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Moving into integral flow.

Given an integral network flow G, with n vertices and m edges,
consider a maximum flow f in G, such that C = |f|. Assume f is not
integral. Finding a maximum flow g that is integral and such that
|f| = |g| can be done in (faster is better):

(A) O(n + m) time.

(B) O(nm) time.

(C) O(mC) time.

(D) O(m2) time.

(E) O(n log n + m) time.

(F) Flow my tears the policeman said.
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Part I

Baseball Pennant Race
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Pennant Race
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Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.
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Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!
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Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!
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Can Boston win the penant?

Team Won Left NY Bal Tor Bos
New York 3 6 − 2 3 1
Baltimore 5 4 2 − 1 1
Toronto 4 6 3 1 − 2
Boston 2 4 1 1 2 −

(A) Yes.

(B) No.
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Abstracting the Problem

Given

1 A set of teams S

2 For each x ∈ S, the current number of wins wx

3 For any x, y ∈ S, the number of remaining games gxy between x
and y

4 A team z

Can z win the pennant?
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Towards a Reduction

z can win the pennant if

1 z wins at least m games

2 no other team wins more than m games
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Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
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Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
1 for each x, y ∈ S the gxy games between them have to be

assigned to either x or y.
2 each team x 6= z can win at most m− wx − gxz remaining

games

Is there an assignment of remaining games to teams such that no
team x 6= z wins more than m− wx games?
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Flow Network: The basic gadget

1 s: source

2 t: sink

3 x, y: two teams

4 gxy: number of games
remaining between x and
y.

5 wx: number of points x
has.

6 m: maximum number of
points x can win before
team of interest is
eliminated.

vx

vy

uxy
gxys

m−
w
x

m
− w

y

∞

∞
t
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Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

1 m = 79 + 12 = 91:
Boston can get at most
91 points.

s
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NT

B

T
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t

1

1

6

3

4

1
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Constructing Flow Network

Notations
1 S: set of teams,

2 wx wins for each team,
and

3 gxy games left between
x and y.

4 m be the maximum
number of wins for z,

5 and S′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1 One vertex vx for each team
x ∈ S′, one vertex uxy for each
pair of teams x and y in S′

2 A new source vertex s and sink t

3 Edges (uxy, vx) and (uxy, vy) of
capacity∞

4 Edges (s, uxy) of capacity gxy

5 Edges (vx, t) of capacity equal
m− wx
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Correctness of reduction

Theorem
G′ has a maximum flow of value g∗ =

∑
x,y∈S′ gxy if and only if z

can win the most number of games (including possibly tie with other
teams).
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Proof of Correctness

Proof.
Existence of g∗ flow⇒ z wins pennant

1 An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
x or y

2 Capacity on (vx, t) edges ensures that no team wins more than
m games

Conversely, z wins pennant⇒ flow of value g∗

1 Scenario determines flow on edges; if x wins k of the games
against y, then flow on (uxy, vx) edge is k and on (uxy, vy) edge
is gxy − k
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Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g. How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 46



Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g. How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 46



Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g. How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 46



The biggest loser?

Given an input as above for the pennant competition, deciding if a
team can come in the last place can be done in

(A) Can be done using the same reduction as just seen.

(B) Can not be done using the same reduction as just seen.

(C) Can be done using flows but we need lower bounds on the
flow, instead of upper bounds.

(D) The problem is NP-Hard and requires exponential time.

(E) Can be solved by negating all the numbers, and using the
above reduction.

(F) Can be solved efficiently only by running a reality show on
the problem.
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Part II

An Application of Min-Cut to Project
Scheduling
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Project Scheduling

Problem:

1 n projects/tasks 1, 2, . . . , n

2 dependencies between projects: i depends on j implies i cannot
be done unless j is done. dependency graph is acyclic

3 each project i has a cost/profit pi

1 pi < 0 implies i requires a cost of −pi units
2 pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.
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ExampleExample

Chekuri CS473ug
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Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi. Can be negative or positive.

Goal: find valid A to maximize profit(A).
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Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.
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Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

1 projects represented as nodes in a graph

2 if i depends on j then (i, j) is an edge

3 add source s and sink t

4 for each i with pi > 0 add edge (s, i) with capacity pi

5 for each i with pi < 0 add edge (i, t) with capacity −pi

6 for each dependency edge (i, j) put capacity∞ (more on this
later)
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Reduction: Flow Network Example

4 6 2 3

−8−5−3−2 ∞
∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3
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Reduction contd

Algorithm:

1 form graph as in previous slide

2 compute s-t minimum cut (A,B)

3 output the projects in A− {s}
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Understanding the Reduction

Let C =
∑

i:pi>0 pi: maximum possible profit.

Observation: The minimum s-t cut value is ≤ C. Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
projects in A− {s} are a valid solution.

Proof.
If A− {s} is not a valid solution then there is a project i ∈ A and a
project j 6∈ A such that i depends on j

Since (i, j) capacity is∞, implies (A,B) capacity is∞,
contradicting assumption.
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Example
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Example
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Correctness of Reduction

Recall that for a set of projects X, profit(X) =
∑

i∈X pi.

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no∞) edges. Then
c(A,B) = C− profit(A− {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i, t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have∞ edges
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Proof contd

For project set A let
1 cost(A) =

∑
i∈A:pi<0−pi

2 benefit(A) =
∑

i∈A:pi>0 pi

3 profit(A) = benefit(A)− cost(A).

Proof.
Let A′ = A ∪ {s}.

c(A′,B) = cost(A) + benefit(B)

= cost(A)− benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C

= C− profit(A)
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Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A− {s} is a valid set of projects

2 c(A,B) = C− profit(A− {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set of
projects A∗ − {s} since C is fixed.

Question: How can we use∞ in a real algorithm?

Set capacity of∞ arcs to C + 1 instead. Why does this work?
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Shortest path always present?

Let G be an directed graph, and let Π =
{
π1, . . . , π|k

}
be the

(largest) set of edge disjoint paths in G from s to t, computed using
network flow.

(A) The shortest path in G must be one of the paths in Π.

(B) The shortest path in G must intersects exactly one of the
paths in Π.

(C) The shortest path in G must intersects all of the paths in
Π.

(D) The shortest path in G must intersects at least one of the
paths in Π, and it can intersect all of them.
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Part III

Extensions to Maximum-Flow Problem
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Lower Bounds and Costs

Two generalizations:

1 flow satisfies f(e) ≤ c(e) for all e. suppose we are given lower
bounds `(e) for each e. can we find a flow such that
`(e) ≤ f(e) ≤ c(e) for all e?

2 suppose we are given a cost w(e) for each edge. cost of routing
flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow
(of at least some given quantity) at minimum cost?

Many applications.
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Flows with Lower Bounds

Definition

A flow in a network G = (V,E), is a function f : E→ R≥0 such
that

1 Capacity Constraint: For each edge e, f(e) ≤ c(e)

2 Lower Bound Constraint: For each edge e, f(e) ≥ `(e)

3 Conservation Constraint: For each vertex v∑
e into v

f(e) =
∑

e out of v

f(e)

Question: Given G and c(e) and `(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!
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Flows with Lower Bounds

1 Flows with lower bounds can be reduced to standard maximum
flow problem. See text book. Reduction goes via circulations.

2 If all bounds are integers then there is a flow that is integral.
Useful in applications.
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Combining max flows?

Given distinct max flows f and g in G, the function
h(e) = (f(e) + g(e))/2, for all e ∈ E(G), describes a valid max
flow in G. This is

(A) True.

(B) False.
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Survey Design
Application of Flows with Lower Bounds

1 Design survey to find information about n1 products from n2

customers.

2 Can ask customer questions only about products purchased in
the past.

3 Customer can only be asked about at most c′i products and at
least ci products.

4 For each product need to ask at east pi consumers and at most
p′i consumers.
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Reduction to Circulation

s

i j

t

ConsumersProducts

[ci, c′i ] [pj, p′j]

[0, 1]

1 include edge (i, j) is customer i has bought product j
2 Add edge (t, s) with lower bound 0 and upper bound∞.

1 Consumer i is asked about product j if the integral flow on edge
(i, j) is 1
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Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E→ R+, cost of flow =
∑

e∈E w(e)f(e).
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Minimum Cost Flow: Facts

1 problem can be solved efficiently in polynomial time
1 O(nm log C log(nW)) time algorithm where C is maximum

edge capacity and W is maximum edge cost
2 O(m log n(m + n log n)) time strongly polynomial time

algorithm

2 for integer capacities there is always an optimum solutions in
which flow is integral
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How much damage can a single path cause?

Consider the following network. All the edges have capacity 1.
Clearly the maximum flow in this network has value 4.

The network

s

t

Why removing the shortest
path might ruin everything

1 However... The shortest path
between s and t is the blue
path.

2 And if we remove the shortest
path, s and t become
disconnected, and the
maximum flow drop to 0.
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Notes
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