
CS 473: Fundamental Algorithms, Fall 2014

Polynomial Time Reductions
Lecture 20
November 11, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 1

Part I

Introduction to Reductions

Alexandra (UIUC) CS473 2 Fall 2014 2 / 1

Subset sum and Partition?
Problem: Subset Sum

Instance: S - set of positive
integers,t: - an integer number
(target).
Question: Is there a subset
X ⊆ S such that

∑
x∈X x =

t?

Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Assume that we can solve Subset Sum in polynomial time, then we
can solve Partition in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 1

II: Partition and subset sum?
Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Problem: Subset Sum

Instance: S - set of positive
integers,t: - an integer number
(target).
Question: Is there a subset X ⊆
S such that

∑
x∈X x = t?

Assume that we can solve Partition in polynomial time, then we can
solve Subset Sum in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.

Alexandra (UIUC) CS473 4 Fall 2014 4 / 1

III: Partition and Halting?

Problem: Halting

Instance: P: Program, I:
Input.
Question: Does P stop on
the input I?

Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Assume that we can solve Halting in polynomial time, then we can
solve Partition in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.

Alexandra (UIUC) CS473 5 Fall 2014 5 / 1

IV: Halting and Partition?
Problem: Partition

Instance: A set S of n
numbers.
Question: Is there a sub-
set T ⊆ S s.t.

∑
t∈T t =∑

s∈S\T s?

Problem: Halting

Instance: P: Program, I:
Input.
Question: Does P stop on
the input I?

Assume that we can solve Partition in polynomial time, then we can
solve Halting in polynomial time. This statement is

(A) True.

(B) Mostly true.

(C) False.

(D) Mostly false.

Alexandra (UIUC) CS473 6 Fall 2014 6 / 1

What we know...

1 Partition ≈P Subset sum.

2 Halting is way way way way way way harder.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 1

Reductions

A reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions
1 We use reductions to find algorithms to solve problems.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 1

Reductions

A reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions
1 We use reductions to find algorithms to solve problems.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 1

Reductions

A reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

Alexandra (UIUC) CS473 8 Fall 2014 8 / 1

Reductions

A reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

Also, the right reductions might win you a million dollars!

Alexandra (UIUC) CS473 8 Fall 2014 8 / 1

Example 1: Bipartite Matching and Flows

How do we solve the
Bipartite Matching
Problem?
Given a bipartite graph
G = (U ∪ V, E) and number
k, does G have a matching of
size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k.

Alexandra (UIUC) CS473 9 Fall 2014 9 / 1

Example 1: Bipartite Matching and Flows

How do we solve the
Bipartite Matching
Problem?
Given a bipartite graph
G = (U ∪ V, E) and number
k, does G have a matching of
size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k.

Alexandra (UIUC) CS473 9 Fall 2014 9 / 1

Example 1: Bipartite Matching and Flows

How do we solve the
Bipartite Matching
Problem?
Given a bipartite graph
G = (U ∪ V, E) and number
k, does G have a matching of
size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k.

Alexandra (UIUC) CS473 9 Fall 2014 9 / 1

Example 1: Bipartite Matching and Flows

How do we solve the
Bipartite Matching
Problem?
Given a bipartite graph
G = (U ∪ V, E) and number
k, does G have a matching of
size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k iff there is a
flow from s to t of value ≥ k.

Alexandra (UIUC) CS473 9 Fall 2014 9 / 1

Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 1

Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 1

Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 1

Optimization and Decision problems
For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a
flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 1

Optimization and Decision problems
For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a
flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 1

Optimization and Decision problems
For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a
flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 1

Problems vs Instances

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I, sol(I) is a set of feasible solutions to I.

4 For optimization problems each solution s ∈ sol(I) has an
associated value.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 1

Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k. The solution to this instance is “YES” if the graph has a
matching of size ≥ k, and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k. The solution to this instance is “YES”
if there is a flow from s to t of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X, and outputs either “YES” or
“NO”.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 1

Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k. The solution to this instance is “YES” if the graph has a
matching of size ≥ k, and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k. The solution to this instance is “YES”
if there is a flow from s to t of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X, and outputs either “YES” or
“NO”.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 1

Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k. The solution to this instance is “YES” if the graph has a
matching of size ≥ k, and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k. The solution to this instance is “YES”
if there is a flow from s to t of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X, and outputs either “YES” or
“NO”.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 1

Examples

Example
An instance of Bipartite Matching is a bipartite graph, and an
integer k. The solution to this instance is “YES” if the graph has a
matching of size ≥ k, and “NO” otherwise.

Example
An instance of Max-Flow is a graph G with edge-capacities, two
vertices s, t, and an integer k. The solution to this instance is “YES”
if there is a flow from s to t of value ≥ k, else ‘NO”.

What is an algorithm for a decision Problem X?
It takes as input an instance of X, and outputs either “YES” or
“NO”.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 1

Encoding an instance into a string

1 I; Instance of some problem.

2 I can be fully and precisely described (say in a text file).

3 Resulting text file is a binary string.

4 =⇒ Any input can be interpreted as a binary string S.

5 ... Running time of algorithm: Function of length of S (i.e., n).

Alexandra (UIUC) CS473 14 Fall 2014 14 / 1

Decision Problems and Languages

1 A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.
2 A language L is simply a subset of Σ∗; a set of strings.

For every language L there is an associated decision problem ΠL and
conversely, for every decision problem Π there is an associated
language LΠ.

1 Given L, ΠL is the following decision problem: Given x ∈ Σ∗, is
x ∈ L? Each string in Σ∗ is an instance of ΠL and L is the set
of instances for which the answer is YES.

2 Given Π the associated language is

LΠ =
{

I
∣∣∣ I is an instance of Π for which answer is YES

}
.

Thus, decision problems and languages are used interchangeably.
Alexandra (UIUC) CS473 15 Fall 2014 15 / 1

Decision Problems and Languages

1 A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.
2 A language L is simply a subset of Σ∗; a set of strings.

For every language L there is an associated decision problem ΠL and
conversely, for every decision problem Π there is an associated
language LΠ.

1 Given L, ΠL is the following decision problem: Given x ∈ Σ∗, is
x ∈ L? Each string in Σ∗ is an instance of ΠL and L is the set
of instances for which the answer is YES.

2 Given Π the associated language is

LΠ =
{

I
∣∣∣ I is an instance of Π for which answer is YES

}
.

Thus, decision problems and languages are used interchangeably.
Alexandra (UIUC) CS473 15 Fall 2014 15 / 1

Decision Problems and Languages

1 A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.
2 A language L is simply a subset of Σ∗; a set of strings.

For every language L there is an associated decision problem ΠL and
conversely, for every decision problem Π there is an associated
language LΠ.

1 Given L, ΠL is the following decision problem: Given x ∈ Σ∗, is
x ∈ L? Each string in Σ∗ is an instance of ΠL and L is the set
of instances for which the answer is YES.

2 Given Π the associated language is

LΠ =
{

I
∣∣∣ I is an instance of Π for which answer is YES

}
.

Thus, decision problems and languages are used interchangeably.
Alexandra (UIUC) CS473 15 Fall 2014 15 / 1

Example

1 The decision problem Primality, and the language

L =
{

#p
∣∣∣ p is a prime number

}
.

Here #p is the string in base 10 representing p.

2 Bipartite (is given graph is bipartite. The language is

L =
{
S(G)

∣∣∣G is a bipartite graph
}
.

Here S(G) is the string encoding the graph G.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 1

Are regular languages good?

Let L be a regular language. Then the decision problem associated
with L can be solved in

(A) Constant time.

(B) Linear time.

(C) Quadratic time.

(D) Exponential time.

(E) Doubly exponential time (i.e., 22n
).

(F) Octly exponential time (i.e., 22222222n

).

Alexandra (UIUC) CS473 17 Fall 2014 17 / 1

Reductions, revised.

For decision problems X, Y, a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX, an instance of X.

3 Output: IY an instance of Y.

4 Such that:
IY is YES instance of Y⇐⇒ IX is YES instance of X

There are other kinds of reductions.

Alexandra (UIUC) CS473 18 Fall 2014 18 / 1

Reductions, revised.

For decision problems X, Y, a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX, an instance of X.

3 Output: IY an instance of Y.

4 Such that:
IY is YES instance of Y⇐⇒ IX is YES instance of X

There are other kinds of reductions.

Alexandra (UIUC) CS473 18 Fall 2014 18 / 1

Using reductions to solve problems

1 R: Reduction X→ Y

2 AY: algorithm for Y:

3 =⇒ New algorithm for X:
AX(IX):

// IX: instance of X.

IY ⇐R(IX)
return AY(IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 1

Using reductions to solve problems

1 R: Reduction X→ Y

2 AY: algorithm for Y:

3 =⇒ New algorithm for X:
AX(IX):

// IX: instance of X.

IY ⇐R(IX)
return AY(IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 1

Using reductions to solve problems

1 R: Reduction X→ Y

2 AY: algorithm for Y:

3 =⇒ New algorithm for X:
AX(IX):

// IX: instance of X.

IY ⇐R(IX)
return AY(IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 1

Comparing Problems

1 “Problem X is no harder to solve than Problem Y”.

2 If Problem X reduces to Problem Y (we write X ≤ Y), then X
cannot be harder to solve than Y.

3 Bipartite Matching ≤ Max-Flow.
Bipartite Matching cannot be harder than Max-Flow.

4 Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

5 X ≤ Y:
1 X is no harder than Y, or
2 Y is at least as hard as X.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 1

Part II

Examples of Reductions

Alexandra (UIUC) CS473 21 Fall 2014 21 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

2 clique: every pair of vertices in V′ is connected by an edge of G.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

2 clique: every pair of vertices in V′ is connected by an edge of G.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

2 clique: every pair of vertices in V′ is connected by an edge of G.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

Independent Sets and Cliques

Given a graph G, a set of vertices V′ is:

1 independent set: no two vertices of V′ connected by an edge.

2 clique: every pair of vertices in V′ is connected by an edge of G.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 1

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?

Alexandra (UIUC) CS473 23 Fall 2014 23 / 1

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?

Alexandra (UIUC) CS473 23 Fall 2014 23 / 1

Recall

For decision problems X, Y, a reduction from X to Y is:

1 An algorithm . . .

2 that takes IX, an instance of X as input . . .

3 and returns IY, an instance of Y as output . . .

4 such that the solution (YES/NO) to IY is the same as the
solution to IX.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 1

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 1

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 1

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 1

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 1

Independent and Clique

Assume you can solve the Clique problem in T(n) time. Then you
can solve the Independent Set problem in

(A) O(T(n)) time.

(B) O(n log n + T(n)) time.

(C) O(n2T(n2)) time.

(D) O(n4T(n4)) time.

(E) O(n2 + T(n2)) time.

(F) Does not matter - all these are polynomial if T(n) is
polynomial, which is good enough for our purposes.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 1

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular
languages. NFAs are the same, except that they are
non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same
language using the subset construction.

(How long does this take?)
The smallest DFA equivalent to an NFA with n states may have
≈ 2n states.

Alexandra (UIUC) CS473 28 Fall 2014 28 / 1

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular
languages. NFAs are the same, except that they are
non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same
language using the subset construction.

(How long does this take?)
The smallest DFA equivalent to an NFA with n states may have
≈ 2n states.

Alexandra (UIUC) CS473 28 Fall 2014 28 / 1

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular
languages. NFAs are the same, except that they are
non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same
language using the subset construction.

(How long does this take?)
The smallest DFA equivalent to an NFA with n states may have
≈ 2n states.

Alexandra (UIUC) CS473 28 Fall 2014 28 / 1

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
Alternatively, minimize M to obtain M′ and see if M′ has a single
state which is an accepting state.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 1

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
Alternatively, minimize M to obtain M′ and see if M′ has a single
state which is an accepting state.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 1

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
Alternatively, minimize M to obtain M′ and see if M′ has a single
state which is an accepting state.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 1

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
Alternatively, minimize M to obtain M′ and see if M′ has a single
state which is an accepting state.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 1

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

The reduction takes exponential time!

Alexandra (UIUC) CS473 30 Fall 2014 30 / 1

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

The reduction takes exponential time!

Alexandra (UIUC) CS473 30 Fall 2014 30 / 1

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

The reduction takes exponential time!

Alexandra (UIUC) CS473 30 Fall 2014 30 / 1

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.

The reduction takes exponential time!

Alexandra (UIUC) CS473 30 Fall 2014 30 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem Y
(we write X ≤P Y), and a poly-time algorithm AY for Y, we have a
polynomial-time/efficient algorithm for X.

Ax

R AYIX
IY

YES

NO

Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem Y
(we write X ≤P Y), and a poly-time algorithm AY for Y, we have a
polynomial-time/efficient algorithm for X.

Ax

R AYIX
IY

YES

NO

Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem Y
(we write X ≤P Y), and a poly-time algorithm AY for Y, we have a
polynomial-time/efficient algorithm for X.

Ax

R AYIX
IY

YES

NO

Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem Y
(we write X ≤P Y), and a poly-time algorithm AY for Y, we have a
polynomial-time/efficient algorithm for X.

Ax

R AYIX
IY

YES

NO

Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X, A produces an instance IY of Y

2 A runs in time polynomial in |IX|.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.

Alexandra (UIUC) CS473 32 Fall 2014 32 / 1

Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y. Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.

Alexandra (UIUC) CS473 33 Fall 2014 33 / 1

Polynomial-time reductions and hardness

For decision problems X and Y, if X ≤P Y, and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 / 1

Polynomial-time reductions and hardness

For decision problems X and Y, if X ≤P Y, and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 / 1

Polynomial-time reductions and hardness

For decision problems X and Y, if X ≤P Y, and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 / 1

Polynomial-time reductions and hardness

For decision problems X and Y, if X ≤P Y, and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 / 1

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y. Then for any
instance IX of X, the size of the instance IY of Y produced from IX

by R is polynomial in the size of IX.

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX|
it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX.
R can write at most p(|IX|) bits and hence |IY| ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 1

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y. Then for any
instance IX of X, the size of the instance IY of Y produced from IX

by R is polynomial in the size of IX.

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX|
it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX.
R can write at most p(|IX|) bits and hence |IY| ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 1

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y. Then for any
instance IX of X, the size of the instance IY of Y produced from IX

by R is polynomial in the size of IX.

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX|
it runs in time p(|IX|) for some polynomial p().
IY is the output of R on input IX.
R can write at most p(|IX|) bits and hence |IY| ≤ p(|IX|).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 1

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X, A produces an instance IY of Y.

2 A runs in time polynomial in |IX|. This implies that |IY| (size of
IY) is polynomial in |IX|.

3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will
need are Karp reductions

Alexandra (UIUC) CS473 36 Fall 2014 36 / 1

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z.

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for
X.

Alexandra (UIUC) CS473 37 Fall 2014 37 / 1

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Alexandra (UIUC) CS473 39 Fall 2014 39 / 1

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Alexandra (UIUC) CS473 39 Fall 2014 39 / 1

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E.
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv.
3 =⇒ S is thus an independent set.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 1

Independent Set ≤P Vertex Cover

1 G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover of
size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G, n− k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set ≤P Vertex Cover

1 G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover of
size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G, n− k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set ≤P Vertex Cover

1 G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover of
size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G, n− k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set ≤P Vertex Cover

1 G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover of
size ≤ n− k

3 (G, k) is an instance of Independent Set , and (G, n− k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

What about edge cover?

Problem: Edge Cover

Instance: A graph G and integer k.
Question: Is there a subset of k edges such that all the
vertices of G are adjacent to one of these edges.

We have that:
(A) Edge Cover is polynomially equivalent to Independent

Set.

(B) Edge Cover is polynomially equivalent to Vertex Cover.

(C) Edge Cover is polynomially equivalent to Clique.

(D) Edge Cover is polynomially equivalent to 3 COLORING.

(E) None of the above.

Alexandra (UIUC) CS473 42 Fall 2014 42 / 1

Can you reduce between these problems

Problem: 2SAT

Instance: F: a 2CNF
formula.
Question: Is there a sat-
isfying assignment to F?

Problem: Max Flow

Instance: G, s, t, k: Instance of
network flow.
Question: Is there a valid flow
in G from s to t of value larger
than k?

(A) 2SAT ≤P Max Flow.

(B) Max Flow ≤P 2SAT.

(C) 2SAT ≤P Max Flow and Max Flow ≤P 2SAT.

(D) There is NO polynomial time reduction from 2SAT to
Max Flow, or vice versa.

(E) All your reduction belong to us.

Alexandra (UIUC) CS473 43 Fall 2014 43 / 1

A problem of Languages

Suppose you work for the United Nations. Let U be the set of all
languages spoken by people across the world. The United Nations
also has a set of translators, all of whom speak English, and some
other languages from U.

Due to budget cuts, you can only afford to keep k translators on your
payroll. Can you do this, while still ensuring that there is someone
who speaks every language in U?

More General problem: Find/Hire a small group of people who can
accomplish a large number of tasks.

Alexandra (UIUC) CS473 44 Fall 2014 44 / 1

A problem of Languages

Suppose you work for the United Nations. Let U be the set of all
languages spoken by people across the world. The United Nations
also has a set of translators, all of whom speak English, and some
other languages from U.

Due to budget cuts, you can only afford to keep k translators on your
payroll. Can you do this, while still ensuring that there is someone
who speaks every language in U?

More General problem: Find/Hire a small group of people who can
accomplish a large number of tasks.

Alexandra (UIUC) CS473 44 Fall 2014 44 / 1

A problem of Languages

Suppose you work for the United Nations. Let U be the set of all
languages spoken by people across the world. The United Nations
also has a set of translators, all of whom speak English, and some
other languages from U.

Due to budget cuts, you can only afford to keep k translators on your
payroll. Can you do this, while still ensuring that there is someone
who speaks every language in U?

More General problem: Find/Hire a small group of people who can
accomplish a large number of tasks.

Alexandra (UIUC) CS473 44 Fall 2014 44 / 1

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Alexandra (UIUC) CS473 45 Fall 2014 45 / 1

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Alexandra (UIUC) CS473 45 Fall 2014 45 / 1

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Alexandra (UIUC) CS473 45 Fall 2014 45 / 1

Vertex Cover ≤P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover,
construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover ≤P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover,
construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover ≤P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover,
construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover ≤P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover,
construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover ≤P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover,
construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E.

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V

has a set cover of size k. (Exercise: Prove this.)

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g}, k =
2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Alexandra (UIUC) CS473 47 Fall 2014 47 / 1

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g}, k =
2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Alexandra (UIUC) CS473 47 Fall 2014 47 / 1

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d, e, f, g}, k =
2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d, e} S4 = {e, f}
S5 = {a} S6 = {a, b, f, g}

{S3, S6} is a set cover

Alexandra (UIUC) CS473 47 Fall 2014 47 / 1

Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y.
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if answer
to IY is YES (equivalently answer to IX is NO if answer to IY is
NO).

3 Runs in polynomial time.

Alexandra (UIUC) CS473 48 Fall 2014 48 / 1

Vertex cover and Set cover?

Consider the statement: Set Cover ≤P Vertex Cover.
This statement is

(A) correct.

(B) correct (although the reduction seen is in the other
direction - so not clear why this is correct).

(C) incorrect.

(D) incorrect (the reduction seen is in the other direction!)

Alexandra (UIUC) CS473 49 Fall 2014 49 / 1

Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following
reduction:

1 Given graph G = (V, E) obtain a bipartite graph G′ = (V′, E′)
as follows.

1 Let V1 = {u1 | u ∈ V} and V2 = {u2 | u ∈ V}. We set
V′ = V1 ∪ V2 (that is, we make two copies of V)

2 E′ =
{

u1v2

∣∣∣ u 6= v and uv ∈ E
}

2 Given G and integer k the reduction outputs G′ and k.

Alexandra (UIUC) CS473 50 Fall 2014 50 / 1

Example

Alexandra (UIUC) CS473 51 Fall 2014 51 / 1

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G′ has a matching of size k.

Proof.
Exercise.

Claim
If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A
matching in G′ may use both copies!

Alexandra (UIUC) CS473 52 Fall 2014 52 / 1

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G′ has a matching of size k.

Proof.
Exercise.

Claim
If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A
matching in G′ may use both copies!

Alexandra (UIUC) CS473 52 Fall 2014 52 / 1

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G′ has a matching of size k.

Proof.
Exercise.

Claim
If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A
matching in G′ may use both copies!

Alexandra (UIUC) CS473 52 Fall 2014 52 / 1

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G′ has a matching of size k.

Proof.
Exercise.

Claim
If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A
matching in G′ may use both copies!

Alexandra (UIUC) CS473 52 Fall 2014 52 / 1

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G′ has a matching of size k.

Proof.
Exercise.

Claim
If G′ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G′. A
matching in G′ may use both copies!

Alexandra (UIUC) CS473 52 Fall 2014 52 / 1

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y, and there is no efficient algorithm for X, there is no

efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y, and there is no efficient algorithm for X, there is no

efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y, and we have an efficient algorithm for Y, we have

an efficient algorithm for X.

2 If X ≤P Y, and there is no efficient algorithm for X, there is no
efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y, and we have an efficient algorithm for Y, we have

an efficient algorithm for X.

2 If X ≤P Y, and there is no efficient algorithm for X, there is no
efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y, and we have an efficient algorithm for Y, we have

an efficient algorithm for X.

We looked at some examples of reductions between Independent
Set, Clique, Vertex Cover, and Set Cover.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

Notes

Alexandra (UIUC) CS473 54 Fall 2014 54 / 1

Notes

Alexandra (UIUC) CS473 55 Fall 2014 55 / 1

Notes

Alexandra (UIUC) CS473 56 Fall 2014 56 / 1

Notes

Alexandra (UIUC) CS473 57 Fall 2014 57 / 1

	Introduction to Reductions
	Overview
	Definitions

	Examples of Reductions
	Independent Set and Clique
	NFAs/DFAs and Universality
	Independent Set and Vertex Cover
	Vertex Cover and Set Cover

