the probabilities r1, . . . , rn, the costs c1, . . . , cn, and the budget B, find the redundancies
m1, . . . , mn that are within the available budget and that maximize the probability that the
system works correctly.

6.24. Time and space complexity of dynamic programming. Our dynamic programming algorithm for
computing the edit distance between strings of length m and n creates a table of size n × m and
therefore needs O(mn) time and space. In practice, it will run out of space long before it runs out
of time. How can this space requirement be reduced?

5.3. Covering points by intervals.
Consider the problem of covering numbers by intervals. Specifically, assume that you are
given a set P of n points/numbers on the real lines, and a set of intervals F . The purpose
is to find the minimum weight set of intervals that covers all the points of P .
Suppose all intervals have the same weight. Design a greedy algorithm for this special case.
How fast can you implement this algorithm? Prove the correctness of your algorithm.
How would you solve the weighted version? How fast is your algorithm?

5.4. Loopy loop cycles in a graph.
Given a parameter k, and a directed graph G = (V,E) with weights on the edges (the weights
might be negative), describe an algorithm for deciding if the graph has a negative (simple)
cycle of length k or less. What is the running time of your algorithm?
Describe an algorithm for the case where the graph is undirected. What is the running time
of your algorithm in this case?

1


