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Is the flow always integral?

Let G be an integral instance of network flow (i.e., all numbers are
integers). Consider the following statements:

(I) The value of the maximum flow is an integer number.
(II) If f is a maximum flow, then f(e) is an integer, for any edge

e ∈ E(G).
(III) There always exists a max flow g, such that g is a maximum

flow, and g(e) is an integer, for any edge e ∈ E(G).
We have the following:

(A) All the above statements are false.

(B) All the above statements are true.

(C) (I) is true, (II) and (III) are false.

(D) (I) and (II) are true, and (III) is false.

(E) (I) and (III) are true, and (II) is false.
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Why max-flow does not have to be integral...
...but the one we compute always is!

Consider the graph with all ca-
pacities being one.

s t
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Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.
1 Maximum s-t flow can be computed:

1 Using Ford-Fulkerson algorithm in O(mC) time when capacities
are integral and C is an upper bound on the flow.

2 Using variant of algorithm, in O(m2 log C) time, when
capacities are integral. (Polynomial time.)

3 Using Edmonds-Karp algorithm, in O(m2n) time, when
capacities are rational (strongly polynomial time algorithm).
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Network Flow
Even more facts to remember

1 If capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow. This is
known as integrality of flow.

2 Given a flow of value v, can decompose into O(m + n) flow
paths of same total value v. Integral flow implies integral flow
on paths.

3 Maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow.
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Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V,E) and a flow f : E→ R≥0 on the
edges, the support of f is the set of edges E′ ⊆ E with non-zero
flow on them. That is, E′ = {e ∈ E | f(e) > 0}.

Question:Given a flow f, can there by cycles in its support?
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How fast to detect a cycle in the flow

Given a flow network G with n vertices, and m edges, and a flow f on
it, then detecting a cycle in the flow can be done in time

(A) O(m + n).

(B) O(mC).

(C) O(mn).

(D) O(m2n).

(E) O(mn2).
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Acyclicity of Flows

Proposition
In any flow network, if f is a flow then there is another flow f ′ such
that the support of f ′ is an acyclic graph and v(f ′) = v(f). Further
if f is an integral flow then so is f ′.

Proof.
1 E′ = {e ∈ E | f(e) > 0}, support of f.

2 Suppose there is a directed cycle C in E′

3 Let e′ be the edge in C with least amount of flow

4 For each e ∈ C, reduce flow by f(e′). Remains a flow. Why?

5 Flow on e′ is reduced to 0.

6 Claim: Flow value from s to t does not change. Why?

7 Iterate until no cycles
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Flow Decomposition

Lemma

Given an edge based flow f : E→ R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m

2 for each e ∈ E,
∑

P∈P:e∈P f ′(P) +
∑

C∈C:e∈C f ′(C) = f(e)

3 v(f) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C

Proof Idea.
1 Remove all cycles as in previous proposition.

2 Next, decompose into paths as in previous lecture.

3 Exercise: verify claims.
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No flow remains in the graph. We fully decomposed the flow into
flow on paths. Together with the cycles, we get a decomposition of
the original flow into m flows on paths and cycles.
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Flow Decomposition

Lemma

Given an edge based flow f : E→ R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m

2 for each e ∈ E,
∑

P∈P:e∈P f ′(P) +
∑

C∈C:e∈C f ′(C) = f(e)

3 v(f) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C.

Above flow decomposition can be computed in O(m2) time.
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Flow decomposition into paths and cycles

Consider an integral flow network G, and two maximum flows f and g
in G. Assume both f and g are acyclic. Let Pf and Pg be the
decomposition of the two flows into paths. Then:

(A) Pf = Pg (paths are the same).

(B) |Pf| = |Pg| (i.e., number of paths is the same).

(C) |Pf|+ |Pg| = m.

(D) |Pf| ∗ |Pg| = nm.

(E) None of the above.
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Part I

Network Flow Applications I
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Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of
failures.
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Reduction to Max-Flow

Problem
Given a directed graph G with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Reduction
Consider G as a flow network with edge capacities 1, and compute
max-flow.
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Correctness of Reduction

Lemma
If G has k edge disjoint paths P1,P2, . . . ,Pk then there is an s-t
flow of value k in G.

Proof.
Set f(e) = 1 if e belongs to one of the paths P1,P2, . . . ,Pk;
other-wise set f(e) = 0. This defines a flow of value k.
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Correctness of Reduction

Lemma
If G has a flow of value k then there are k edge disjoint paths
between s and t.

Proof.
1 Capacities are all 1 and hence there is integer flow of value k,

that is f(e) = 0 or f(e) = 1 for each e.

2 Decompose flow into paths.

3 Flow on each path is either 1 or 0.

4 Hence there are k paths P1,P2, . . . ,Pk with flow of 1 each.

5 Paths are edge-disjoint since capacities are 1.
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Running Time

Theorem
The number of edge disjoint paths in G can be found in O(mn) time.

Proof.
1 Set capacities of edges in G to 1.

2 Run Ford-Fulkerson algorithm.

3 Maximum value of flow is n and hence run-time is O(nm).

4 Decompose flow into k paths (k ≤ n).
Takes O(k×m) = O(km) = O(mn) time.

Remark
The algorithm also computes a set of edge-disjoint paths realizing
this optimal solution.
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Menger’s Theorem

Theorem (?)

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47



Menger’s Theorem

Theorem (?)

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47



Menger’s Theorem

Theorem (?)

Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47



Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G, find the maximum number of edge
disjoint paths in G

Reduction:

1 create directed graph H by adding directed edges (u, v) and
(v, u) for each edge uv in G.

2 compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence
cannot have non-zero flow on both (u, v) and (v, u). Reduction
works. See book for more details.
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Multiple Sources and Sinks

Input:

1 A directed graph G with edge
capacities c(e).

2 Source nodes s1, s2, . . . , sk.

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

Maximum Flow: Send as much flow as possible from the sources to
the sinks. Sinks don’t care which source they get flow from.

Minimum Cut: Find a minimum capacity set of edge E′ such that
removing E′ disconnects every source from every sink.
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Minimum Cut: Find a minimum capacity set of edge E′ such that
removing E′ disconnects every source from every sink.
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Multiple Sources and Sinks: Formal Definition

Input:

1 A directed graph G with edge capacities c(e).

2 Source nodes s1, s2, . . . , sk.

3 Sink nodes t1, t2, . . . , t`.

4 Sources and sinks are disjoint.

A function f : E→ R≥0 is a flow if:

1 For each e ∈ E, f(e) ≤ c(e), and

2 for each v which is not a source or a sink f in(v) = fout(v).

Goal: max
∑k

i=1(fout(si)− f in(si)), that is, flow out of sources.
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Reduction to Single-Source Single-Sink

1 Add a source node s and a sink node t.

2 Add edges (s, s1), (s, s2), . . . , (s, sk).

3 Add edges (t1, t), (t2, t), . . . , (t`, t).

4 Set the capacity of the new edges to be∞.

s1

s3

t1

t2
s2
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Supplies and Demands

A further generalization:

1 source si has a supply of Si ≥ 0

2 since tj has a demand of Dj ≥ 0 units

Question: is there a flow from source to sinks such that supplies are
not exceeded and demands are met? Formally we have the additional
constraints that fout(si)− f in(si) ≤ Si for each source si and
f in(tj)− fout(tj) ≥ Dj for each sink tj.

s1

s3

t1

t2
s2

3

5

10

8

2
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Matching

Problem (Matching)

Input: Given a (undirected) graph G = (V,E).
Goal: Find a matching of maximum cardinality.

1 A matching is M ⊆ E such that at most one edge in M is
incident on any vertex
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Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (L ∪ R,E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
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Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G′ = (V′,E′) as
follows:

1 V′ = L∪R∪{s, t} where s and
t are the new source and sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.
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Correctness: Matching to Flow

Proposition
If G has a matching of size k then G′ has a flow of value k.

Proof.
Let M be matching of size k. Let M = {(u1, v1), . . . , (uk, vk)}.
Consider following flow f in G′:

1 f(s, ui) = 1 and f(vi, t) = 1 for 1 ≤ i ≤ k

2 f(ui, vi) = 1 for 1 ≤ i ≤ k

3 for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
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Correctness: Flow to Matching

Proposition
If G′ has a flow of value k then G has a matching of size k.

Proof.
Consider flow f of value k.

1 Can assume f is integral. Thus each edge has flow 1 or 0.
2 Consider the set M of edges from L to R that have flow 1.

1 M has k edges because value of flow is equal to the number of
non-zero flow edges crossing cut (L ∪ {s},R ∪ {t})

2 Each vertex has at most one edge in M incident upon it. Why?
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Correctness of Reduction

Theorem
The maximum flow value in G′ = maximum cardinality of matching
in G.

Consequence
Thus, to find maximum cardinality matching in G, we construct G′

and find the maximum flow in G′. Note that the matching itself (not
just the value) can be found efficiently from the flow.
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Running Time

For graph G with n vertices and m edges G′ has O(n + m) edges,
and O(n) vertices.

1 Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

2 Capacity scaling: Running time is O(m2 log C) = O(m2 log n).

Better running time is known: O(m
√

n).
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Perfect Matchings

Definition
A matching M is said to be perfect if every vertex has one edge in
M incident upon it.

Figure : This graph does not have a perfect matching
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Characterizing Perfect Matchings

Problem
When does a bipartite graph have a perfect matching?

1 Clearly |L| = |R|
2 Are there any necessary and sufficient conditions?
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A Necessary Condition

Lemma
If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L,
|N(X)| ≥ |X|, where N(X) is the set of neighbors of vertices in X.

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |N(X)| ≥ |X|.
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Hall’s Theorem

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X ⊆ L, |N(X)| ≥ |X|.

One direction is the necessary condition.
For the other direction we will show the following:

1 Create flow network G′ from G.

2 If |N(X)| ≥ |X| for all X, show that minimum s-t cut in G′ is
of capacity n = |L| = |R|.

3 Implies that G has a perfect matching.
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Proof of Sufficiency

Assume |N(X)| ≥ |X| for any X ⊆ L. Then show that min s-t cut
in G′ is of capacity at least n.

Let (A,B) be an arbitrary s-t cut in G′

1 Let X = A ∩ L and Y = A ∩ R.

2 Cut capacity is at least (|L| − |X|) + |Y|+ |N(X) \ Y|
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A

B

X

Y

|L| − |X|

|Y |

|N(X) \ Y |

s t

Because there are...

1 |L| − |X| edges from s to L∩B.

2 |Y| edges from Y to t.

3 there are at least |N(X) \ Y|
edges from X to vertices on the
right side that are not in Y.
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Proof of Sufficiency
Continued...

1 By the above, cut capacity is at least
α = (|L| − |X|) + |Y|+ |N(X) \ Y|.

2 |N(X) \ Y| ≥ |N(X)| − |Y|.
(This holds for any two sets.)

3 By assumption |N(X)| ≥ |X| and hence

|N(X) \ Y| ≥ |N(X)| − |Y| ≥ |X| − |Y|.
4 Cut capacity is therefore at least

α = (|L| − |X|) + |Y|+ |N(X) \ Y|
≥ |L| − |X|+ |Y|+ |X| − |Y| ≥ |L| = n.

5 Any s-t cut capacity is at least n =⇒ max flow at least n
units =⇒ perfect matching. QED
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Hall’s Theorem: Generalization

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| ≤ |R|. G has a
matching that matches all nodes in L if and only if for every X ⊆ L,
|N(X)| ≥ |X|.

Proof is essentially the same as the previous one.
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Assigning jobs to people

1 n jobs, n/2 people

2 For each job: a set of people who can do that job.

3 Each person j has to do exactly two jobs.

4 Goal: find an assignment of 2 jobs to each person, such that all
jobs are assigned.

Solution: Build bipartite graph, compute maximum matching, remove
it, compute another maximum matching. Both matchings together
form a valid solution if it exists. This algorithm is

(A) Correct.

(B) Incorrect.
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Application: Assigning jobs to people

1 n jobs or tasks

2 m people

3 for each job a set of people who can do that job

4 for each person j a limit on number of jobs kj

5 Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.

Arises in many settings. Using minimum-cost flows can also handle
the case when assigning a job i to person j costs cij and goal is assign
all jobs but minimize cost of assignment.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 47



Application: Assigning jobs to people

1 n jobs or tasks

2 m people

3 for each job a set of people who can do that job

4 for each person j a limit on number of jobs kj

5 Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.

Arises in many settings. Using minimum-cost flows can also handle
the case when assigning a job i to person j costs cij and goal is assign
all jobs but minimize cost of assignment.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 47



Reduction to Maximum Flow

1 Create directed graph G = (V,E) as follows
1 V = {s, t} ∪ L ∪ R: L set of n jobs, R set of m people
2 add edges (s, i) for each job i ∈ L, capacity 1
3 add edges (j, t) for each person j ∈ R, capacity kj

4 if job i can be done by person j add an edge (i, j), capacity 1

2 Compute max s-t flow. There is an assignment if and only if
flow value is n.
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Matchings in General Graphs

Matchings in general graphs more complicated.

There is a polynomial time algorithm to compute a maximum
matching in a general graph. Best known running time is O(m

√
n).
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Notes

Alexandra (UIUC) CS473 44 Fall 2014 44 / 47



Notes

Alexandra (UIUC) CS473 45 Fall 2014 45 / 47



Notes

Alexandra (UIUC) CS473 46 Fall 2014 46 / 47



Notes

Alexandra (UIUC) CS473 47 Fall 2014 47 / 47


	Important Properties of Flows
	Network Flow Applications I
	Edge Disjoint Paths
	Directed Graphs
	Reduction to Max-Flow
	Menger's Theorem
	Undirected Graphs

	Multiple Sources and Sinks
	Bipartite Matching
	Definitions
	Reduction of bipartite matching to max-flow
	Perfect Matchings



