CS 473: Fundamental Algorithms, Fall 2014

Network Flow Algorithms

Lecture 17 October 28, 2014

Part I

[Algorithm\(s\) for Maximum Flow](#page-1-0)

Flow and min-cut?

Given a network G with capacities on the edges, and vertices s and t, consider the maximum flow f between s and t, and the minimum cut (S, T) between s and t. Then, we have that

(A) $v(f) < c(S, T)$. (B) $v(f) \leq c(S,T)$. (C) $v(f) > c(S, T)$. (D) $v(f) > c(S, T)$. (E) $v(f) = c(S, T)$.

- **1** Begin with $f(e) = 0$ for each edge.
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$.
- **3 Augment** flow along this path.
- Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge.
- **2** Find a s-t path **P** with $f(e) < c(e)$ for every edge $e \in P$.
- **3 Augment** flow along this path.
- Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge.
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$.
- **3 Augment** flow along this path.
- Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge.
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$.
- **3 Augment** flow along this path.
- Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- ⁴ Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- ⁴ Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- ⁴ Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- **4** Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (u, v) .

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- **4** Repeat augmentation for as long as possible.

- **1** Begin with $f(e) = 0$ for each edge
- **2** Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
- **3** Augment flow along this path
- **4** Repeat augmentation for as long as possible.

Definition

For a network $G = (V, E)$ and flow f, the **residual graph** $G_f = (V', E')$ of G with respect to f is

- \bullet V' $=$ V.
- **2 Forward Edges:** For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$.
- **3 Backward Edges:** For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$.

Residual Graph Example

Figure : Flow on edges is indicated in red

Figure : Residual Graph

Residual graph has...

Given a network with **n** vertices and **m** edges, and a valid flow **f** in it, the residual network G_f , has

- (A) m edges.
- $(B) < 2m$ edges.
- (C) < 2m + n edges.
- (D) $4m + 2n$ edges.
- (E) nm edges.

 (F) just the right number of edges - not too many, not too few.

Observation: Residual graph captures the "residual" problem exactly.

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f .

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f .

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f .

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f .

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
MaxFlow(G, s, t):
if the flow from s to t is 0 then
    return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f' in G_fOutput the flow f + f'
```
Iterative algorithm for finding a maximum flow:

```
MaxFlow(G, s, t):
Start with flow f that is 0 on all edges
while there is a flow f' in G_f with v(f') > 0 do
    f = f + f'Update Gf
Output f
```
Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
MaxFlow(G, s, t):
if the flow from s to t is 0 then
    return 0
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f' in G_fOutput the flow f + f'
```
Iterative algorithm for finding a maximum flow:

```
MaxFlow(G, s, t):
Start with flow f that is 0 on all edges
while there is a flow f' in G_f with v(f') > 0 do
     f = f + f'Update G<sub>f</sub>
Output f
```
Ford-Fulkerson Algorithm


```
augment(f,P)
let b be bottleneck capacity,
    i.e., min capacity of edges in P (in G_f)
for each edge (u, v) in P do
    if e = (u, v) is a forward edge then
        f(e) = f(e) + belse (* (u, v) is a backward edge *)let e = (v, u) (* (v, u) is in G *)
        f(e) = f(e) - breturn f
```
Ford-Fulkerson Algorithm

```
algFordFulkerson
for every edge e, f(e) = 0G_f is residual graph of G with respect to fwhile G_f has a simple s-t path do
    let P be simple s-t path in G_ff = \text{augment}(f, P)Construct new residual graph G_f.
```

```
augment(f,P)
let b be bottleneck capacity,
    i.e., min capacity of edges in P (in G_f)
for each edge (u, v) in P do
    if e = (u, v) is a forward edge then
        f(e) = f(e) + belse (* (u, v) is a backward edge *)let e = (v, u) (* (v, u) is in G *)
        f(e) = f(e) - breturn f
```
Example

Example continued

Example continued

Example continued

Lemma

If f is a flow and P is a simple s - t path in G_f , then $f' = \text{augment}(f, P)$ is also a flow.

Verify that f' is a flow. Let **b** be augmentation amount.

- **1** Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $\mathbf{e} = (\mathbf{v}, \mathbf{u})$, $\mathbf{f}'(\mathbf{e}) = \mathbf{f}(\mathbf{e}) - \mathbf{b}$ and $\mathbf{b} \leq \mathbf{f}(\mathbf{e})$. Both cases $\mathbf{0} \leq \mathbf{f}'(\mathbf{e}) \leq \mathbf{c}(\mathbf{e})$.
- **2** Conservation constraint: Let **v** be an internal node. Let e_1, e_2 be edges of **P** incident to **v**. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide). **T**

Lemma

If f is a flow and P is a simple s - t path in G_f , then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

1 Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $\mathbf{e} = (\mathbf{v}, \mathbf{u})$, $\mathbf{f}'(\mathbf{e}) = \mathbf{f}(\mathbf{e}) - \mathbf{b}$ and $\mathbf{b} \leq \mathbf{f}(\mathbf{e})$. Both cases $\mathbf{0} \leq \mathbf{f}'(\mathbf{e}) \leq \mathbf{c}(\mathbf{e})$.

2 Conservation constraint: Let **v** be an internal node. Let e_1 , e_2 be edges of **P** incident to **v**. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s - t path in G_f , then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

1 Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $\mathbf{e} = (\mathbf{v}, \mathbf{u})$, $\mathbf{f}'(\mathbf{e}) = \mathbf{f}(\mathbf{e}) - \mathbf{b}$ and $\mathbf{b} \leq \mathbf{f}(\mathbf{e})$. Both cases $\mathbf{0} \leq \mathbf{f}'(\mathbf{e}) \leq \mathbf{c}(\mathbf{e})$.

2 Conservation constraint: Let **v** be an internal node. Let e_1 , e_2 be edges of **P** incident to **v**. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s - t path in G_f , then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

1 Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $\mathbf{e} = (\mathbf{v}, \mathbf{u})$, $\mathbf{f}'(\mathbf{e}) = \mathbf{f}(\mathbf{e}) - \mathbf{b}$ and $\mathbf{b} \leq \mathbf{f}(\mathbf{e})$. Both cases $0 \leq \mathbf{f}'(\mathbf{e}) \leq \mathbf{c}(\mathbf{e})$.

2 Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of **P** incident to **v**. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s - t path in G_f , then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

- **1** Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $\mathbf{e} = (\mathbf{v}, \mathbf{u})$, $\mathbf{f}'(\mathbf{e}) = \mathbf{f}(\mathbf{e}) - \mathbf{b}$ and $\mathbf{b} \leq \mathbf{f}(\mathbf{e})$. Both cases $0 \leq \mathbf{f}'(\mathbf{e}) \leq \mathbf{c}(\mathbf{e})$.
- **2** Conservation constraint: Let **v** be an internal node. Let e_1 , e_2 be edges of **P** incident to **v**. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide).

Properties of Augmentation Conservation Constraint

Figure : Augmenting path **P** in G_f and corresponding change of flow in G. Red edges are backward edges.

Rational, integer or real?

Consider a network flow instance where all the numbers are integers. algFordFulkerson on this network outputs a flow such that its value is

- (A) Since the algorithm runs on a RAM machine, and it can perform any arithmetic operation, the output is a real number.
- (B) The algorithm does only subtract, add, divide and multiply operations. Thus the output is a rational number.
- (C) The algorithm does only subtract and add operations on numbers. Thus the output is an integer number.
- (D) algFordFulkerson does not necessarily terminates, so the question is ill defined.
- (E) If the capacities are negative, the algorithm might output $+\infty$ (which is not an integer, rational or real number).

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., $f(e)$, for all edges e) and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in $(j + 1)$ st iteration, minimum capacity edge **b** is an integer, and so flow after augmentation is an integer.
Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then $v(f) < v(f')$.

Proof.

Let **P** be an augmenting path, i.e., **P** is a simple s -t path in residual graph. We have the following.

- **1** First edge **e** in **P** must leave **s**.
- **2** Original network **G** has no incoming edges to **s**; hence **e** is a forward edge.
- **3** P is simple and so never returns to s.
- **Thus, value of flow increases by the flow on edge e.**

Termination proof for integral flow

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e}$ out of s C(e). Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- \bullet Number of iterations $\lt C$.
- **2** Number of edges in $G_f < 2m$.
- **3** Time to find augmenting path is $O(n + m)$.
- Running time is $O(C(n + m))$ (or $O(mC)$). Alexandra (UIUC) [CS473](#page-0-0) 21 Fall 2014 21 / 43

Running time $= O(mC)$ is not polynomial. Can the running time be as Ω (mC) or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time $= O(mC)$ is not polynomial. Can the running time be as Ω (mC) or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time $= O(mC)$ is not polynomial. Can the running time be as Ω (mC) or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Recalling Cuts

Definition

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $\mathsf{s}\to \mathsf{t}$ path in $\mathsf{E}-\mathsf{E}'$. Capacity of cut E' is $\sum_{\mathsf{e}\in \mathsf{E}'}\mathsf{c}(\mathsf{e})$.

Let $A \subset V$ such that

1 s \in **A**, **t** $\not\in$ **A**, and

2 $B = V \setminus -A$ and hence $t \in B$.

Define $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$

Claim

 (A, B) is an s-t cut.

Recall: Every *minimal* s-t cut E' is a cut of the form (A, B) .

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

s

Let **A** be all vertices reachable from **s** in G_f ; $B = V \setminus A$.

 \bullet s \in **A** and $t \in$ **B**. So (A, B) is an s-t cut in G.

t **2** If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise \boldsymbol{v} is reachable from s in G_f .

u

v

u

v

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let **A** be all vertices reachable from **s** in G_f ; $B = V \setminus A$. \bullet s \in **A** and $t \in$ **B**. So (A, B) is an s-t cut in G. **2** If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise \boldsymbol{v} is reachable from s in G_f .

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

s

Let **A** be all vertices reachable from **s** in G_f ; $B = V \setminus A$. v $\mathbf{0} \mathbf{s} \in \mathbf{A}$ and $\mathbf{t} \in \mathbf{B}$. So (\mathbf{A}, \mathbf{B}) is an s-t cut in G.

> $(\,\mathbf{t}\,)$ 2 If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise \boldsymbol{v} is reachable from s in G_f .

u

v 0

> u 0

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let **A** be all vertices reachable from **s** in G_f ; $B = V \setminus A$. s u v 0 u 0 v $\tau_{\mathbf{t}}(\mathbf{0})$ of $\mathbf{e}=(\mathbf{u},\mathbf{v})\in\mathbf{G}$ with $\mathbf{u}\in\mathbf{A}$ and **0** s \in **A** and $t \in$ **B**. So (A, B) is an s-t cut in G. $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise \bf{v} is reachable from s in G_f .

Lemma Proof Continued

u

v 0

Proof.

s

Example

s) $\frac{1}{5/10}$ (*t* /20 $5/10$ $5/5\,$ /10 $10/10\,$.
5/20 /15 $'_{0/15}$ Flow f

 s t $\left| \begin{array}{cc} 1 & 1 \end{array} \right|$ t

Residual graph G_f : no s-t path

A is reachable set from s in G_f

Example

Residual graph G_f : no s-t path

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- **1** For any flow **f** and **s**-**t** cut (A, B) , $v(f) \le c(A, B)$.
- ? For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*,B^*) .
- **B** Hence, f^* is maximum.

Max-Flow Min-Cut Theorem and Integrality of Flows

⁻heorem

For any network G , the value of a maximum s -t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

Does it terminates?

- (A) algFordFulkerson always terminates.
- (B) algFordFulkerson might not terminate if the input has real numbers.
- (C) algFordFulkerson might not terminate if the input has rational numbers.
- (D) algFordFulkerson might not terminate if the input is only integer numbers that are sufficiently large.

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- **4** Choose the augmenting path with largest bottleneck capacity.
- ² Choose the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

¹ Choose the augmenting path with largest bottleneck capacity. ² Choose the shortest augmenting path.

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- **1** Choose the augmenting path with largest bottleneck capacity.
- 2 Choose the shortest augmenting path.

Finding path with largest bottleneck capacity

 G_f - residual network with (residual) capacities. **n** vertices and **m** edges. Finding the path with largest bottleneck capacity can be done (faster is better) in:

 (A) O(n + m) (B) O(n log $+m$) (C) O(nm) $(D) O(m^2)$ (E) O(m³)

time (expected or deterministic is fine here).

- **1** Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- 2 How do we find path with largest bottleneck capacity?
	- Assume we know **△** the bottleneck capacity
	- Remove all edges with residual capacity $\leq \Delta$
	- **2** Check if there is a path from **s** to **t**
	- Do binary search to find largest **△**
	- **6** Running time: **O(m log C)**
- ³ Can we bound the number of augmentations? Can show that in **O(m log C)** augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

- **1** Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- 2 How do we find path with largest bottleneck capacity?
	- **■** Assume we know **△** the bottleneck capacity
	- **2** Remove all edges with residual capacity $\leq \Delta$
	- Check if there is a path from s to t
	- 4 Do binary search to find largest **△**
	- **6** Running time: **O(m log C)**

³ Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

- **1** Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- 2 How do we find path with largest bottleneck capacity?
	- **1** Assume we know Δ the bottleneck capacity
	- **2** Remove all edges with residual capacity $\leq \Delta$
	- Check if there is a path from s to t
	- 4 Do binary search to find largest **△**
	- **6** Running time: **O(m log C)**
- **3** Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

How do we find path with largest bottleneck capacity?

- **1** Max bottleneck capacity is one of the edge capacities. Why?
- 2 Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Θ Algorithm's running time is $O(m \log m)$.
- \bullet Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim's algorithm.

Removing Dependence on C

1 Dinic [1970], Edmonds and Karp [1972]

- Picking augmenting paths with fewest number of edges yields a $O(m²n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use **BFS** to find an s-t path).
- ² Further improvements can yield algorithms running in $O(mn log n)$, or $O(n^3)$.

Ford-Fulkerson Algorithm

```
algEdmondsKarp
for every edge e, f(e) = 0G<sub>f</sub> is residual graph of G with respect to f
while G_f has a simple s-t path do
    Perform BFS in Gf
    P: shortest s-t path in Gf
    f = augment(f, P)Construct new residual graph G_f.
```
Running time $O(m^2n)$.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- **1** Compute an s-t maximum flow f in G
- 2 Obtain the residual graph G_f
- \odot Find the nodes **A** reachable from **s** in G_f
- \bullet Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in **G** while **A** is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- **1** Compute an s-t maximum flow f in G
- 2 Obtain the residual graph G_f
- \bullet Find the nodes **A** reachable from **s** in G_f
- \bullet Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given **G** and a flow **f** there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

Notes

Notes
Notes

Notes

- Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Doklady, 11:1277–1280.
- Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. [J. Assoc.](http://www.acm.org/jacm/) [Comput. Mach.](http://www.acm.org/jacm/), 19(2):248–264.