
CS 473: Fundamental Algorithms, Fall 2014

NP Completeness and
Cook-Levin Theorem
Lecture 22
November 18, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 54

P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 54

P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 54

P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 54

P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 54

P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of
computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 54

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” t.

5 Head can move only one cell to left or right.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 54

Turing Machines: Formally

A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes t)
4 δ : Q× Γ→ {L,R} × Γ× Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing a
on tape will move to state q′ while replacing a on tape with b
and head moves left.

L(M): language accepted by M is set of all input strings s on which
M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept.

Alexandra (UIUC) CS473 4 Fall 2014 4 / 54

P via TMs

Definition
M is a polynomial time TM if there is some polynomial p(·) such
that on all inputs w, M halts in p(|w|) steps.

Definition
L is a language in P iff there is a polynomial time TM M such that
L = L(M).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 54

NP via TMs

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

Non-deterministic TM: each step has a choice of moves
1 δ : Q× Γ→ P(Q× Γ× {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Alexandra (UIUC) CS473 6 Fall 2014 6 / 54

NP via TMs

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

Non-deterministic TM: each step has a choice of moves
1 δ : Q× Γ→ P(Q× Γ× {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Alexandra (UIUC) CS473 6 Fall 2014 6 / 54

Non-deterministic TMs vs certifiers

Two definition of NP:

1 L is in NP iff L has a polynomial time certifier C(·, ·).

2 L is in NP iff L is decided by a non-deterministic polynomial
time TM M.

Claim
Two definitions are equivalent.

Why?
Informal proof idea: the certificate t for C corresponds to
non-deterministic choices of M and vice-versa.
In other words L is in NP iff L is accepted by a NTM which first
guesses a proof t of length poly in input |s| and then acts as a
deterministic TM.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 54

Non-determinism, guessing and verification

1 A non-deterministic machine has choices at each step and
accepts a string if there exists a set of choices which lead to a
final state.

2 Equivalently the choices can be thought of as guessing a solution
and then verifying that solution. In this view all the choices are
made a priori and hence the verification can be deterministic.
The “guess” is the “proof” and the “verifier” is the “certifier”.

3 We reemphasize the asymmetry inherent in the definition of
non-determinism. Strings in the language can be easily verified.
No easy way to verify that a string is not in the language.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 54

Algorithms: TMs vs RAM Model

Why do we use TMs some times and RAM Model other times?
1 TMs are very simple: no complicated instruction set, no

jumps/pointers, no explicit loops etc.
1 Simplicity is useful in proofs.
2 The “right” formal bare-bones model when dealing with

subtleties.

2 RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

1 Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

Alexandra (UIUC) CS473 9 Fall 2014 9 / 54

“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 54

What is the hardest question in P?

Consider the class P. The hardest problem in P is:

(A) Max-Flow.

(B) Linear programming.

(C) SAT.

(D) All problems in P are easy.

(E) All problems in P are hard.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 54

NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 54

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 54

NP-Hard Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 54

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Alexandra (UIUC) CS473 15 Fall 2014 15 / 54

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Alexandra (UIUC) CS473 15 Fall 2014 15 / 54

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Alexandra (UIUC) CS473 15 Fall 2014 15 / 54

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Alexandra (UIUC) CS473 15 Fall 2014 15 / 54

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 54

Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output: 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 54

Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output: 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 54

Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output: 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 54

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

1 CSAT is in NP.

2 every NP problem X reduces to CSAT.

Alexandra (UIUC) CS473 18 Fall 2014 18 / 54

Monotone CSAT?

Consider an instance of CSAT of size n, that does not contain any
negations. This problem Monotone CSAT is

(A) NP-Hard.

(B) NP-Complete.

(C) P.

(D) Solvable in linear time.

(E) Solvable in O(2n) time.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 54

CSAT: Circuit Satisfaction

Claim
CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 54

CSAT: Circuit Satisfaction

Claim
CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 54

Converting into circuit...

Assume any polynomial time algorithm can be converted into a
boolean circuit in polynomial time. Then

(A) A certifier C(s, t) is a polynomial algorithm, and as such
there a boolean circuit of polynomial size that implements
it.

(B) A certifier C(s, t) can not be implemented as a circuit
since t (the certificate) is not known.

(C) There are some certifiers (but not all) that can be
implemented as a boolean circuit.

(D) Only certifiers for problems in P are convertible into
circuits.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 54

CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that X ∈ NP?
X ∈ NP implies that there are polynomials p() and q() and
certifier/verifier program C such that for every string s the following
is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s 6∈ X) then for every string t of length at
p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Alexandra (UIUC) CS473 22 Fall 2014 22 / 54

Reducing X to CSAT

X is in NP means we have access to p(), q(),C(·, ·).
What is C(·, ·)? It is a program or equivalently a Turing Machine!
How are p() and q() given? As numbers.
Example: if 3 is given then p(n) = n3.

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or a TM.

Alexandra (UIUC) CS473 23 Fall 2014 23 / 54

Reducing X to CSAT

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial
time in |s| (note that 〈p, q,C〉 are fixed).

2 G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 54

Reducing X to CSAT

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial
time in |s| (note that 〈p, q,C〉 are fixed).

2 G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 54

Reducing X to CSAT

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial
time in |s| (note that 〈p, q,C〉 are fixed).

2 G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 54

Reducing X to CSAT

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial
time in |s| (note that 〈p, q,C〉 are fixed).

2 G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 54

Reducing X to CSAT

Thus an NP problem is essentially a three tuple 〈p, q,C〉 where C is
either a program or TM.

Problem X: Given string s, is s ∈ X?

Same as the following: is there a proof t of length p(|s|) such that
C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial
time in |s| (note that 〈p, q,C〉 are fixed).

2 G is satisfiable if and only if there is a proof t such that C(s, t)
says YES.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 54

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial

time in |s| (note that 〈p, q,C〉 are fixed).
2 G is satisfiable if and only if there is a proof t such that C(s, t)

says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
1 Convert C(s, t) into a circuit G with t as unknown inputs (rest

is known including s)
2 We know that |t| = p(|s|) so express boolean string t as p(|s|)

variables t1, t2, . . . , tk where k = p(|s|).
3 Asking if there is a proof t that makes C(s, t) say YES is same

as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 54

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial

time in |s| (note that 〈p, q,C〉 are fixed).
2 G is satisfiable if and only if there is a proof t such that C(s, t)

says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
1 Convert C(s, t) into a circuit G with t as unknown inputs (rest

is known including s)
2 We know that |t| = p(|s|) so express boolean string t as p(|s|)

variables t1, t2, . . . , tk where k = p(|s|).
3 Asking if there is a proof t that makes C(s, t) say YES is same

as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 54

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial

time in |s| (note that 〈p, q,C〉 are fixed).
2 G is satisfiable if and only if there is a proof t such that C(s, t)

says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
1 Convert C(s, t) into a circuit G with t as unknown inputs (rest

is known including s)
2 We know that |t| = p(|s|) so express boolean string t as p(|s|)

variables t1, t2, . . . , tk where k = p(|s|).
3 Asking if there is a proof t that makes C(s, t) say YES is same

as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 54

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial

time in |s| (note that 〈p, q,C〉 are fixed).
2 G is satisfiable if and only if there is a proof t such that C(s, t)

says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
1 Convert C(s, t) into a circuit G with t as unknown inputs (rest

is known including s)
2 We know that |t| = p(|s|) so express boolean string t as p(|s|)

variables t1, t2, . . . , tk where k = p(|s|).
3 Asking if there is a proof t that makes C(s, t) say YES is same

as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 54

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and 〈p, q,C〉) and creates a circuit G in polynomial

time in |s| (note that 〈p, q,C〉 are fixed).
2 G is satisfiable if and only if there is a proof t such that C(s, t)

says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
1 Convert C(s, t) into a circuit G with t as unknown inputs (rest

is known including s)
2 We know that |t| = p(|s|) so express boolean string t as p(|s|)

variables t1, t2, . . . , tk where k = p(|s|).
3 Asking if there is a proof t that makes C(s, t) say YES is same

as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 54

Example: Independent Set

1 Problem: Does G = (V,E) have an Independent Set of size
≥ k?

1 Certificate: Set S ⊆ V.
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

Formally, why is Independent Set in NP?

Alexandra (UIUC) CS473 26 Fall 2014 26 / 54

Example: Independent Set

1 Problem: Does G = (V,E) have an Independent Set of size
≥ k?

1 Certificate: Set S ⊆ V.
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

Formally, why is Independent Set in NP?

Alexandra (UIUC) CS473 26 Fall 2014 26 / 54

Example: Independent Set

Formally why is Independent Set in NP?
1 Input:
< n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G, k >.

1 n is number of vertices in G
2 yi,j is a bit which is 1 if edge (i, j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if vertex
i is in the independent set, 0 otherwise.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 54

Certifier for Independent Set

Certifier C(s, t) for Independent Set:

if (t1 + t2 + . . . + tn < k) then
return NO

else
for each (i, j) do

if (ti ∧ tj ∧ yi,j) then
return NO

return YES

Alexandra (UIUC) CS473 28 Fall 2014 28 / 54

Example: Independent Set
A certifier circuit for Independent Set

v w

u

Figure : Graph
G with k = 2

1 0 1

u, v u, w v, w u v w

∧ ∧ ∧

∧ ∧ ∧

∨

∨ ∨

∨

¬

∧

Both ends of an edge?

Two nodes?

Alexandra (UIUC) CS473 29 Fall 2014 29 / 54

What does the following formula compute?

The formula

F(x1, . . . , xn) =
∧
i<j

(xi ∨ xj) .

is true if and only if

(A) All the xis are one.

(B) All the xis are zero.

(C) There are exactly two ones in x1, . . . , xn.

(D) There is at most one bit one in x1, . . . , xn.

(E) There are at most two ones in x1, . . . , xn.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 54

What does the following formula compute?

The formula

H(x1, . . . , xn) =

(∧
i<j

(xi ∨ xj)

)
∧ (x1 ∨ x2 ∨ · · · xn) .

is true if and only if

(A) All the xis are one.

(B) There are exactly two ones in x1, . . . , xn.

(C) There is exactly one bit one in x1, . . . , xn.

(D) There is at most one bit one in x1, . . . , xn.

(E) There are at most two ones in x1, . . . , xn.

Alexandra (UIUC) CS473 31 Fall 2014 31 / 54

What does the following formula compute?

〈G〉: a vector of
(n

2

)
bits describing a graph with n vertices.

I(x1, . . . , xn, 〈G〉) formula true⇔ x1, . . . , xn independent set in G.
Input:

〈
x1

1, x2
1, x3

1, x1
2, x2

2, x3
2, . . . , x1

n, x2
n, x3

n, G
〉

.
The formula(

n∧
i=1

H
(
x1

i , x2
i , x3

i

))∧
I
(

x1
1, x1

2, x1
3, . . . , x1

n, 〈G〉
)

∧
I
(

x2
1, x2

2, x2
3, . . . , x2

n, 〈G〉
)∧

I
(

x3
1, x3

2, x3
3, . . . , x1

n, 〈G〉
)

is satisfiable if and only if

(A) The graph G contains a clique.
(B) The graph G can be colored by two colors.
(C) The graph G can be colored by three colors.
(D) The graph G encodes a satisfiable instance of 3DM.
(E) None of the above.

Alexandra (UIUC) CS473 32 Fall 2014 32 / 54

Programs, Turing Machines and Circuits

Consider “program” A that takes f(|s|) steps on input string s.

Question: What computer is the program running on and what does
step mean?
Real computers difficult to reason with mathematically because

1 instruction set is too rich

2 pointers and control flow jumps in one step

3 assumption that pointer to code fits in one word

Turing Machines

1 simpler model of computation to reason with

2 can simulate real computers with polynomial slow down

3 all moves are local (head moves only one cell)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 54

Programs, Turing Machines and Circuits

Consider “program” A that takes f(|s|) steps on input string s.

Question: What computer is the program running on and what does
step mean?
Real computers difficult to reason with mathematically because

1 instruction set is too rich

2 pointers and control flow jumps in one step

3 assumption that pointer to code fits in one word

Turing Machines

1 simpler model of computation to reason with

2 can simulate real computers with polynomial slow down

3 all moves are local (head moves only one cell)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 54

Certifiers that are TMs

Assume C(·, ·) is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length
p(|s|) such that M on s, t will halt in q(|s|) time and say YES.

There is an algorithm A that can reduce above problem to CSAT
mechanically as follows.

1 A first computes p(|s|) and q(|s|).

2 Knows that M can use at most q(|s|) memory/tape cells

3 Knows that M can run for at most q(|s|) time

4 Simulates the evolution of the state of M and memory over time
using a big circuit.

Alexandra (UIUC) CS473 34 Fall 2014 34 / 54

Simulation of Computation via Circuit

1 Think of M’s state at time ` as a string x` = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say all
blanks on the tape.

4 We write a circuit C` which captures the transition of M from
time ` to time ` + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 54

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1 Use TMs as the code for certifier for simplicity

2 Since p() and q() are known to A, it can set up all required
memory and time steps in advance

3 Simulate computation of the TM from one time to the next as
a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to
SAT was the original proof of Steve Cook.

Alexandra (UIUC) CS473 36 Fall 2014 36 / 54

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1 Use TMs as the code for certifier for simplicity

2 Since p() and q() are known to A, it can set up all required
memory and time steps in advance

3 Simulate computation of the TM from one time to the next as
a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to
SAT was the original proof of Steve Cook.

Alexandra (UIUC) CS473 36 Fall 2014 36 / 54

To show NP-Completeness

Let X be a decision problem.
We know that CSAT is NP-Complete.
To show that X is NP-Complete we need to:

(A) Provide a polynomial time reduction from X to CSAT.

(B) Provide a polynomial time reduction from X to CSAT and
show that X ∈ NP.

(C) Provide a polynomial time reduction from CSAT to X.

(D) Provide a polynomial time reduction from CSAT to X and
show that X ∈ NP.

(E) Provide a polynomial time reduction from CSAT to X and
show that X /∈ P.

Alexandra (UIUC) CS473 37 Fall 2014 37 / 54

SAT is NP-Complete

1 We have seen that SAT ∈ NP

2 To show NP-Hardness, we will reduce Circuit Satisfiability
(CSAT) to SAT
Instance of CSAT (we label each node):

1,a ?,b ?,c 0,d ?,e

Inputs:

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

Alexandra (UIUC) CS473 38 Fall 2014 38 / 54

Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.

Alexandra (UIUC) CS473 39 Fall 2014 39 / 54

Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 54

Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xk

xj = xg ∧ xh

xi = ¬xf

xh = xd ∨ xe

xg = xb ∨ xc

xf = xa ∧ xb

xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 54

Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf) ∧ (¬xi ∨ xf)
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa

Alexandra (UIUC) CS473 42 Fall 2014 42 / 54

Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨ ¬xi ∨ ¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨¬xg ∨¬xh)
∧ (xi ∨ xf) ∧ (¬xi ∨ xf)
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨¬xa ∨¬xb) ∧ (¬xd)∧ xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.

Alexandra (UIUC) CS473 43 Fall 2014 43 / 54

Reduction: CSAT ≤P SAT

1 For each gate (vertex) v in the circuit, create a variable xv

2 Case ¬: v is labeled ¬ and has one incoming edge from u (so
xv = ¬xu). In SAT formula generate, add clauses (xu ∨ xv),
(¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.

Alexandra (UIUC) CS473 44 Fall 2014 44 / 54

Reduction: CSAT ≤P SAT
Continued...

1 Case ∨: So xv = xu ∨ xw. In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.

Alexandra (UIUC) CS473 45 Fall 2014 45 / 54

Reduction: CSAT ≤P SAT
Continued...

1 Case ∧: So xv = xu ∧ xw. In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw). Again
observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 54

Reduction: CSAT ≤P SAT
Continued...

1 If v is an input gate with a fixed value then we do the following.
If xv = 1 add clause xv. If xv = 0 add clause ¬xv

2 Add the clause xv where v is the variable for the output gate

Alexandra (UIUC) CS473 47 Fall 2014 47 / 54

Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv; call this assignment a′

3 a′ satisfies ϕC (exercise)

⇐ Consider a satisfying assignment a for ϕC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Theorem
SAT is NP-Complete.

Alexandra (UIUC) CS473 48 Fall 2014 48 / 54

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

Alexandra (UIUC) CS473 49 Fall 2014 49 / 54

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

Alexandra (UIUC) CS473 49 Fall 2014 49 / 54

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

Alexandra (UIUC) CS473 49 Fall 2014 49 / 54

NP-Completeness via Reductions

1 CSAT is NP-Complete.

2 CSAT ≤P SAT and SAT is in NP and hence SAT is
NP-Complete.

3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.

4 3-SAT ≤P Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

5 Vertex Cover is NP-Complete.

6 Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Alexandra (UIUC) CS473 50 Fall 2014 50 / 54

NP-Completeness via Reductions

1 CSAT is NP-Complete.

2 CSAT ≤P SAT and SAT is in NP and hence SAT is
NP-Complete.

3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.

4 3-SAT ≤P Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

5 Vertex Cover is NP-Complete.

6 Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Alexandra (UIUC) CS473 50 Fall 2014 50 / 54

Notes

Alexandra (UIUC) CS473 51 Fall 2014 51 / 54

Notes

Alexandra (UIUC) CS473 52 Fall 2014 52 / 54

Notes

Alexandra (UIUC) CS473 53 Fall 2014 53 / 54

Notes

Alexandra (UIUC) CS473 54 Fall 2014 54 / 54

	NP
	Cook-Levin Theorem
	Completeness
	Preliminaries
	Cook-Levin Theorem
	Other NP Complete Problems

