CS 473: Fundamental Algorithms, Fall 2014

More NP-Complete Problems

Lecture 23 November 20, 2014

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- ullet for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

NP: languages that have polynomial time certifiers/verifiers

A language L is NP-Complete iff

- L is in NP
- for every L' in NP, L' \leq_{P} L

L is NP-Hard if for every L' in NP, L' \leq_P L.

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

Alexandra (UIUC) CS473 Fall 2014 2 / 51

Recap contd

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-Complete.

Establish NP-Completeness via reductions:

- SAT \leq_{P} 3-SAT and hence 3-SAT is **NP**-complete
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete
- Vertex Cover is NP-Complete
- Clique is NP-Complete
- Set Cover is NP-Complete

Today

Prove

- 3-Coloring is **NP-Complete**
- Hamiltonian Cycle Problem is NP-Complete

Part I

NP-Completeness of Graph Coloring

Problem: Graph Coloring

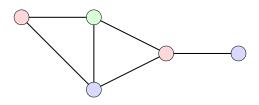
Instance: G = (V, E): Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do

not get the same color?

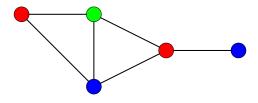


Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do

not get the same color?



Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS** (we saw this earlier).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 5.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS** (we saw this earlier).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 5.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS** (we saw this earlier).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 5.

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS** (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR \leq_{P} k-Register Allocation, for any k > 3

CS473 9 Fall 2014

Class Room Scheduling

Given **n** classes and their meeting times, are **k** rooms sufficient?

Reduce to Graph k-Coloring problem

- a node v; for each class i
- ullet an edge between $oldsymbol{v_i}$ and $oldsymbol{v_i}$ if classes $oldsymbol{i}$ and $oldsymbol{j}$ conflict

Exercise: G is k-colorable iff k rooms are sufficient.

Alexandra (UIUC) CS473 Fall 2014 10 / 51

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- ullet an edge between $oldsymbol{v}_i$ and $oldsymbol{v}_j$ if classes i and j conflict

Exercise: **G** is **k**-colorable iff **k** rooms are sufficient

Class Room Scheduling

Given \mathbf{n} classes and their meeting times, are \mathbf{k} rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- ullet an edge between $oldsymbol{v}_i$ and $oldsymbol{v}_j$ if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given **k** bands and some region with **n** towers, is there a way to assign the bands to avoid interference?

Can reduce to **k**-coloring by creating intereference/conflict graph on towers.

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

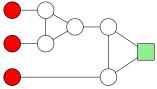
- Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to \mathbf{k} -coloring by creating intereference/conflict graph on towers.

3 color this gadget.

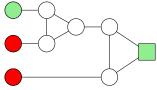
You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).



- (A) Yes.
- **(B)** No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).



- (A) Yes.
- **(B)** No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\mathbf{\bar{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\mathbf{\bar{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable $\mathbf{x_i}$ two nodes $\mathbf{v_i}$ and $\mathbf{\bar{v_i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\mathbf{\bar{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

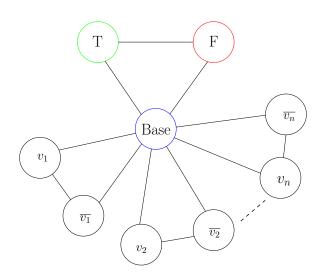
Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\overline{\mathbf{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Start with **3SAT** formula (i.e., **3**CNF formula) φ with **n** variables $\mathbf{x_1}, \ldots, \mathbf{x_n}$ and **m** clauses $\mathbf{C_1}, \ldots, \mathbf{C_m}$. Create graph \mathbf{G}_{φ} such that \mathbf{G}_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable $\mathbf{x_i}$ two nodes $\mathbf{v_i}$ and $\mathbf{\bar{v_i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\mathbf{v_i}$ or $\overline{\mathbf{v_i}}$ gets the same color as True. Interpret this as a truth assignment to $\mathbf{v_i}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

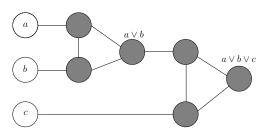


Clause Satisfiability Gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



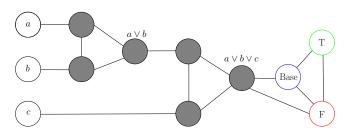
OR-Gadget Graph

Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

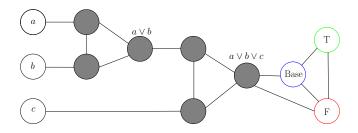
Property: if one of **a**, **b**, **c** is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and $\bar{v_i}$ connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



Reduction

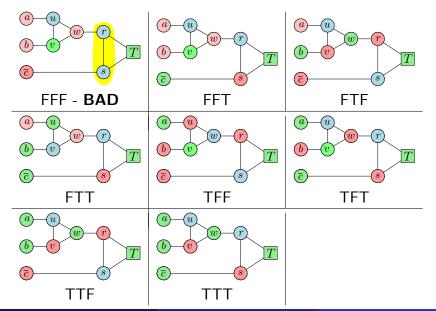


Claim

No legal **3**-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal **3**-coloring of above graph.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 51

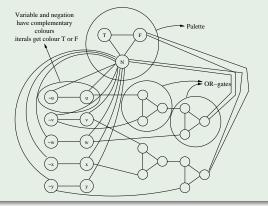
3 coloring of the clause gadget



Reduction Outline

Example

$$\varphi = (\mathbf{u} \vee \neg \mathbf{v} \vee \mathbf{w}) \wedge (\mathbf{v} \vee \mathbf{x} \vee \neg \mathbf{y})$$



Alexandra (UIUC) CS473 Fall 2014 22 / 51

φ is satisfiable implies \mathbf{G}_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_i = (a \lor b \lor c)$ at least one of a, b, c is

- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - ullet if v_i is colored True then set x_i to be True, this is a legal truthh assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

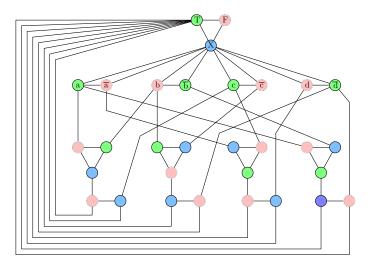
- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - ullet if v_i is colored True then set x_i to be True, this is a legal truthh assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - \bullet if \textbf{v}_i is colored True then set \textbf{x}_i to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

- arphi is satisfiable implies \mathbf{G}_{arphi} is 3-colorable
 - ullet if x_i is assigned True, color v_i True and \overline{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- \mathbf{G}_{φ} is 3-colorable implies φ is satisfiable
 - \bullet if \textbf{v}_i is colored True then set \textbf{x}_i to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR



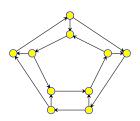
Part II

NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

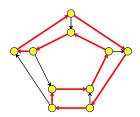
 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



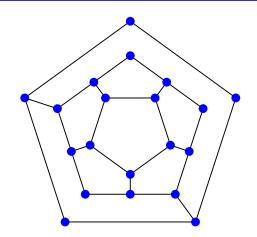
Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



Does the following graph has a Hamiltonian Cycle?



- (A) Yes.
- (B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show
 - 3-SAT \leq_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph \mathbf{G}_{φ} such that

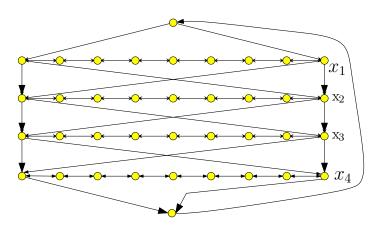
- ullet ${f G}_{arphi}$ has a Hamiltonian cycle if and only if ${oldsymbol{arphi}}$ is satisfiable
- ullet ullet ullet should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$

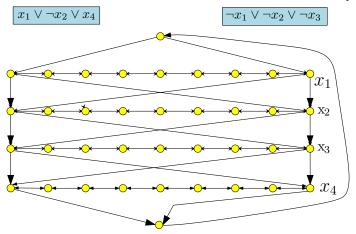
Notation: φ has \mathbf{n} variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ and \mathbf{m} clauses C_1, C_2, \ldots, C_m .

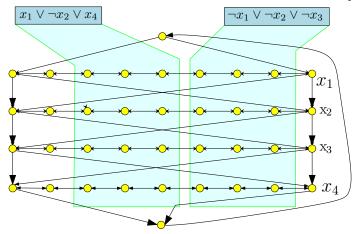
Reduction: First Ideas

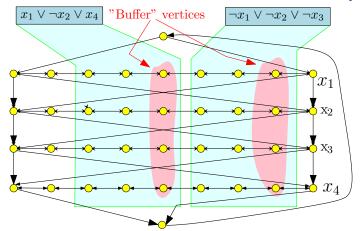
- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

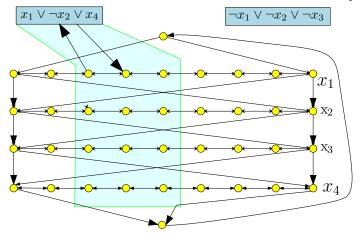
- ullet Traverse path ullet from left to right iff x_i is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)

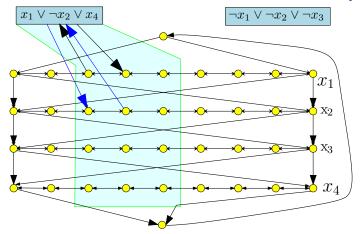


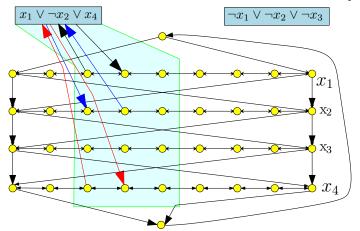


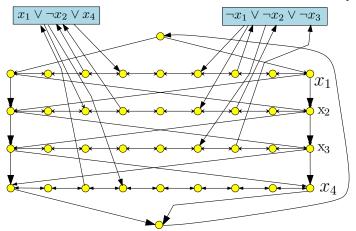












Correctness Proof

Proposition

 φ has a satisfying assignment iff \mathbf{G}_{φ} has a Hamiltonian cycle.

Proof.

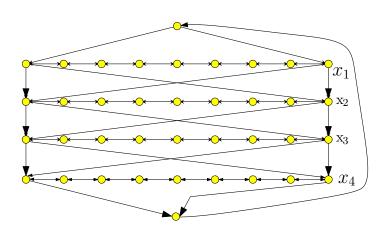
- \Rightarrow Let **a** be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path i from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in \mathbf{G}_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j+1 on path i is 3j+2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example



Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C; are connected by an edge
- We can remove c_i from cycle, and get Hamiltonian cycle in $G - c_i$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Alexandra (UIUC) CS473 36 Fall 2014 36 / 51

Is covering by cycles hard?

Given a directed graph G, deciding if G can be covered by vertex disjoint cycles (each of length at least two) is

- (A) NP-Hard.
- (B) NP-Complete.
- (C) P.
- **(D)** IDK.

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

⁻heorem

Hamiltonian cycle problem for undirected graphs is **NP-Complete**.

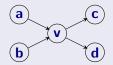
Proof.

- The problem is in **NP**; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Alexandra (UIUC) CS473 39 Fall 2014 39 / 51

Goal: Given directed graph **G**, need to construct undirected graph **G**' such that **G** has Hamiltonian Path iff **G**' has Hamiltonian path

- Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

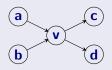


Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

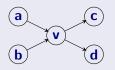
Goal: Given directed graph **G**, need to construct undirected graph **G**' such that **G** has Hamiltonian Path iff **G**' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Goal: Given directed graph **G**, need to construct undirected graph **G**' such that **G** has Hamiltonian Path iff **G**' has Hamiltonian path

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Alexandra (UIUC) CS473 41 Fall 2014 41 / 51

Other **NP-Complete** Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

Need to Know NP-Complete Problems

- 3-SAT
- Circuit-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given \mathbf{n} items with item \mathbf{i} having size \mathbf{s}_i and profit \mathbf{p}_i , a knapsack of capacity \mathbf{B} , and a target profit \mathbf{P} , is there a subset \mathbf{S} of items that can be packed in the knapsack and the profit of \mathbf{S} is at least \mathbf{P} ?

Show Knapsack problem is **NP-Complete** via reduction from Subset Sum (exercise).

Alexandra (UIUC) CS473 44 Fall 2014 44 / 51

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is **NP-Complete**— see book.

Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?

Show Knapsack problem is **NP-Complete** via reduction from Subset Sum (exercise).

Alexandra (UIUC) CS473 44 Fall 2014 44 / 51

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is **NP-Complete**— see book.

Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?

Show Knapsack problem is **NP-Complete** via reduction from Subset Sum (exercise).

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-Complete— see book.

Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?

Show Knapsack problem is **NP-Complete** via reduction from Subset Sum (exercise).

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be weakly NPComplete.

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NPComplete**.

Subset Sum can be solved in **O(nB)** time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NPComplete**.

Alexandra (UIUC) CS473 47 Fall 2014 47 / 51

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. *SIAM J. Comput.*, 5(4):691–703, 1976.