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Part I

Algorithm(s) for Maximum Flow
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Flow and min-cut?

Given a network G with capacities on the edges, and vertices s and t,
consider the maximum flow f between s and t, and the minimum cut
(S, T) between s and t. Then, we have that

(A) v(f) < c(S, T).

(B) v(f) ≤ c(S, T).

(C) v(f) > c(S, T).

(D) v(f) ≥ c(S, T).

(E) v(f) = c(S, T).
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Greedy Approach
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1 Begin with f(e) = 0 for each edge.

2 Find a s-t path P with f(e) < c(e) for
every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.
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Greedy Approach: Issues
Issues = What is this nonsense?
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1 Begin with f(e) = 0 for each edge

2 Find a s-t path P with f(e) < c(e) for
every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v).
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Residual Graph
The “leftover” graph

Definition
For a network G = (V, E) and flow f, the residual graph
Gf = (V′, E′) of G with respect to f is

1 V′ = V,

2 Forward Edges: For each edge e ∈ E with f(e) < c(e), we
add e ∈ E′ with capacity c(e)− f(e).

3 Backward Edges: For each edge e = (u, v) ∈ E with
f(e) > 0, we add (v, u) ∈ E′ with capacity f(e).

Alexandra (UIUC) CS473 6 Fall 2014 6 / 43



Residual Graph Example
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Figure : Flow on edges is indicated
in red
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Residual graph has...

Given a network with n vertices and m edges, and a valid flow f in it,
the residual network Gf , has

(A) m edges.

(B) ≤ 2m edges.

(C) ≤ 2m + n edges.

(D) 4m + 2n edges.

(E) nm edges.

(F) just the right number of edges - not too many, not too few.
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.
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Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f′ in Gf

Output the flow f + f′

Iterative algorithm for finding a maximum flow:

MaxFlow(G, s, t):
Start with flow f that is 0 on all edges

while there is a flow f′ in Gf with v(f′) > 0 do
f = f + f′

Update Gf

Output f

Alexandra (UIUC) CS473 10 Fall 2014 10 / 43



Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G, s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f′ in Gf

Output the flow f + f′

Iterative algorithm for finding a maximum flow:

MaxFlow(G, s, t):
Start with flow f that is 0 on all edges

while there is a flow f′ in Gf with v(f′) > 0 do
f = f + f′

Update Gf

Output f

Alexandra (UIUC) CS473 10 Fall 2014 10 / 43



Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf

f = augment(f, P)
Construct new residual graph Gf.

augment(f,P)
let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf)

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f(e) = f(e) + b
else (* (u, v) is a backward edge *)

let e = (v, u) (* (v, u) is in G *)

f(e) = f(e)− b
return f
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Example continued
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Example continued
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Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f, P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f(e) + b and b ≤ c(e)− f(e). If (u, v) ∈ P is a
backward edge, then letting e = (v, u), f ′(e) = f(e)− b and
b ≤ f(e). Both cases 0 ≤ f ′(e) ≤ c(e).

2 Conservation constraint: Let v be an internal node. Let e1, e2 be
edges of P incident to v. Four cases based on whether e1, e2 are
forward or backward edges. Check cases (see fig next slide).
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Properties of Augmentation
Conservation Constraint

s t
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G
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Figure : Augmenting path P in Gf and corresponding change of flow in
G. Red edges are backward edges.
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Rational, integer or real?

Consider a network flow instance where all the numbers are integers.
algFordFulkerson on this network outputs a flow such that its value
is

(A) Since the algorithm runs on a RAM machine, and it can
perform any arithmetic operation, the output is a real
number.

(B) The algorithm does only subtract, add, divide and multiply
operations. Thus the output is a rational number.

(C) The algorithm does only subtract and add operations on
numbers. Thus the output is an integer number.

(D) algFordFulkerson does not necessarily terminates, so the
question is ill defined.

(E) If the capacities are negative, the algorithm might output
+∞ (which is not an integer, rational or real number).
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Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in Gf

are integers.

Proof.
Initial flow and residual capacities are integers. Suppose lemma holds
for j iterations. Then in (j + 1)st iteration, minimum capacity edge b
is an integer, and so flow after augmentation is an integer.
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Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Original network G has no incoming edges to s; hence e is a
forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.
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Termination proof for integral flow

Theorem
Let C be the minimum cut value; in particular
C ≤

∑
e out of s c(e). Ford-Fulkerson algorithm terminates after

finding at most C augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C.

Running time
1 Number of iterations ≤ C.

2 Number of edges in Gf ≤ 2m.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).
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Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?
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Ford-Fulkerson can take Ω(C) iterations.
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Correctness of Ford-Fulkerson
Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the
maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that
maximum flow is equal to minimum cut!
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Recalling Cuts

Definition
Given a flow network an s-t cut is a set of edges E′ ⊂ E such that
removing E′ disconnects s from t: in other words there is no directed
s→ t path in E− E′. Capacity of cut E′ is

∑
e∈E′ c(e).

Let A ⊂ V such that

1 s ∈ A, t 6∈ A, and

2 B = V \ −A and hence t ∈ B.

Define (A, B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A, B) is an s-t cut.

Recall: Every minimal s-t cut E′ is a cut of the form (A, B).
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Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t

1 s ∈ A and t ∈ B. So (A, B) is an s-t
cut in G.

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f(e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .
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Lemma Proof Continued

Proof.

s

u

v′

u′

v

t

1 If e = (u′, v′) ∈ G with u′ ∈ B and
v′ ∈ A, then f(e) = 0 because
otherwise u′ is reachable from s in Gf

2 Thus,

v(f) = fout(A)− f in(A)

= fout(A)− 0

= c(A, B)− 0

= c(A, B).
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Ford-Fulkerson Correctness

Theorem
The flow returned by the algorithm is the maximum flow.

Proof.
1 For any flow f and s-t cut (A, B), v(f) ≤ c(A, B).

2 For flow f∗ returned by algorithm, v(f∗) = c(A∗, B∗) for some
s-t cut (A∗, B∗).

3 Hence, f∗ is maximum.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G, the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof.
Ford-Fulkerson algorithm terminates with a maximum flow of value
equal to the capacity of a (minimum) cut.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G with integer capacities, there is a maximum s-t
flow that is integer valued.

Proof.
Ford-Fulkerson algorithm produces an integer valued flow when
capacities are integers.
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Does it terminates?

(A) algFordFulkerson always terminates.

(B) algFordFulkerson might not terminate if the input has
real numbers.

(C) algFordFulkerson might not terminate if the input has
rational numbers.

(D) algFordFulkerson might not terminate if the input is only
integer numbers that are sufficiently large.
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Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be
achieved?
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Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path in
some clever way? Yes! Two variants.

1 Choose the augmenting path with largest bottleneck capacity.

2 Choose the shortest augmenting path.
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Finding path with largest bottleneck capacity

Gf - residual network with (residual) capacities.
n vertices and m edges.
Finding the path with largest bottleneck capacity can be done (faster
is better) in:

(A) O(n + m)

(B) O(n log +m)

(C) O(nm)

(D) O(m2)

(E) O(m3)

time (expected or deterministic is fine here).
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Augmenting Paths with Large Bottleneck Capacity

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ the bottleneck capacity
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)

3 Can we bound the number of augmentations? Can show that in
O(m log C) augmentations the algorithm reaches a max flow.
This leads to an O(m2 log2 C) time algorithm.
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Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

1 Max bottleneck capacity is one of the edge capacities. Why?

2 Can do binary search on the edge capacities. First, sort the
edges by their capacities and then do binary search on that array
as before.

3 Algorithm’s running time is O(m log m).

4 Different algorithm that also leads to O(m log m) time
algorithm by adapting Prim’s algorithm.
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Removing Dependence on C

1 Dinic [1970], Edmonds and Karp [1972]
Picking augmenting paths with fewest number of edges yields a
O(m2n) algorithm, i.e., independent of C. Such an algorithm is
called a strongly polynomial time algorithm since the running
time does not depend on the numbers (assuming RAM model).
(Many implementation of Ford-Fulkerson would actually use
shortest augmenting path if they use BFS to find an s-t path).

2 Further improvements can yield algorithms running in
O(mn log n), or O(n3).
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Ford-Fulkerson Algorithm

algEdmondsKarp
for every edge e, f(e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf

P: shortest s-t path in Gf

f = augment(f, P)
Construct new residual graph Gf.

Running time O(m2n).
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Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?
Proof gives the algorithm!

1 Compute an s-t maximum flow f in G

2 Obtain the residual graph Gf

3 Find the nodes A reachable from s in Gf

4 Output the cut (A, B) = {(u, v) | u ∈ A, v ∈ B}. Note: The
cut is found in G while A is found in Gf

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check
if f is a maximum flow and if it is, outputs a minimum cut. How?
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Notes
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