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How many edges to cut?

For the graph depicted on the right.
How many edges have to be cut before
there is no path between s and t:

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5
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Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)
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Part I

Network Flows: Introduction and
Setup
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Transportation/Road Network
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Internet Backbone Network
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Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V, E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

Flow abstract term to indicate stuff (traffic/data/etc) that flows
from sources to sinks.
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Single Source/Single Sink Flows

Simple setting:

1 Single source s and single sink t.

2 Every other node v is an internal node.

3 Flow originates at s and terminates at t.
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1 Each edge e has a capacity c(e) ≥ 0.

2 Sometimes assume:
Source s ∈ V has no incoming edges,
and sink t ∈ V has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least
one edge incident to it.
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Definition of Flow

Two ways to define flows:

1 edge based, or

2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.
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Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E→ R≥0 s.t.
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Figure : Flow with value.

1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).
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Figure : Flow with value.

1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.∑

e into v

f(e) =
∑

e out of v

f(e)
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1 Capacity Constraint: For each edge
e, f(e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.∑

e into v

f(e) =
∑

e out of v

f(e)

3 Value of flow= (total flow out of
source) − (total flow in to source).
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Flow...

Conservation of flow law is also known as Kirchhoff’s law.
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More Definitions and Notation

Notation
1 The inflow into a vertex v is f in(v) =

∑
e into v f(e) and the

outflow is fout(v) =
∑

e out of v f(e)

2 For a set of vertices A, f in(A) =
∑

e into A f(e). Outflow
fout(A) is defined analogously

Definition
For a network G = (V, E) with source s, the value of flow f is
defined as v(f) = fout(s)− f in(s).
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Value of flow?

In the flow depicted on the right,
the value of the flow is.

(A) 6.

(B) 13.

(C) 18.

(D) 28.

(E) 43.
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).∑
p∈P:e∈p

f(p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f(p).
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Example

s t

v

u

/20

/30

/20

/11

/27

P = {p1, p2, p3}
p1 : s→ u→ t
p2 : s→ u→ v→ t
p3 : s→ v→ t

f(p1) = 10, f(p2) = 4, f(p3) = 6
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Path based flow implies edge based flow

Lemma

Given a path based flow f : P → R≥0 there is an edge based flow
f ′ : E→ R≥0 of the same value.

Proof.
For each edge e define f ′(e) =

∑
p:e∈p f(p).

Exercise: Verify capacity and conservation constraints for f ′.
Exercise: Verify that value of f and f ′ are equal

Alexandra (UIUC) CS473 16 Fall 2014 16 / 39



Path based flow implies edge based flow

Lemma

Given a path based flow f : P → R≥0 there is an edge based flow
f ′ : E→ R≥0 of the same value.

Proof.
For each edge e define f ′(e) =

∑
p:e∈p f(p).

Exercise: Verify capacity and conservation constraints for f ′.
Exercise: Verify that value of f and f ′ are equal

Alexandra (UIUC) CS473 16 Fall 2014 16 / 39



Example

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

P = {p1, p2, p3}
p1 : s→ u→ t
p2 : s→ u→ v→ t
p3 : s→ v→ t

f(p1) = 10, f(p2) = 4, f(p3) = 6
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Example

s t

p
1 : 10

v

p2
: 4
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3 : 6
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: 4
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p
3 : 6

/20

/30
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/11
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P = {p1, p2, p3}
p1 : s→ u→ t
p2 : s→ u→ v→ t
p3 : s→ v→ t

f(p1) = 10, f(p2) = 4, f(p3) = 6

f ′(s→ u) = 14
f ′(u→ v) = 4
f ′(s→ v) = 6
f ′(u→ t) = 10
f ′(v→ t) = 10
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Flow Decomposition
Edge based flow to Path based Flow

Lemma

Given an edge based flow f ′ : E→ R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n. Given f ′, the path
based flow can be computed in O(mn) time.
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Flow Decomposition
Edge based flow to Path based Flow

Proof Idea.
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f(p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f(p).

5 Repeat until no path from s to t.

6 In each iteration at least on edge has flow reduced to zero.

7 Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.
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Example
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Edge vs Path based Definitions of Flow

Edge based flows:

1 compact representation, only m values to be specified, and

2 need to check flow conservation explicitly at each internal node.

Path flows:

1 in some applications, paths more natural,

2 not compact,

3 no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.
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The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?
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Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges E′ ⊂ E such that
removing E′ disconnects s from t: in other words there is no directed
s→ t path in E− E′.
The capacity of a cut E′ is c(E′) =

∑
e∈E′ c(e).

Caution:

1 Cut may leave t→ s paths!

2 There might be many s-t cuts.
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s− t cuts
A death by a thousand cuts
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Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E), E′ ⊆ E is a minimal cut if for
all e ∈ E′, if E′ \ {e} is not a cut.
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Observation: given a cut E′, can check efficiently whether E′ is a
minimal cut or not. How?
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Is this a minimal cut?

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E) with n vertices and m edges,
E′ ⊆ E is a minimal cut if for all e ∈ E′, E′ \ {e} is not a cut.

Checking if a set E′ forms a minimal s-t cut can be done in

(A) O(n + m).

(B) O(n log n + m).

(C) O((n + m) log n).

(D) O(nm).

(E) O(nm log n).

(F) You flow, me cut.
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Cuts as Vertex Partitions

Let A ⊂ V such that

1 s ∈ A, t 6∈ A, and

2 B = V \ A (hence t ∈ B).

The cut (A, B) is the set of edges

(A, B) = {(u, v) ∈ E | u ∈ A, v ∈ B} .

Cut (A, B) is set of edges leaving A.
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Claim
(A, B) is an s-t cut.

Proof.
Let P be any s→ t path in G. Since t is not in A, P has to leave A
via some edge (u, v) in (A, B).
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Cuts as Vertex Partitions

Lemma
Suppose E′ is an s-t cut. Then there is a cut (A, B) such that
(A, B) ⊆ E′.

Proof.
E′ is an s-t cut implies no path from s to t in (V, E− E′).

1 Let A be set of all nodes reachable by s in (V, E− E′).

2 Since E′ is a cut, t 6∈ A.

3 (A, B) ⊆ E′. Why?

Corollary

Every minimal s-t cut E′ is a cut of the form (A, B).
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Minimum Cut

Definition
Given a flow network an s-t minimum cut is a cut E′ of smallest
capacity amongst all s-t cuts.

The minimum cut in the network flow
depicted is:

(A) 10

(B) 18

(C) 28

(D) 30

(E) 48.

(F) No minimum cut, no cry.
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Minimum Cut

Definition
Given a flow network an s-t minimum cut is a cut E′ of smallest
capacity amongst all s-t cuts.
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Observation: exponential number of s-t cuts and no “easy” algorithm
to find a minimum cut.
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The Minimum-Cut Problem

Problem
Input A flow network G

Goal Find the capacity of a minimum s-t cut
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Flows and Cuts

Lemma
For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

Proof.
Formal proof easier with path based definition of flow.
Suppose f : P → R≥0 is a max-flow.

Every path p ∈ P contains an edge e ∈ E′. Why?
Assign each path p ∈ P to exactly one edge e ∈ E′.
Let Pe be paths assigned to e ∈ E′. Then

v(f) =
∑
p∈P

f(p) =
∑
e∈E′

∑
p∈Pe

f(p) ≤
∑
e∈E′

c(e).
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Flows and Cuts

Lemma
For any s-t cut E′, maximum s-t flow ≤ capacity of E′.

Corollary
Maximum s-t flow ≤ minimum s-t cut.
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Max-Flow Min-Cut Theorem

Theorem
In any flow network the maximum s-t flow is equal to the minimum
s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:

1 optimization

2 graph theory

3 combinatorics
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The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.
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Notes
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