CS 473: Fundamental Algorithms, Fall 2014

More Network Flow Applications

Lecture 19 November 6, 2014

Moving into integral flow.

Given an integral network flow **G**, with **n** vertices and **m** edges, consider a maximum flow **f** in **G**, such that $\mathbf{C} = |\mathbf{f}|$. Assume **f** is not integral. Finding a maximum flow **g** that is integral and such that $|\mathbf{f}| = |\mathbf{g}|$ can be done in (faster is better):

- (A) O(n + m) time.
- (B) O(nm) time.
- (C) O(mC) time.
- (D) O(m²) time.
- (E) $O(n \log n + m)$ time.
- (F) Flow my tears the policeman said.

Part I

Baseball Pennant Race

Pennant Race

Pennant Race: Example

Example

Team	Won	Left		
New York	92	2		
Baltimore	91	3		
Toronto	91	3		
Boston	89	2		

Can Boston win the pennant?

No, because Boston can win at most 91 games.

Pennant Race: Example

Example

Team	Won	Left		
New York	92	2		
Baltimore	91	3		
Toronto	91	3		
Boston	89	2		

Can Boston win the pennant? No, because Boston can win at most 91 games.

Another Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	90	2

Can Boston win the pennant?

Not clear unless we know what the remaining games are!

Another Example

Example

Team	Won	Left	
New York	92	2	
Baltimore	91	3	
Toronto	91	3	
Boston	90	2	

Can Boston win the pennant? Not clear unless we know what the remaining games are!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- Over a set of the s
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

Can Boston win the pennant? Suppose Boston does

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92

Winner of Baltimore-Toronto game has 93 wins!

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

- Boston wins both its games to get 92 wins
- New York must lose both games; now both Baltimore and Toronto have at least 92
- Winner of Baltimore-Toronto game has 93 wins!

Can Boston win the penant?

Team	Won	Left	NY	Bal	Tor	Bos
New York	3	6	—	2	3	1
Baltimore	5	4	2	—	1	1
Toronto	4	6	3	1	—	2
Boston	2	4	1	1	2	—

(A) Yes.(B) No.

Abstracting the Problem

Given

- A set of teams S
- **②** For each $x \in S$, the current number of wins w_x
- $\label{eq:states} \textbf{ § For any } \textbf{x},\textbf{y} \in \textbf{S} \text{, the number of remaining games } \textbf{g}_{\textbf{xy}} \text{ between } \textbf{x} \text{ and } \textbf{y}$
- A team z
- Can z win the pennant?

Towards a Reduction

- $\overline{\mathbf{z}}$ can win the pennant if
 - **1 z** wins at least **m** games
 - on other team wins more than m games

Towards a Reduction

$\overline{\mathbf{z}}$ can win the pennant if

- vins at least m games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $\mathbf{m} = \mathbf{w}_{\overline{z}} + \sum_{x \in S} \mathbf{g}_{x\overline{z}}$
- In other team wins more than m games

Towards a Reduction

$\overline{\mathbf{z}}$ can win the pennant if

- vins at least m games
 - to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $\mathbf{m} = \mathbf{w}_{\overline{z}} + \sum_{x \in S} \mathbf{g}_{x\overline{z}}$

Ino other team wins more than m games

- for each x, y ∈ S the g_{xy} games between them have to be assigned to either x or y.
- each team x ≠ z̄ can win at most m − w_x − g_{xz̄} remaining games

Is there an assignment of remaining games to teams such that no team $x \neq \overline{z}$ wins more than $m - w_x$ games?

Flow Network: The basic gadget

- 🚺 s: source
- 2 t: sink
- 🗿 x, y: two teams
- g_{xy}: number of games remaining between x and y.
- w_x: number of points x has.
- m: maximum number of points x can win before team of interest is eliminated.

Flow Network: An Example Can Boston win?

Team	Won	Left	NY	Bal	Tor	Bos
New York	90	11	_	1	6	4
Baltimore	88	6	1	—	1	4
Toronto	87	11	6	1	—	4
Boston	79	12	4	4	4	_

m = 79 + 12 = 91:

Boston can get at most **91** points.

Constructing Flow Network

Notations

- S: set of teams,
- w_x wins for each team, and
- g_{xy} games left between x and y.
- m be the maximum number of wins for z,

• and $S' = S \setminus \{\overline{z}\}.$

Reduction

Construct the flow network ${\bf G}$ as follows

- One vertex v_x for each team x ∈ S', one vertex u_{xy} for each pair of teams x and y in S'
- A new source vertex s and sink t
- Section 2 Edges (u_{xy}, v_x) and (u_{xy}, v_y) of capacity ∞
- Edges (s, u_{xy}) of capacity g_{xy}
- Edges (v_x, t) of capacity equal m - w_x

Correctness of reduction

Theorem

G' has a maximum flow of value $\mathbf{g}^* = \sum_{x,y \in S'} \mathbf{g}_{xy}$ if and only if $\overline{\mathbf{z}}$ can win the most number of games (including possibly tie with other teams).

Proof of Correctness

Proof.

Existence of \mathbf{g}^* flow $\Rightarrow \overline{\mathbf{z}}$ wins pennant

- An integral flow saturating edges out of s, ensures that each remaining game between x and y is added to win total of either x or y
- Capacity on (v_x, t) edges ensures that no team wins more than m games

Conversely, \overline{z} wins pennant \Rightarrow flow of value g^*

Scenario determines flow on edges; if x wins k of the games against y, then flow on (u_{xy}, v_x) edge is k and on (u_{xy}, v_y) edge is g_{xy} − k

Proof that **z** cannot with the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- ② Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

Proof that **z** cannot with the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

Proof that **z** cannot with the pennant

- Suppose z cannot win the pennant since g* < g. How do we prove to some one compactly that z cannot win the pennant?</p>
- Show them the min-cut in the reduction flow network!
- See text book for a natural interpretation of the min-cut as a certificate.

The biggest loser?

Given an input as above for the pennant competition, deciding if a team can come in the last place can be done in

- (A) Can be done using the same reduction as just seen.
- (B) Can not be done using the same reduction as just seen.
- (C) Can be done using flows but we need lower bounds on the flow, instead of upper bounds.
- (D) The problem is NP-Hard and requires exponential time.
- (E) Can be solved by negating all the numbers, and using the above reduction.
- (F) Can be solved efficiently only by running a reality show on the problem.

Part II

An Application of Min-Cut to Project Scheduling

Project Scheduling

Problem:

- n projects/tasks 1, 2, ..., n
- e dependencies between projects: i depends on j implies i cannot be done unless j is done. dependency graph is acyclic
- each project i has a cost/profit p_i
 - **0** $\mathbf{p}_i < \mathbf{0}$ implies **i** requires a cost of $-\mathbf{p}_i$ units
 - ${\it 0} \ \ p_i > 0 \ \, \text{implies that} \ \, i \ \, \text{generates} \ \ p_i \ \, \text{profit}$
- Goal: Find projects to do so as to maximize profit.

Example

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every i ∈ A, all projects that i depends on are also in A.
- **2** profit(A) = $\sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid **A** to maximize **profit(A)**.

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every i ∈ A, all projects that i depends on are also in A.
- **2** profit(A) = $\sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid **A** to maximize **profit(A)**.

Notation

For a set **A** of projects:

- A is a valid solution if A is dependency closed, that is for every i ∈ A, all projects that i depends on are also in A.
- **2** profit(A) = $\sum_{i \in A} p_i$. Can be negative or positive.

Goal: find valid A to maximize profit(A).

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

- We are interested in maximizing profit but we can solve minimum cuts.
- We need to convert negative profits into positive capacities.
- In the second se
- Intersection of the profit of the chosen set of projects.

Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets: those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

- We are interested in maximizing profit but we can solve minimum cuts.
- We need to convert negative profits into positive capacities.
- Solution Need to ensure that chosen projects is a valid set.
- The cut value captures the profit of the chosen set of projects.
Note: We are reducing a *maximization* problem to a *minimization* problem.

- projects represented as nodes in a graph
- if i depends on j then (i, j) is an edge
- add source s and sink t
- § for each i with $p_i > 0$ add edge (s, i) with capacity p_i
- § for each i with $p_i < 0$ add edge (i, t) with capacity $-p_i$
- for each dependency edge (i, j) put capacity ∞ (more on this later)

Reduction: Flow Network Example

Reduction contd

Algorithm:

- form graph as in previous slide
- compute s-t minimum cut (A, B)
- **③** output the projects in $A \{s\}$

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A-\{s\}$ is not a valid solution then there is a project $i\in A$ and a project $j\not\in A$ such that i depends on j

Let $C = \sum_{i:p_i > 0} p_i$: maximum possible profit.

Observation: The minimum s-t cut value is \leq C. Why?

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then projects in $A - \{s\}$ are a valid solution.

Proof.

If $A - \{s\}$ is not a valid solution then there is a project $i \in A$ and a project $j \notin A$ such that i depends on j

Example

Example

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in **(A, B)**:

- **(**s,i) for $i \in B$ and $p_i > 0$: capacity is p_i
- $\textcircled{(i,t) for i \in A and } p_i < 0: \text{ capacity is } -p_i \end{gathered}$
- \bigcirc cannot have ∞ edges

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in **(A, B)**:

- **(** (s,i) for $i \in B$ and $p_i > 0$: capacity is p_i
- $\textcircled{(i,t) for i \in A and } p_i < 0: \text{ capacity is } -p_i \end{gathered}$
- \bigcirc cannot have ∞ edges

Correctness of Reduction

Recall that for a set of projects X, $profit(X) = \sum_{i \in X} p_i$.

Lemma

Suppose (A, B) is an s-t cut of finite capacity (no ∞) edges. Then $c(A, B) = C - profit(A - \{s\})$.

Proof.

Edges in **(A, B)**:

- **(**s, i) for $i \in B$ and $p_i > 0$: capacity is p_i
- **2** (i, t) for $i \in A$ and $p_i < 0$: capacity is $-p_i$
- 3 cannot have ∞ edges

Proof contd

For project set A let

- $ost(A) = \sum_{i \in A: p_i < 0} -p_i$
- **2** benefit(A) = $\sum_{i \in A: p_i > 0} p_i$
- $\operatorname{profit}(A) = \operatorname{benefit}(A) \operatorname{cost}(A)$.

Proof.

Let $\mathbf{A}' = \mathbf{A} \cup \{\mathbf{s}\}.$

- c(A', B) = cost(A) + benefit(B)
 - = cost(A) benefit(A) + benefit(A) + benefit(B)
 - = -profit(A) + C
 - = C profit(A)

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **1** $A \{s\}$ is a valid set of projects
- ② c(A, B) = C − profit(A − {s})

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to $\mathbf{C} + \mathbf{1}$ instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **()** $A \{s\}$ is a valid set of projects
- $c(A,B) = C profit(A \{s\})$

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to $\mathbf{C} + \mathbf{1}$ instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **()** $A \{s\}$ is a valid set of projects
- $c(A,B) = C profit(A \{s\})$

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to $\mathbf{C} + \mathbf{1}$ instead. Why does this work?

We have shown that if (A, B) is an s-t cut in G with finite capacity then

- **()** $A \{s\}$ is a valid set of projects
- $\ \textbf{o} \ \ \textbf{c}(\textbf{A},\textbf{B}) = \textbf{C} \textbf{profit}(\textbf{A} \{s\})$

Therefore a minimum s-t cut (A^*, B^*) gives a maximum profit set of projects $A^* - \{s\}$ since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Shortest path always present?

Let **G** be an directed graph, and let $\Pi = \{\pi_1, \dots, \pi_| k\}$ be the (largest) set of edge disjoint paths in **G** from **s** to **t**, computed using network flow.

- (A) The shortest path in **G** must be one of the paths in Π .
- (B) The shortest path in G must intersects exactly <u>one</u> of the paths in Π.
- (C) The shortest path in **G** must intersects <u>all</u> of the paths in Π .
- (D) The shortest path in G must intersects at least one of the paths in Π, and it can intersect all of them.

Part III

Extensions to Maximum-Flow Problem

Lower Bounds and Costs

Two generalizations:

- If low satisfies f(e) ≤ c(e) for all e. suppose we are given *lower* bounds l(e) for each e. can we find a flow such that l(e) ≤ f(e) ≤ c(e) for all e?
- Suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications.

Lower Bounds and Costs

Two generalizations:

- If low satisfies f(e) ≤ c(e) for all e. suppose we are given *lower* bounds l(e) for each e. can we find a flow such that l(e) ≤ f(e) ≤ c(e) for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications.

Lower Bounds and Costs

Two generalizations:

- If low satisfies f(e) ≤ c(e) for all e. suppose we are given *lower* bounds l(e) for each e. can we find a flow such that l(e) ≤ f(e) ≤ c(e) for all e?
- suppose we are given a cost w(e) for each edge. cost of routing flow f(e) on edge e is w(e)f(e). can we (efficiently) find a flow (of at least some given quantity) at minimum cost?

Many applications.

Definition

A flow in a network G=(V,E), is a function $f:E\to \mathbb{R}^{\geq 0}$ such that

- Capacity Constraint: For each edge e, $f(e) \le c(e)$
- **2** Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Sonservation Constraint: For each vertex v

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an **s-t** maximum-flow without lower bounds!

Definition

A flow in a network G=(V,E), is a function $f:E\to \mathbb{R}^{\geq 0}$ such that

- Capacity Constraint: For each edge e, $f(e) \le c(e)$
- **2** Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Sonservation Constraint: For each vertex v

$$\sum_{e \text{ into } \mathbf{v}} \mathbf{f}(e) = \sum_{e \text{ out of } \mathbf{v}} \mathbf{f}(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an **s**-**t** maximum-flow without lower bounds!

Definition

A flow in a network G=(V,E), is a function $f:E\to \mathbb{R}^{\geq 0}$ such that

- Capacity Constraint: For each edge e, $f(e) \le c(e)$
- **2** Lower Bound Constraint: For each edge e, $f(e) \ge \ell(e)$
- Sonservation Constraint: For each vertex v

$$\sum_{e \text{ into } \mathbf{v}} \mathbf{f}(e) = \sum_{e \text{ out of } \mathbf{v}} \mathbf{f}(e)$$

Question: Given **G** and c(e) and $\ell(e)$ for each **e**, is there a flow? As difficult as finding an s-t maximum-flow without lower bounds!

- Flows with lower bounds can be reduced to standard maximum flow problem. See text book. Reduction goes via circulations.
- If all bounds are integers then there is a flow that is integral. Useful in applications.

Combining max flows?

Given distinct max flows f and g in G, the function h(e) = (f(e) + g(e))/2, for all $e \in E(G)$, describes a valid max flow in G. This is

(A) True.(B) False.

- Design survey to find information about n₁ products from n₂ customers.
- Can ask customer questions only about products purchased in the past.
- Customer can only be asked about at most c' products and at least ci products.
- For each product need to ask at east p_i consumers and at most p'_i consumers.

Reduction to Circulation

- **1** include edge **(i, j)** is customer **i** has bought product **j**
- 2 Add edge (t, s) with lower bound 0 and upper bound ∞ .
 - Consumer i is asked about product j if the integral flow on edge
 (i, j) is 1

Minimum Cost Flows

- Input: Given a flow network G and also edge costs, w(e) for edge e, and a flow requirement F.
- **Goal**; Find a *minimum cost* flow of value F from s to t

Given flow $f : E \to R^+$, cost of flow $= \sum_{e \in E} w(e)f(e)$.

Minimum Cost Flow: Facts

- **1** problem can be solved efficiently in polynomial time
 - O(nm log C log(nW)) time algorithm where C is maximum edge capacity and W is maximum edge cost
 - O(m log n(m + n log n)) time strongly polynomial time algorithm
- If or integer capacities there is always an optimum solutions in which flow is integral

How much damage can a single path cause?

Consider the following network. All the edges have capacity **1**. Clearly the maximum flow in this network has value **4**.

Why removing the shortest path might ruin everything

- However... The shortest path between s and t is the blue path.
- And if we remove the shortest path, s and t become disconnected, and the maximum flow drop to 0.

Notes

Notes

Notes
Notes