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0.1. Inductive proofs – All horses are of the same color.
Professor Kipod Metorlal1 had declared that if you have n horses in a room, then they must
all be of the same color. This declaration had been met with disbelief in the horse raising
community (which know that all their horses have different colors), and Professor Kipod
Metorlal had been forced to provide a proof of the claim. Here is the proof:

Proof : The proof is by induction. For the case n = 1 we have a single horse
in the room, and it has a single color, so the claim is true.
Next, assume that we have n + 1 horses in the room for n > 0: h1, . . . , hn+1.
We remove one horse h1 from the room. We are left with n horses in the room
(i.e. h2, . . . , hn+1), and by induction hypothesis we know that they all have
the same color. We now put h1 back in the room, and remove the horse hn+1.
Again, we remain with n horses (i.e., h1, . . . , hn) and they all have the same
color. It follows that the color of h1 is identical to the color of h2, . . . , hn, and
the color of hn+1 is identical to the color of h2, . . . , hn, and it thus follows that
all the horses have the same color. QED.

Why is the proof incorrect?

0.2. Inductive proofs –Number of edges in a tree.
The following is an inductive proof of the following claim:

Claim 0.1. In every tree T , it holds |E(T )| = |V (T )|−1 (i.e a tree with n vertices has n−1
edges).

Proof : The proof is by induction on |V (T )|.
Base case: Base case is when |V (T )| = 1. A tree with a single vertex has no edge, so
|E(T )| = 0. Therefore in this case the formula is true since 0 = 1− 1.
Inductive step: Assume that the formula is true for all trees T where |V (T )| = k. We will
prove that the formula is true for trees with k + 1 nodes. A tree T with k + 1 nodes can be
obtained from a tree T ′ with k nodes by attaching a new vertex to a leaf of T ′. This way we
add exactly one vertex and one edge to T ′, so |V (T )| = |V (T ′)|+1 and |E(T )| = |E(T ′)|+1.
Since |V (T ′)| = k by induction hypothesis we have |E(T ′)| = |V (T ′)| − 1.
Combining the last three relations we have |E(T )| = |E(T ′)| + 1 = |V (T ′)| − 1 + 1 =
|V (T )| − 1− 1 + 1 = |V (T )| − 1, which means that the formula is true for tree T .

1“KIPOD METORLAL” is a phrase in Hebrew which means “deranged Porcupine”.
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Show that the above is not a correct inductive proof! You must argue why it is not correct,
and in particular produce a tree that the above argument does not cover.

0.3. Coloring.
A k-coloring of a graph G is a labeling f : V (G)→ S from vertices to colors where |S| = k.
A k-coloring is proper if all adjacent vertices are assigned different colors. A graph is k-
colorable if it has a proper k-coloring. Prove that any graph G has a proper (∆+1)-coloring
where ∆ is the maximum degree of a vertex of G (no vertex has more than ∆ neighbors).
For example, any cycle is 3-colorable as ∆ = 2 for cycles.

0.4. GCD Algorithms.
Euclid’s algorithm for finding the greatest common divisor (gcd) of two non-negative numbers
a, b is the following.

Euclid(a, b):
if (b = 0)

return a
else

return Euclid(b, a mod b)

Prove via induction that the algorithm correctly computes the gcd of a, b. Also prove that
the running time of the algorithm is polynomial in the input size. Note that the input size
is Θ(log a + log b). Assume that the mod operation along with other basic arithmetic
operations take constant time. Hint: For both parts think about how a + b is changing in
each recursive call.
A slow version of the Euclid algorithm is the following.

SlowEuclid(a, b):
if (a = 0) return b
if (b = 0) return a
if (b ≥ a)

return SlowEuclid(a, b− a)
else

return SlowEuclid(b, a)

Verify for yourself that the above algorithm correctly computes the gcd of a and b. Show
that the above algorithm can take exponential time in the input size. You can do this by
giving a class of instances (a1, b1), (a2, b2), . . . , (an, bn), . . . where log an +log bn →∞ and the
running time of the algorithm on (an, bn) is exponential in log an + log bn (the input size) for
each n.

0.5. Tiling.
You are given a 2n × 2n chessboard with a single square removed. Prove that you can tile
the entire chessboard (minus the missing square) using copies of the 2× 2 L’s shown on the
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