CS 473: Fundamental Algorithms, Fall 2014

Polynomial Time Reductions

Lecture 20 November 11, 2014

Part I

Introduction to Reductions

Subset sum and Partition?

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer number (target). Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Problem: Partition

Instance: A set **S** of **n** numbers. Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Assume that we can solve **Subset Sum** in polynomial time, then we can solve **Partition** in polynomial time. This statement is

3

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.

II: Partition and subset sum?

Problem: Partition

Instance: A set **S** of **n** numbers. Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Problem: Subset Sum

Instance: S - set of positive integers,t: - an integer number (target).

Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Assume that we can solve **Partition** in polynomial time, then we can solve **Subset Sum** in polynomial time. This statement is

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.

III: Partition and Halting?

Problem: Halting

Instance: P: Program, **I**: Input.

Question: Does P stop on

the input 1?

Problem: Partition

Instance: A set **S** of **n** numbers.

numbers. Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Assume that we can solve **Halting** in polynomial time, then we can solve **Partition** in polynomial time. This statement is

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.

IV: Halting and Partition?

Problem: Partition

Instance: A set S of n numbers. Question: Is there a subset $T \subseteq S$ s.t. $\sum_{t \in T} t = \sum_{s \in S \setminus T} s$?

Problem: Halting

Instance: P: Program, I: Input.

Question: Does **P** stop on the input **I**?

Assume that we can solve **Partition** in polynomial time, then we can solve **Halting** in polynomial time. This statement is

- (A) True.
- (B) Mostly true.
- (C) False.
- (D) Mostly false.

What we know...

- Partition ≈_P Subset sum.
- Halting is way way way way way harder.

A reduction from Problem \mathbf{X} to Problem \mathbf{Y} means (informally) that if we have an algorithm for Problem \mathbf{Y} , we can use it to find an algorithm for Problem \mathbf{X} .

Using Reductions

We use reductions to find algorithms to solve problems.

A reduction from Problem \mathbf{X} to Problem \mathbf{Y} means (informally) that if we have an algorithm for Problem \mathbf{Y} , we can use it to find an algorithm for Problem \mathbf{X} .

Using Reductions

We use reductions to find algorithms to solve problems.

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Alexandra (UIUC) CS473 8 Fall 2014

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

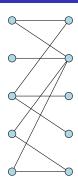
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Also, the right reductions might win you a million dollars!

Alexandra (UIUC) CS473 8 Fall 2014 8

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

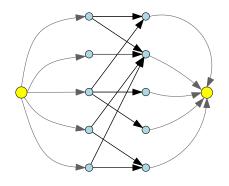


Solution

Reduce it to Max-Flow. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$.

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

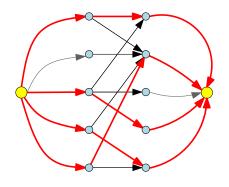


Solution

Reduce it to Max-Flow. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$.

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?

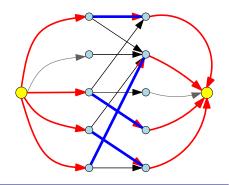


Reduce it to Max-Flow. G has a matching of size > k iff there is a flow from **s** to **t** of value > k.

CS473 Fall 2014

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size > k?



Solution

Reduce it to Max-Flow. G has a matching of size > k iff there is a flow from **s** to **t** of value > k.

Alexandra (UIUC) CS473 Fall 2014

Types of Problems

Decision, Search, and Optimization

- **1** Decision problem. Example: given **n**, is **n** prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Types of Problems

Decision, Search, and Optimization

- Decision problem. Example: given n, is n prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Types of Problems

Decision, Search, and Optimization

- Decision problem. Example: given n, is n prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between ${\bf s}$ and ${\bf t}$.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from \mathbf{s} to \mathbf{t} , of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between \mathbf{s} and \mathbf{t} .

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to C, of value at least C?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between \mathbf{s} and \mathbf{t} .

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to C, of value at least C?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Problems vs Instances

- **1** A problem Π consists of an **infinite** collection of inputs $\{I_1, I_2, \ldots, \}$. Each input is referred to as an **instance**.
- ② The size of an instance I is the number of bits in its representation.
- For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution s ∈ sol(I) has an associated value.

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of \mathbf{X} , and outputs either "YES" or "NO".

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of \mathbf{X} , and outputs either "YES" or "NO".

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of \boldsymbol{X} , and outputs either "YES" or "NO".

Example

An instance of **Bipartite Matching** is a bipartite graph, and an integer k. The solution to this instance is "YES" if the graph has a matching of size $\geq k$, and "NO" otherwise.

Example

An instance of Max-Flow is a graph G with edge-capacities, two vertices s, t, and an integer k. The solution to this instance is "YES" if there is a flow from s to t of value $\geq k$, else 'NO".

What is an algorithm for a decision Problem X?

It takes as input an instance of \boldsymbol{X} , and outputs either "YES" or "NO".

Encoding an instance into a string

- 1; Instance of some problem.
- I can be fully and precisely described (say in a text file).
- Resulting text file is a binary string.
- Any input can be interpreted as a binary string S.
- Sunning time of algorithm: Function of length of S (i.e., n).

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_Π .

- ① Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

Thus, decision problems and languages are used interchangeably.

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- ① Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.
- @ Given Π the associated language is

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

Thus, decision problems and languages are used interchangeably.

Decision Problems and Languages

- **1** A finite alphabet Σ . Σ^* is set of all finite strings on Σ .
- ② A language L is simply a subset of Σ^* ; a set of strings.

For every language L there is an associated decision problem Π_L and conversely, for every decision problem Π there is an associated language L_{Π} .

- Given L, Π_L is the following decision problem: Given $x \in \Sigma^*$, is $x \in L$? Each string in Σ^* is an instance of Π_L and L is the set of instances for which the answer is YES.

$$\mathbf{L}_{\Pi} = \left\{ \mathbf{I} \mid \mathbf{I} \text{ is an instance of } \mathbf{\Pi} \text{ for which answer is YES} \right\}.$$

Thus, decision problems and languages are used interchangeably.

Alexandra (UIUC) CS473 15 Fall 2014

15 / 1

The decision problem Primality, and the language

$$\mathbf{L} = \{ \mathbf{\#p} \mid \mathbf{p} \text{ is a prime number} \}.$$

Here #p is the string in base 10 representing p.

Bipartite (is given graph is bipartite. The language is

$$L = \{S(G) \mid G \text{ is a bipartite graph}\}.$$

Fall 2014

16 / 1

Here S(G) is the string encoding the graph G.

Are regular languages good?

Let ${\bf L}$ be a regular language. Then the decision problem associated with ${\bf L}$ can be solved in

- (A) Constant time.
- (B) Linear time.
- (C) Quadratic time.
- (D) Exponential time.
- (E) Doubly exponential time (i.e., 2²ⁿ).
- (F) Octly exponential time (i.e., $2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{-1}}}}}}}}}}$)

Reductions, revised.

For decision problems **X**, **Y**, a reduction from **X** to **Y** is:

- An algorithm . . .
- Input: I_X, an instance of X.
- Output: I_Y an instance of Y.
- Such that:

 I_Y is YES instance of $Y \iff I_X$ is YES instance of X

There are other kinds of reductions.

Reductions, revised.

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- 2 Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

 I_Y is YES instance of $Y \iff I_X$ is YES instance of X

There are other kinds of reductions.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- **2** $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bigcirc \Longrightarrow New algorithm for X:

```
 \begin{array}{c} \mathcal{A}_X(I_X) \colon \\ & //\ I_X \colon \text{ instance of } X. \\ & I_Y \Leftarrow \mathcal{R}(I_X) \\ & \text{return } \mathcal{A}_Y(I_Y) \end{array}
```

If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

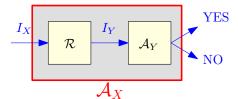
Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bullet New algorithm for X:

If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :



If \mathcal{R} and \mathcal{A}_{Y} polynomial-time $\implies \mathcal{A}_{X}$ polynomial-time.

Comparing Problems

- "Problem X is no harder to solve than Problem Y".
- ② If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow. Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,
 Max-Flow is at least as hard as Bipartite Matching.
- \bullet $X \leq Y$:
 - X is no harder than Y, or
 - Y is at least as hard as X.

Part II

Examples of Reductions

Given a graph G, a set of vertices V' is:

lacktriangledown independent set: no two vertices of V' connected by an edge.

Given a graph G, a set of vertices V' is:

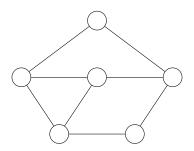
lacktriangledown independent set: no two vertices of V' connected by an edge.

Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- **2** clique: every pair of vertices in V' is connected by an edge of G.

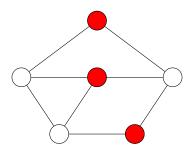
Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.



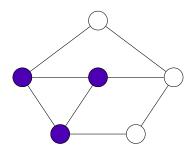
Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.



Given a graph G, a set of vertices V' is:

- lacktriangledown independent set: no two vertices of V' connected by an edge.
- $oldsymbol{\circ}$ clique: every pair of vertices in $oldsymbol{\mathsf{V}}'$ is connected by an edge of $oldsymbol{\mathsf{G}}$.



The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size > k?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size > k?

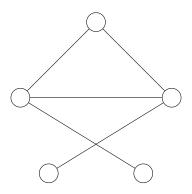
Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- ② that takes I_X , an instance of X as input . . .
- $oldsymbol{0}$ and returns $oldsymbol{I_Y}$, an instance of $oldsymbol{Y}$ as output \dots
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

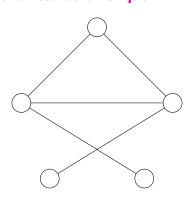
An instance of **Independent Set** is a graph **G** and an integer **k**.

An instance of **Independent Set** is a graph **G** and an integer **k**.



An instance of **Independent Set** is a graph **G** and an integer **k**.

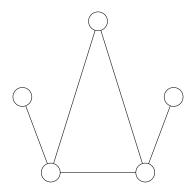
Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.) We use \overline{G} and k as the instance of Clique.



An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.



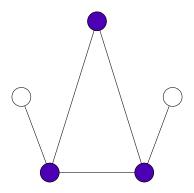
An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.) We use \overline{G} and k as the instance of Clique.

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert G to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of G. $(\overline{G}$ is the *complement* of G.)

We use \overline{G} and k as the instance of Clique.



- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- 4 Also... Independent Set is at least as hard as Clique

- Independent Set ≤ Clique.
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- 4 Also... Independent Set is at least as hard as Clique

- Independent Set < Clique.</p>
 - What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set
- Clique is at least as hard as Independent Set.

Alexandra (UIUC) CS473 Fall 2014 26 / 1

- Independent Set < Clique.</p> What does this mean?
- If have an algorithm for **Clique**, then we have an algorithm for Independent Set
- Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

Alexandra (UIUC) CS473 Fall 2014 26 / 1

Assume you can solve the Clique problem in T(n) time. Then you can solve the Independent Set problem in

- (A) O(T(n)) time.
- (B) $O(n \log n + T(n))$ time.
- (C) $O(n^2T(n^2))$ time.
- (D) $O(n^4T(n^4))$ time.
- (E) $O(n^2 + T(n^2))$ time.
- (F) Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have $\approx 2^n$ states

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with **n** states may have $\approx 2^n$ states.

DFAs and NFAs

DFAs (Remember 373?) are automata that accept regular languages. NFAs are the same, except that they are non-deterministic, while DFAs are deterministic.

Every NFA can be converted to a DFA that accepts the same language using the subset construction.

(How long does this take?)

The smallest DFA equivalent to an NFA with n states may have $\approx 2^n$ states.

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.
Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state

A DFA M is universal if it accepts every string. That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M. Goal: Is M universal?

How do we solve DFA Universality?

We check if **M** has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single

Alexandra (UIUC) CS473 Fall 2014 29 / 1

A DFA **M** is universal if it accepts every string.

That is, $L(M) = \Sigma^*$, the set of all strings.

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Alternatively, minimize M to obtain M' and see if M' has a single

state which is an accepting state.

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**? Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the

DFA Universality Algorithm.

The reduction takes exponential time!

An NFA N is said to be universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.

Problem (NFA universality)

Input: A NFA M. Goal: Is M universal?

How do we solve **NFA Universality**?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

The reduction takes exponential time!

Alexandra (UIUC) CS473 30 Fall 2014 30 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.

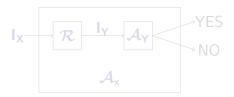
Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



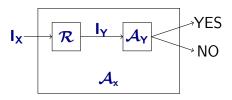
Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



Alexandra (UIUC) CS473 31 Fall 2014 31 / 1

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- lacktriangle given an instance I_X of X, A produces an instance I_Y of Y
- **2** \mathcal{A} runs in time polynomial in $|\mathbf{I}_{\mathbf{X}}|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a **Karp reduction**. Most reductions we will need are Karp reductions.

Alexandra (UIUC) CS473 32 Fall 2014 32 /

Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 /

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed **Independent Set** \leq_P **Clique**. If **Clique** had an efficient algorithm, so would **Independent Set**!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Alexandra (UIUC) CS473 34 Fall 2014 34 /

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

If you believe that **Independent Set** does not have an efficient algorithm, why should you believe the same of **Clique**?

Because we showed Independent Set \leq_P Clique. If Clique had an efficient algorithm, so would Independent Set!

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Polynomial-time reductions and instance sizes

Proposition

Let $\mathcal R$ be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by $\mathcal R$ is polynomial in the size of I_X .

Proof

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of R on input I_X

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let $\mathcal R$ be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by $\mathcal R$ is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $\mathbf{p}(|\mathbf{I}_{\mathsf{X}}|)$ bits and hence $|\mathbf{I}_{\mathsf{Y}}| \leq \mathbf{p}(|\mathbf{I}_{\mathsf{X}}|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time reductions and instance sizes

Proposition

Let $\mathcal R$ be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by $\mathcal R$ is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- **1** Given an instance I_X of X, A produces an instance I_Y of Y.
- 2 \mathcal{A} runs in time polynomial in $|\mathbf{I}_{\mathbf{X}}|$. This implies that $|\mathbf{I}_{\mathbf{Y}}|$ (size of $|\mathbf{I}_{\mathbf{Y}}|$) is polynomial in $|\mathbf{I}_{\mathbf{X}}|$.
- **3** Answer to I_X YES iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

Alexandra (UIUC) CS473 36 Fall 2014 36 / 1

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Alexandra (UIUC) CS473 37 Fall 2014 37 /

Given a graph G = (V, E), a set of vertices S is:

① A vertex cover if every $e \in E$ has at least one endpoint in S.

Given a graph G = (V, E), a set of vertices S is:

1 A vertex cover if every $e \in E$ has at least one endpoint in **S**.

Given a graph G = (V, E), a set of vertices S is:

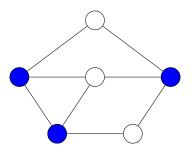
1 A **vertex cover** if every $e \in E$ has at least one endpoint in **S**.



Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Given a graph G = (V, E), a set of vertices S is:

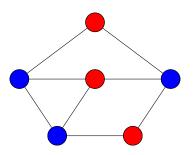
1 A **vertex cover** if every $e \in E$ has at least one endpoint in **S**.



Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in **S**.



Alexandra (UIUC) CS473 38 Fall 2014 38 / 1

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size < k in G?

Can we relate Independent Set and Vertex Cover?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size < k in G?

Can we relate **Independent Set** and **Vertex Cover**?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - 2 Since S is an independent set, either $\mathbf{u} \not\in \mathbf{S}$ or $\mathbf{v} \not\in \mathbf{S}$.
 - **3** Thus, either $\mathbf{u} \in \mathbf{V} \setminus \mathbf{S}$ or $\mathbf{v} \in \mathbf{V} \setminus \mathbf{S}$.
 - **◑ V \ S** is a vertex cover.
- (←) Let **V** \ **S** be some vertex cover:
 - Consider $\mathbf{u}, \mathbf{v} \in \mathbf{S}$
 - **2** uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - \longrightarrow **S** is thus an independent set.

Independent Set \leq_{P} Vertex Cover

- **1 G**: graph with **n** vertices, and an integer **k** be an instance of the Independent Set problem.
- ② G has an independent set of size > k iff G has a vertex cover of size $\leq n - k$
- **1** (G, k) is an instance of Independent Set, and (G, n k) is
- Therefore, Independent Set <
 P Vertex Cover. Also Vertex
 ■
 Vertex Cover. Also Vertex
 Vertex Cover

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- (G, k) is an instance of Independent Set, and (G, n k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 1

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② **G** has an independent set of size \geq **k** iff **G** has a vertex cover of size \leq **n k**
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

Alexandra (UIUC) CS473 41 Fall 2014 41 /

What about edge cover?

Problem: Edge Cover

Instance: A graph G and integer **k**.

Question: Is there a subset of **k** edges such that all the

vertices of G are adjacent to one of these edges.

We have that:

- (A) Edge Cover is polynomially equivalent to Independent Set.
- (B) Edge Cover is polynomially equivalent to Vertex Cover.
- (C) Edge Cover is polynomially equivalent to Clique.
- (D) Edge Cover is polynomially equivalent to 3 COLORING.
- (E) None of the above.

Can you reduce between these problems

Problem: 2SAT

Instance: F: a 2CNF formula.

Question: Is there a satisfying assignment to **F**?

Problem: Max Flow

Instance: G, s, t, k: Instance of network flow.

Question: Is there a valid flow in **G** from **s** to **t** of value larger than **k**?

- (A) $2SAT \leq_P Max Flow$.
- (B) Max Flow $\leq_P 2SAT$.
- (C) 2SAT \leq_P Max Flow and Max Flow \leq_P 2SAT.
- (D) There is NO polynomial time reduction from **2SAT** to **Max Flow**, or vice versa.
- (E) All your reduction belong to us.

A problem of Languages

Suppose you work for the United Nations. Let ${\bf U}$ be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from ${\bf U}$.

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

A problem of Languages

Suppose you work for the United Nations. Let ${\bf U}$ be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from ${\bf U}$.

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

A problem of Languages

Suppose you work for the United Nations. Let ${\bf U}$ be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from ${\bf U}$.

Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?

More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
, $k = 2$ with
$$S_1 = \{3, 7\} \quad S_2 = \{3, 4, 5\}$$
$$S_3 = \{1\} \quad S_4 = \{2, 4\}$$
$$S_5 = \{5\} \quad S_6 = \{1, 2, 6, 7\}$$

 $\{S_2, S_6\}$ is a set cover

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \dots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to **U**?

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

The **Set Cover** Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.

Goal: Is there a collection of at most k of these sets S_i whose union is equal to U?

Example

Let
$$U=\{1,2,3,4,5,6,7\}$$
, $k=2$ with
$$S_1=\{3,7\} \quad S_2=\{3,4,5\}$$

$$S_3=\{1\} \quad S_4=\{2,4\}$$

$$S_5=\{5\} \quad S_6=\{1,2,6,7\}$$

 $\{S_2, S_6\}$ is a set cover

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

• Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 1

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- **2** U = E.

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- $\mathbf{0} \ \mathsf{U} = \mathsf{E}$.
- We will have one set corresponding to each vertex; $S_{\mathbf{v}} = \{ \mathbf{e} \mid \mathbf{e} \text{ is incident on } \mathbf{v} \}.$

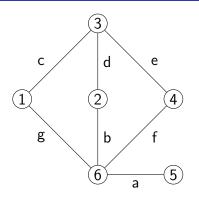
Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- $\mathbf{0}$ $\mathbf{U} = \mathbf{E}$.
- We will have one set corresponding to each vertex; $S_{\mathbf{v}} = \{ \mathbf{e} \mid \mathbf{e} \text{ is incident on } \mathbf{v} \}.$

Observe that **G** has vertex cover of size **k** if and only if U, $\{S_v\}_{v \in V}$ has a set cover of size **k**. (Exercise: Prove this.)

Vertex Cover \leq_P Set Cover: Example



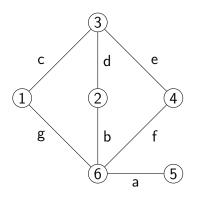
Let $U = \{a, b, c, d, e, f, g\}$, k = 2 with

$$\begin{aligned} S_1 &= \{c,g\} & S_2 &= \{b,d\} \\ S_3 &= \{c,d,e\} & S_4 &= \{e,f\} \\ S_5 &= \{a\} & S_6 &= \{a,b,f,g\} \end{aligned}$$

 $\{S_3, S_6\}$ is a set cover

{3,6} is a vertex cover

Vertex Cover \leq_P Set Cover: Example



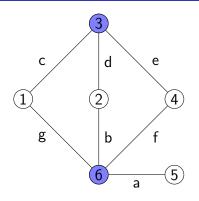
Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with

$$\begin{array}{ll} S_1 = \{c,g\} & S_2 = \{b,d\} \\ S_3 = \{c,d,e\} & S_4 = \{e,f\} \\ S_5 = \{a\} & S_6 = \{a,b,f,g\} \end{array}$$

 $\{S_3, S_6\}$ is a set cover

{3,6} is a vertex cover

Vertex Cover \leq_P Set Cover: Example



Let
$$U = \{a, b, c, d, e, f, g\}$$
, $k = 2$ with

$$\begin{array}{ll} S_1 = \{c,g\} & S_2 = \{b,d\} \\ S_3 = \{c,d,e\} & S_4 = \{e,f\} \\ S_5 = \{a\} & S_6 = \{a,b,f,g\} \end{array}$$

 $\{S_3, S_6\}$ is a set cover

 $\{3,6\}$ is a vertex cover

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Runs in polynomial time.

Vertex cover and Set cover?

Consider the statement: **Set Cover** \leq_{P} **Vertex Cover**. This statement is

- (A) correct.
- (B) correct (although the reduction seen is in the other direction - so not clear why this is correct).
- (C) incorrect.
- (D) incorrect (the reduction seen is in the other direction!)

Alexandra (UIUC) CS473 49 Fall 2014

Example of incorrect reduction proof

Try proving Matching < Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E')as follows.
 - **1** Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
 - $\mathbf{2} \ \mathsf{E'} = \left\{ \mathsf{u}_1 \mathsf{v}_2 \ \middle| \ \mathsf{u} \neq \mathsf{v} \ \mathsf{and} \ \mathsf{uv} \in \mathsf{E} \right\}$
- Given **G** and integer **k** the reduction outputs **G'** and **k**.

Alexandra (UIUC) CS473 50 Fall 2014 50 / 1

Example

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies $\mathbf{u_1}$ and $\mathbf{u_2}$ in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies \mathbf{u}_1 and \mathbf{u}_2 in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies $\mathbf{u_1}$ and $\mathbf{u_2}$ in \mathbf{G}' . A matching in \mathbf{G}' may use both copies!

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $\mathbf{u} \in \mathbf{V}$ has two copies $\mathbf{u_1}$ and $\mathbf{u_2}$ in $\mathbf{G'}$. A matching in $\mathbf{G'}$ may use both copies!

We looked at polynomial-time reductions.

Using polynomial-time reductions

① If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

We looked at polynomial-time reductions.

Using polynomial-time reductions

• If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

Alexandra (UIUC) CS473 53 Fall 2014 53 / 1

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- \bigcirc If $X <_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

Alexandra (UIUC) CS473 Fall 2014 53 / 1

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- \bigcirc If $X <_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

Alexandra (UIUC) CS473 Fall 2014 53 / 1

We looked at polynomial-time reductions.

Using polynomial-time reductions

1 If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.

We looked at some examples of reductions between **Independent** Set, Clique, Vertex Cover, and Set Cover.

Alexandra (UIUC) CS473 Fall 2014 53 / 1

