CS 473: Fundamental Algorithms, Fall 2014

Network Flow Algorithms

Lecture 17 October 28, 2014

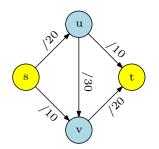
Part I

Algorithm(s) for Maximum Flow

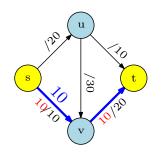
Flow and min-cut?

Given a network G with capacities on the edges, and vertices \mathbf{s} and \mathbf{t} , consider the maximum flow \mathbf{f} between \mathbf{s} and \mathbf{t} , and the minimum cut (\mathbf{S}, \mathbf{T}) between \mathbf{s} and \mathbf{t} . Then, we have that

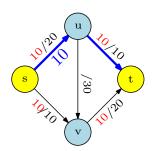
- (A) v(f) < c(S, T).
- (B) $v(f) \leq c(S, T)$.
- (C) v(f) > c(S, T).
- (D) $v(f) \ge c(S, T)$.
- (E) v(f) = c(S, T).



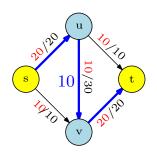
- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

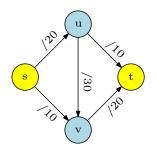


- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge e ∈ P.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

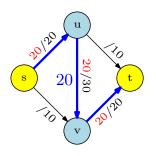
Issues = What is this nonsense?



- Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v}) .

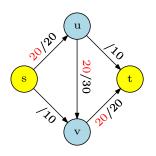
Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v}) .

Issues = What is this nonsense?

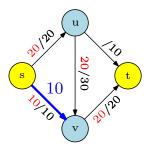


- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v}) .

Issues = What is this nonsense?

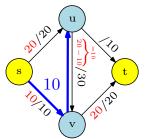


- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v}) .

Issues = What is this nonsense?

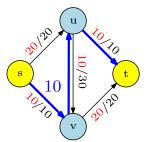


- **1** Begin with f(e) = 0 for each edge
- 2 Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v}) .

Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (u, v).

The "leftover" graph

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $\mathbf{0} \ \mathsf{V}' = \mathsf{V}$
- **2** Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) - f(e).
- **Backward Edges**: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Alexandra (UIUC) CS473 6 Fall 2014

Residual Graph Example

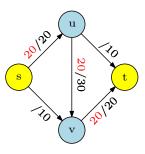


Figure : Flow on edges is indicated in red

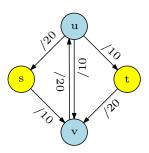


Figure: Residual Graph

Residual graph has...

Given a network with **n** vertices and **m** edges, and a valid flow **f** in it, the residual network G_f , has

- (A) m edges.
- (B) < 2m edges.
- (C) < 2m + n edges.
- (D) 4m + 2n edges.
- (E) nm edges.
- (F) just the right number of edges not too many, not too few.

Alexandra (UIUC) CS473 8 Fall 2014

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{array}{c} \text{MaxFlow}(G,s,t)\colon\\ & \text{if the flow from s to t is 0 then}\\ & \text{return 0}\\ & \text{Find any flow f with } \nu(f)>0 \text{ in G}\\ & \text{Recursively compute a maximum flow } f' \text{ in } G_f\\ & \text{Output the flow } f+f' \end{array}
```

Iterative algorithm for finding a maximum flow:

```
\begin{aligned} &\text{MaxFlow}(G,s,t):\\ &\text{Start with flow }f\text{ that is }0\text{ on all edges}\\ &\text{while there is a flow }f'\text{ in }G_f\text{ with }\nu(f')>0\text{ do}\\ &f=f+f'\\ &\text{Update }G_f\end{aligned} Output f
```

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{aligned} & \text{MaxFlow}(G,s,t)\colon \\ & \text{if the flow from s to t is 0 then} \\ & \text{return 0} \\ & \text{Find any flow f with } \nu(f) > 0 \text{ in G} \\ & \text{Recursively compute a maximum flow } f' \text{ in } G_f \\ & \text{Output the flow } f + f' \end{aligned}
```

Iterative algorithm for finding a maximum flow:

```
\begin{aligned} &\text{MaxFlow}(G,s,t):\\ &\text{Start with flow }f\text{ that is }0\text{ on all edges}\\ &\text{while there is a flow }f'\text{ in }G_f\text{ with }v(f')>0\text{ do}\\ &f=f+f'\\ &\text{Update }G_f\end{aligned} Output f
```

Ford-Fulkerson Algorithm

```
\begin{array}{l} \text{algFordFulkerson} \\ \text{for every edge } e, \ f(e) = 0 \\ G_f \ \text{is residual graph of } G \ \text{with respect to } f \\ \text{while } G_f \ \text{has a simple } s\text{-t path } do \\ \text{let } P \ \text{be simple } s\text{-t path in } G_f \\ f = augment(f,P) \\ \text{Construct new residual graph } G_f. \end{array}
```

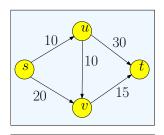
```
\begin{array}{l} \text{augment}(f,P) \\ \text{let } b \text{ be bottleneck capacity,} \\ \text{i.e., min capacity of edges in } P \text{ (in } G_f) \\ \text{for each edge } (u,v) \text{ in } P \text{ do} \\ \text{if } e = (u,v) \text{ is a forward edge then} \\ f(e) = f(e) + b \\ \text{else } (* (u,v) \text{ is a backward edge } *) \\ \text{let } e = (v,u) \text{ (* } (v,u) \text{ is in } G \text{ *)} \\ f(e) = f(e) - b \\ \text{return } f \end{array}
```

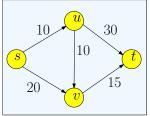
Ford-Fulkerson Algorithm

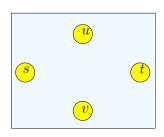
```
\begin{array}{l} \text{algFordFulkerson} \\ \text{for every edge } e, \ f(e) = 0 \\ G_f \ \text{is residual graph of } G \ \text{with respect to } f \\ \text{while } G_f \ \text{has a simple } s\text{-t path } do \\ \text{let } P \ \text{be simple } s\text{-t path in } G_f \\ f = augment(f, P) \\ \text{Construct new residual graph } G_f. \end{array}
```

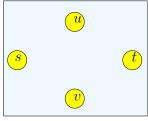
```
\begin{array}{l} \text{augment}(f,P) \\ \text{let } b \text{ be bottleneck capacity,} \\ \text{i.e., min capacity of edges in } P \text{ (in } G_f) \\ \text{for each edge } (u,v) \text{ in } P \text{ do} \\ \text{if } e = (u,v) \text{ is a forward edge then} \\ \text{ } f(e) = f(e) + b \\ \text{ else } (* (u,v) \text{ is a backward edge } *) \\ \text{ } \text{ let } e = (v,u) \text{ (* } (v,u) \text{ is in } G \text{ *)} \\ \text{ } f(e) = f(e) - b \\ \text{return } f \end{array}
```

Example

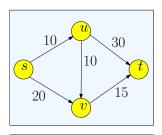


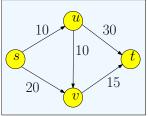


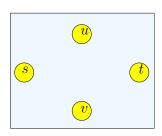


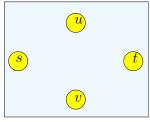


Example continued

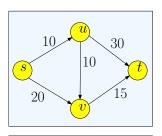


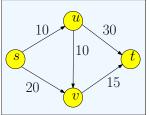


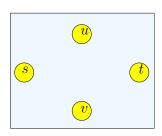


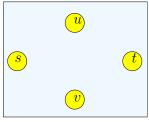


Example continued

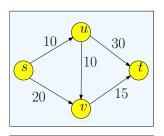


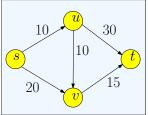


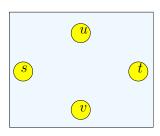


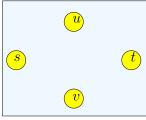


Example continued









Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- ① Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- ② Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e_1}$, $\mathbf{e_2}$ be edges of \mathbf{P} incident to \mathbf{v} . Four cases based on whether $\mathbf{e_1}$, $\mathbf{e_2}$ are forward or backward edges. Check cases (see fig next slide).

Lemma

If **f** is a flow and **P** is a simple **s**-**t** path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- f'(e) = f(e) + b and b < c(e) f(e). If $(u, v) \in P$ is a
- \bigcirc Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e}_1, \mathbf{e}_2$ be edges of P incident to \mathbf{v} . Four cases based on whether $\mathbf{e}_1, \mathbf{e}_2$ are

Alexandra (UIUC) CS473 16 Fall 2014 16 / 43

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- ① Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- 2 Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e_1}, \mathbf{e_2}$ be edges of \mathbf{P} incident to \mathbf{v} . Four cases based on whether $\mathbf{e_1}, \mathbf{e_2}$ are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- ② Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e_1}, \mathbf{e_2}$ be edges of \mathbf{P} incident to \mathbf{v} . Four cases based on whether $\mathbf{e_1}, \mathbf{e_2}$ are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- **2** Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e_1}$, $\mathbf{e_2}$ be edges of \mathbf{P} incident to \mathbf{v} . Four cases based on whether $\mathbf{e_1}$, $\mathbf{e_2}$ are forward or backward edges. Check cases (see fig next slide).

Properties of Augmentation

Conservation Constraint

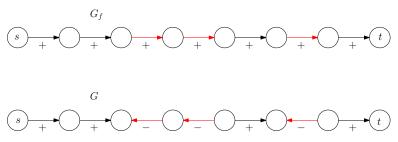


Figure : Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Rational, integer or real?

Consider a network flow instance where all the numbers are integers. algFordFulkerson on this network outputs a flow such that its value is

- (A) Since the algorithm runs on a RAM machine, and it can perform any arithmetic operation, the output is a real number.
- (B) The algorithm does only subtract, add, divide and multiply operations. Thus the output is a rational number.
- (C) The algorithm does only subtract and add operations on numbers. Thus the output is an integer number.
- (D) algFordFulkerson does not necessarily terminates, so the question is ill defined.
- (E) If the capacities are negative, the algorithm might output $+\infty$ (which is not an integer, rational or real number).

Properties of Augmentation

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for ${\bf j}$ iterations. Then in $({\bf j+1})$ st iteration, minimum capacity edge ${\bf b}$ is an integer, and so flow after augmentation is an integer.

Progress in Ford-Fulkerson

Proposition

Let \mathbf{f} be a flow and \mathbf{f}' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let **P** be an augmenting path, i.e., **P** is a simple **s**-**t** path in residual graph. We have the following.

- First edge e in P must leave s.
- Original network **G** has no incoming edges to **s**; hence **e** is a forward edge.
- P is simple and so never returns to s.
- Thus, value of flow increases by the flow on edge e.

Alexandra (UIUC) CS473 Fall 2014 20 / 43

Termination proof for integral flow

$\mathsf{Theorem}$

Let C be the minimum cut value; in particular

 $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

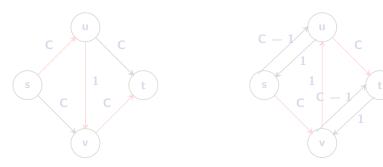
The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations < C.
- Number of edges in $G_f < 2m$.
- 3 Time to find augmenting path is O(n + m).
- Running time is O(C(n + m)) (or O(mC)).

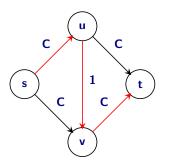
21 / 43

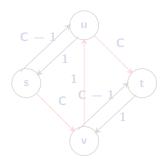
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?



Ford-Fulkerson can take $\Omega(C)$ iterations.

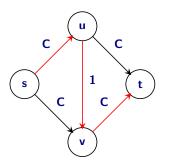
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

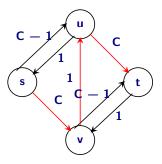




Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?





Ford-Fulkerson can take $\Omega(C)$ iterations.

Correctness of Ford-Fulkerson

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Alexandra (UIUC) CS473 23 Fall 2014 23 / 43

Correctness of Ford-Fulkerson

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Recalling Cuts

Definition

Given a flow network an **s-t cut** is a set of edges $\mathbf{E'} \subset \mathbf{E}$ such that removing $\mathbf{E'}$ disconnects \mathbf{s} from \mathbf{t} : in other words there is no directed $\mathbf{s} \to \mathbf{t}$ path in $\mathbf{E} - \mathbf{E'}$. Capacity of cut $\mathbf{E'}$ is $\sum_{\mathbf{e} \in \mathbf{E'}} \mathbf{c(e)}$.

Let $A \subset V$ such that

- $oldsymbol{0}$ $\mathbf{s} \in \mathbf{A}$, $\mathbf{t} \not\in \mathbf{A}$, and
- **2** $B = V \setminus -A$ and hence $t \in B$.

Define $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$

Claim

(A, B) is an s-t cut.

Recall: Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

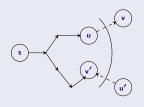
Proof.

- **1** $\mathbf{s} \in \mathbf{A}$ and $\mathbf{t} \in \mathbf{B}$. So (\mathbf{A}, \mathbf{B}) is an \mathbf{s} -t cut in \mathbf{G} .

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

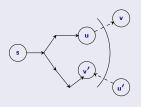


- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G.
- If $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{G}$ with $\mathbf{u} \in \mathbf{A}$ and $\mathbf{v} \in \mathbf{B}$, then $\mathbf{f}(\mathbf{e}) = \mathbf{c}(\mathbf{e})$ (saturated edge) because otherwise \mathbf{v} is reachable from \mathbf{s} in $\mathbf{G}_{\mathbf{f}}$.

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.



- $\mathbf{0}$ $\mathbf{s} \in \mathbf{A}$ and $\mathbf{t} \in \mathbf{B}$. So (\mathbf{A}, \mathbf{B}) is an \mathbf{s} -t cut in \mathbf{G} .
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

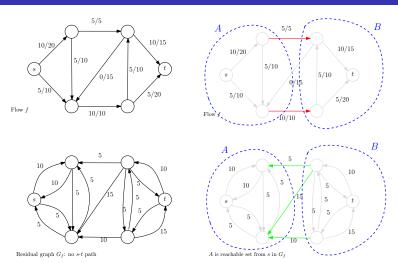
Lemma Proof Continued

Proof.

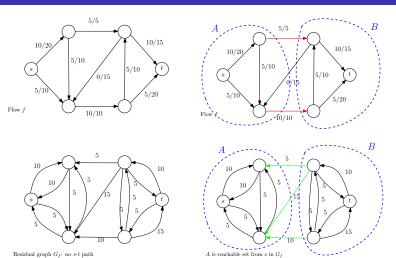
- $\begin{array}{l} \textbf{1} \text{ If } \mathbf{e} = (\mathbf{u}', \mathbf{v}') \in \mathbf{G} \text{ with } \mathbf{u}' \in \mathbf{B} \text{ and } \\ \mathbf{v}' \in \mathbf{A}, \text{ then } \mathbf{f}(\mathbf{e}) = \mathbf{0} \text{ because} \\ \text{otherwise } \mathbf{u}' \text{ is reachable from } \mathbf{s} \text{ in } \mathbf{G}_{\mathbf{f}} \\ \end{array}$
- Thus,

$$\begin{aligned} v(f) &= f^{\rm out}(A) - f^{\rm in}(A) \\ &= f^{\rm out}(A) - 0 \\ &= c(A,B) - 0 \\ &= c(A,B). \end{aligned}$$

Example



Example



⁻heorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \le c(A, B)$.
- 2 For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A*, B*).
- Hence, f* is maximum.

Alexandra (UIUC) CS473 Fall 2014 28 / 43

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network **G**, the value of a maximum **s-t** flow is equal to the capacity of the minimum **s-t** cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network **G** with integer capacities, there is a maximum **s-t** flow that is integer valued.

Proof.

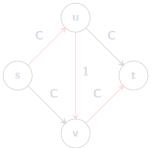
Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

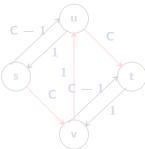
Does it terminates?

- (A) algFordFulkerson always terminates.
- (B) algFordFulkerson might not terminate if the input has real numbers.
- (C) algFordFulkerson might not terminate if the input has rational numbers.
- (D) algFordFulkerson might not terminate if the input is only integer numbers that are sufficiently large.

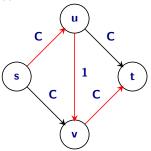
Alexandra (UIUC) CS473 Fall 2014 31 / 43

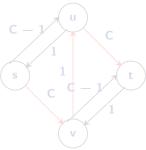
Running time = O(mC) is not polynomial. Can the upper bound be achieved?



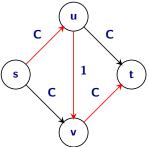


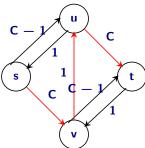
Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Finding path with largest bottleneck capacity

G_f - residual network with (residual) capacities.

n vertices and m edges.

Finding the path with largest bottleneck capacity can be done (faster is better) in:

- (A) O(n + m)
- (B) $O(n \log + m)$
- (C) O(nm)
- (D) $O(m^2)$
- (E) $O(m^3)$

time (expected or deterministic is fine here).

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- Output
 Output
 Output
 Description
 Output
 Description
 - Assume we know the bottleneck capacity
 - $^{\circ}$ Remove all edges with residual capacity $\leq \Delta$
 - 6 Check if there is a path from s to t
 - Objinary search to find largest
 - 3 Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- How do we find path with largest bottleneck capacity?
 - ◆ Assume we know △ the bottleneck capacity
 - 2 Remove all edges with residual capacity $\leq \Delta$
 - 3 Check if there is a path from s to t
 - Φ Do binary search to find largest Δ
 - Sunning time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 43

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- How do we find path with largest bottleneck capacity?
 - lacktriangle Assume we know lacktriangle the bottleneck capacity
 - 2 Remove all edges with residual capacity $\leq \Delta$
 - 3 Check if there is a path from s to t
 - Φ Do binary search to find largest Δ
 - Sunning time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 43

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm's running time is O(m log m).
- Oifferent algorithm that also leads to O(m log m) time algorithm by adapting Prim's algorithm.

Alexandra (UIUC) CS473 36 Fall 2014 36 / 43

Removing Dependence on C

- Dinic [1970], Edmonds and Karp [1972]
 Picking augmenting paths with fewest number of edges yields a O(m²n) algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
- 2 Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.

Ford-Fulkerson Algorithm

```
\begin{array}{l} \text{algEdmondsKarp} \\ \text{for every edge e, } f(e) = 0 \\ G_f \text{ is residual graph of } G \text{ with respect to } f \\ \text{while } G_f \text{ has a simple s-t path } do \\ \text{Perform BFS in } G_f \\ P: \text{ shortest s-t path in } G_f \\ f = augment(f,P) \\ \text{Construct new residual graph } G_f. \end{array}
```

Running time $O(m^2n)$.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- \bigcirc Obtain the residual graph G_f
- \odot Find the nodes A reachable from s in G_f
- 0 Output the cut $(A,B) = \{(u,v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given **G** and a flow **f** there is a linear time algorithm to check if **f** is a maximum flow and if it is, outputs a minimum cut. How?

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- \odot Find the nodes **A** reachable from **s** in G_f
- ① Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

Alexandra (UIUC) CS473 40 Fall 2014 40 / 43

- Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Math. Doklady*, 11:1277–1280.
- Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. *J. Assoc. Comput. Mach.*, 19(2):248–264.