## CS 473: Fundamental Algorithms, Fall 2014

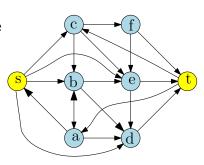
# **Network Flows**

Lecture 16 October 23, 2014

## How many edges to cut?

For the graph depicted on the right. How many edges have to be cut before there is no path between **s** and **t**:

- (A) 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5



## **Everything flows**

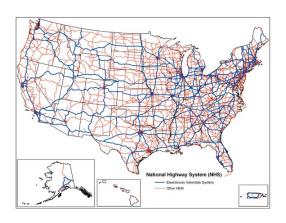
```
Panta rei – everything flows (literally).
Heraclitus (535–475 BC)
```

Alexandra (UIUC) CS473 3 Fall 2014 3 / 39

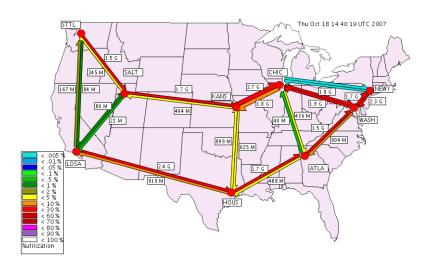
## Part I

Network Flows: Introduction and Setup

# Transportation/Road Network



### Internet Backbone Network



### Common Features of Flow Networks

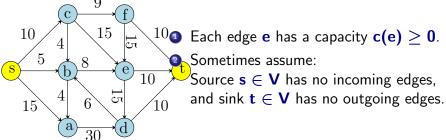
- **1** Network represented by a (directed) graph G = (V, E).
- ② Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is *switched/interchanged* at nodes.

**Flow** abstract term to indicate stuff (traffic/data/etc) that **flows** from sources to sinks.

# Single Source/Single Sink Flows

#### Simple setting:

- Single source s and single sink t.
- Every other node v is an internal node.
- Flow originates at s and terminates at t.



Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 39

### Definition of Flow

Two ways to define flows:

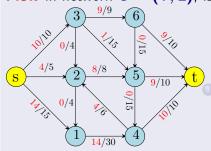
- o edge based, or
- path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

### **Definition**

Flow in network G = (V, E), is function  $f : E \to \mathbb{R}^{\geq 0}$  s.t.

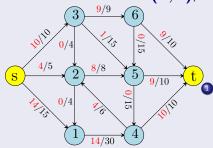


Capacity Constraint: For each edge  $e, f(e) \le c(e)$ .

Figure: Flow with value.

### Definition

Flow in network G = (V, E), is function  $f : E \to \mathbb{R}^{\geq 0}$  s.t.

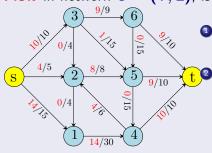


Capacity Constraint: For each edge  $e, f(e) \le c(e)$ .

Figure: Flow with value.

#### **Definition**

Flow in network G = (V, E), is function  $f : E \to \mathbb{R}^{\geq 0}$  s.t.



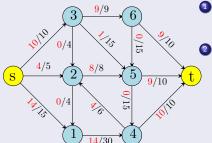
- Capacity Constraint: For each edge e, f(e) ≤ c(e).
  - Conservation Constraint: For each vertex v ≠ s, t.

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Figure: Flow with value.

#### Definition

Flow in network G = (V, E), is function  $f : E \to \mathbb{R}^{\geq 0}$  s.t.



- Capacity Constraint: For each edge e, f(e) ≤ c(e).
- **Conservation Constraint**: For each vertex  $\mathbf{v} \neq \mathbf{s}, \mathbf{t}$ .

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Figure: Flow with value.

Value of flow= (total flow out of source) — (total flow in to source).

## Flow...

Conservation of flow law is also known as Kirchhoff's law.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 39

## More Definitions and Notation

#### **Notation**

- The inflow into a vertex  $\mathbf{v}$  is  $\mathbf{f}^{\mathrm{in}}(\mathbf{v}) = \sum_{\mathbf{e} \text{ into } \mathbf{v}} \mathbf{f}(\mathbf{e})$  and the outflow is  $\mathbf{f}^{\mathrm{out}}(\mathbf{v}) = \sum_{\mathbf{e} \text{ out of } \mathbf{v}} \mathbf{f}(\mathbf{e})$
- ② For a set of vertices A,  $f^{in}(A) = \sum_{e \text{ into } A} f(e)$ . Outflow  $f^{out}(A)$  is defined analogously

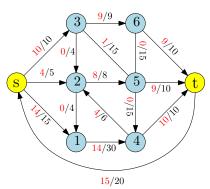
#### Definition

For a network G = (V, E) with source s, the value of flow f is defined as  $v(f) = f^{out}(s) - f^{in}(s)$ .

### Value of flow?

In the flow depicted on the right, the value of the flow is.

- (A) 6.
- **(B)** 13.
- (C) 18.
- (D) 28.
- **(E)** 43.



Intuition: Flow goes from source **s** to sink **t** along a path.

 $\mathcal{P}$ : set of all paths from **s** to **t**.  $|\mathcal{P}|$  can be **exponential** in **n**.

## Definition (Flow by paths.)

A flow in network G = (V, E), is function  $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$  s.t.

**1** Capacity Constraint: For each edge e, total flow on e is  $\leq c(e)$ .

$$\sum_{p \in \mathcal{P}: e \in p} f(p) \le c(e)$$

Conservation Constraint: No need! Automatic

Intuition: Flow goes from source **s** to sink **t** along a path.

 $\mathcal{P}$ : set of all paths from **s** to **t**.  $|\mathcal{P}|$  can be **exponential** in **n**.

## Definition (Flow by paths.)

A flow in network G = (V, E), is function  $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$  s.t.

**1** Capacity Constraint: For each edge e, total flow on e is  $\leq c(e)$ .

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source **s** to sink **t** along a path.

 $\mathcal{P}$ : set of all paths from **s** to **t**.  $|\mathcal{P}|$  can be **exponential** in **n**.

## Definition (Flow by paths.)

A flow in network G = (V, E), is function  $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$  s.t.

**1** Capacity Constraint: For each edge e, total flow on e is  $\leq c(e)$ .

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source  $\mathbf{s}$  to sink  $\mathbf{t}$  along a path.

 $\mathcal{P}$ : set of all paths from **s** to **t**.  $|\mathcal{P}|$  can be **exponential** in **n**.

## Definition (Flow by paths.)

A flow in network G = (V, E), is function  $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$  s.t.

**1** Capacity Constraint: For each edge e, total flow on e is  $\leq c(e)$ .

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source **s** to sink **t** along a path.

 $\mathcal{P}$ : set of all paths from **s** to **t**.  $|\mathcal{P}|$  can be **exponential** in **n**.

## Definition (Flow by paths.)

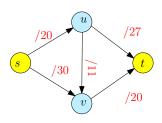
A flow in network G = (V, E), is function  $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$  s.t.

**1** Capacity Constraint: For each edge e, total flow on e is  $\leq c(e)$ .

$$\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$$

Conservation Constraint: No need! Automatic.

## Example



$$\mathcal{P} = \{p_1, p_2, p_3\}$$

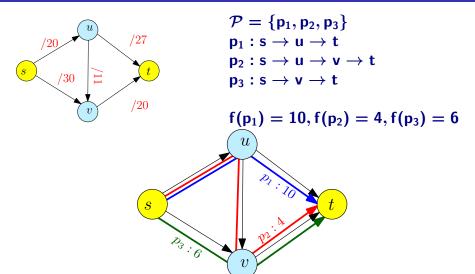
$$p_1 : s \rightarrow u \rightarrow t$$

$$p_2 : s \rightarrow u \rightarrow v \rightarrow t$$

$$p_3 : s \rightarrow v \rightarrow t$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$ 

# Example



Alexandra (UIUC) CS473 15 Fall 2014 15 / 39

## Path based flow implies edge based flow

#### Lemma

Given a path based flow  $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$  there is an edge based flow  $\mathbf{f}': \mathbf{E} \to \mathbb{R}^{\geq 0}$  of the same value.

#### Proof.

For each edge e define  $f'(e) = \sum_{p:e \in p} f(p)$ 

Exercise: Verify capacity and conservation constraints for f'.

**Exercise:** Verify that value of **f** and **f'** are equal

## Path based flow implies edge based flow

#### Lemma

Given a path based flow  $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$  there is an edge based flow  $\mathbf{f}': \mathbf{E} \to \mathbb{R}^{\geq 0}$  of the same value.

#### Proof.

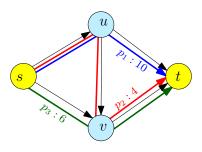
For each edge **e** define  $f'(e) = \sum_{p:e \in p} f(p)$ .

**Exercise:** Verify capacity and conservation constraints for f'.

**Exercise:** Verify that value of **f** and **f'** are equal

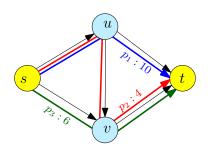


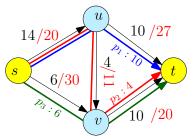
# Example



$$\begin{split} \mathcal{P} &= \{p_1, p_2, p_3\} \\ p_1 : s &\to u \to t \\ p_2 : s &\to u \to v \to t \\ p_3 : s &\to v \to t \\ \end{split}$$
 
$$f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$$

# Example





$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \rightarrow u \rightarrow t$$

$$p_2 : s \rightarrow u \rightarrow v \rightarrow t$$

$$p_3 : s \rightarrow v \rightarrow t$$

$$f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$$

$$f'(s \rightarrow u) = 14$$
  
 $f'(u \rightarrow v) = 4$   
 $f'(s \rightarrow v) = 6$   
 $f'(u \rightarrow t) = 10$   
 $f'(v \rightarrow t) = 10$ 

## Flow Decomposition

Edge based flow to Path based Flow

#### Lemma

Given an edge based flow  $\mathbf{f}': \mathbf{E} \to \mathbb{R}^{\geq 0}$ , there is a path based flow  $\mathbf{f}: \mathcal{P} \to \mathbb{R}^{\geq 0}$  of same value. Moreover,  $\mathbf{f}$  assigns non-negative flow to at most  $\mathbf{m}$  paths where  $|\mathbf{E}| = \mathbf{m}$  and  $|\mathbf{V}| = \mathbf{n}$ . Given  $\mathbf{f}'$ , the path based flow can be computed in  $\mathbf{O}(\mathbf{mn})$  time.

Alexandra (UIUC) CS473 18 Fall 2014 18 / 39

# Flow Decomposition

Edge based flow to Path based Flow

#### Proof Idea.

- ① Remove all edges with f'(e) = 0.
- 2 Find a path p from s to t.
- **3** Assign f(p) to be  $\min_{e \in p} f'(e)$ .
- Reduce f'(e) for all  $e \in p$  by f(p).
- Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 39

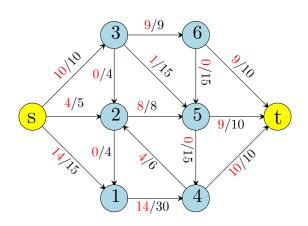
## Flow Decomposition

Edge based flow to Path based Flow

#### Proof Idea.

- Remove all edges with f'(e) = 0.
- Find a path p from s to t.
- **3** Assign f(p) to be  $\min_{e \in p} f'(e)$ .
- Reduce f'(e) for all  $e \in p$  by f(p).
- Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

# Example



## Edge vs Path based Definitions of Flow

#### Edge based flows:

- **1** compact representation, only **m** values to be specified, and
- 2 need to check flow conservation explicitly at each internal node.

#### Path flows:

- in some applications, paths more natural,
- not compact,
- o no need to check flow conservation constraints.

Equivalence shows that we can go back and forth easily.

### The Maximum-Flow Problem

#### **Problem**

Input A network **G** with capacity **c** and source **s** and sink **t**.

Goal Find flow of **maximum** value.

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

### The Maximum-Flow Problem

#### **Problem**

Input A network **G** with capacity **c** and source **s** and sink **t**.

Goal Find flow of **maximum** value.

Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

### Cuts

## Definition (s-t cut)

Given a flow network an **s-t cut** is a set of edges  $\mathbf{E}' \subset \mathbf{E}$  such that removing  $\mathbf{E}'$  disconnects **s** from **t**: in other words there is no directed  $\mathbf{s} \to \mathbf{t}$  path in  $\mathbf{E} - \mathbf{E}'$ .

The **capacity** of a cut  $\mathbf{E}'$  is  $\mathbf{c}(\mathbf{E}') = \sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$ .

#### Caution:

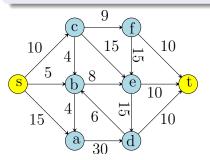
- Cut may leave  $t \rightarrow s$  paths!
- There might be many s-t cuts.

### Cuts

### Definition (s-t cut)

Given a flow network an s-t cut is a set of edges  $\mathbf{E}' \subset \mathbf{E}$  such that removing  $\mathbf{E}'$  disconnects s from t: in other words there is no directed  $\mathbf{s} \to \mathbf{t}$  path in  $\mathbf{E} - \mathbf{E}'$ .

The capacity of a cut  $\mathbf{E}'$  is  $\mathbf{c}(\mathbf{E}') = \sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$ .



#### Caution

- ① Cut may leave  $\mathbf{t} \to \mathbf{s}$  paths!
- There might be many s-t cuts.

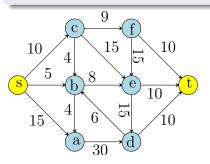
Alexandra (UIUC) CS473 23 Fall 2014 23 / 39

### Cuts

### Definition (s-t cut)

Given a flow network an s-t cut is a set of edges  $E' \subset E$  such that removing E' disconnects s from t: in other words there is no directed  $\mathbf{s} \rightarrow \mathbf{t}$  path in  $\mathbf{E} - \mathbf{E'}$ .

The capacity of a cut E' is  $c(E') = \sum_{e \in F'} c(e)$ .



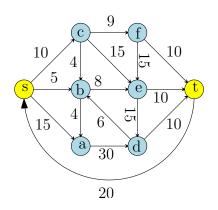
#### Caution:

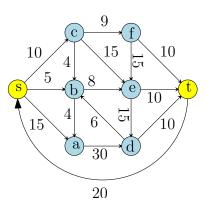
- ① Cut may leave  $\mathbf{t} \to \mathbf{s}$  paths!
- There might be many s-t cuts.

Alexandra (UIUC) CS473 Fall 2014 23 / 39

#### s — t cuts

#### A death by a thousand cuts

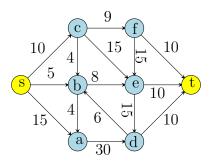




### Minimal Cut

# Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E),  $E' \subseteq E$  is a minimal cut if for all  $e \in E'$ , if  $E' \setminus \{e\}$  is not a cut.

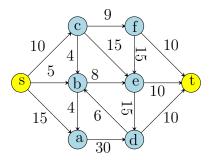


Observation: given a cut **E**', can check efficiently whether **E**' is a minimal cut or not. How?

### Minimal Cut

# Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E),  $E' \subseteq E$  is a minimal cut if for all  $e \in E'$ , if  $E' \setminus \{e\}$  is not a cut.



Observation: given a cut **E**', can check efficiently whether **E**' is a minimal cut or not. How?

### Is this a minimal cut?

# Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E) with n vertices and m edges,  $E' \subseteq E$  is a minimal cut if for all  $e \in E'$ ,  $E' \setminus \{e\}$  is not a cut.

Checking if a set **E**' forms a minimal **s**-**t** cut can be done in

- (A) O(n+m).
- (B)  $O(n \log n + m)$ .
- (C)  $O((n+m)\log n)$ .
- (D) O(nm).
- (E)  $O(nm \log n)$ .
- (F) You flow, me cut.

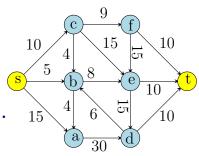
Let  $A \subset V$  such that

- $\mathbf{0}$   $\mathbf{s} \in \mathbf{A}$ ,  $\mathbf{t} \not\in \mathbf{A}$ , and
- $\bullet$  B = V \ A (hence t  $\in$  B).

The cut (A, B) is the set of edges

$$(A,B) = \{(u,v) \in E \mid u \in A, v \in B\}.$$

Cut (A, B) is set of edges leaving A.



#### Claim

(A, B) is an s-t cut.

#### Proof.

Let P be any  $s \to t$  path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

#### Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that  $(A, B) \subseteq E'$ .

#### Proof.

 $\mathbf{E}'$  is an  $\mathbf{s}$ - $\mathbf{t}$  cut implies no path from  $\mathbf{s}$  to  $\mathbf{t}$  in  $(\mathbf{V}, \mathbf{E} - \mathbf{E}')$ .

- Let **A** be set of all nodes reachable by **s** in (V, E E').
- ② Since  $\mathbf{E}'$  is a cut,  $\mathbf{t} \not\in \mathbf{A}$ .
- $(A, B) \subseteq E'$ . Why?

#### Corollary

#### Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that  $(A, B) \subseteq E'$ .

#### Proof.

 $\mathbf{E}'$  is an  $\mathbf{s}$ - $\mathbf{t}$  cut implies no path from  $\mathbf{s}$  to  $\mathbf{t}$  in  $(\mathbf{V}, \mathbf{E} - \mathbf{E}')$ .

- **1** Let **A** be set of all nodes reachable by **s** in (V, E E').
- ② Since  $\mathbf{E}'$  is a cut,  $\mathbf{t} \not\in \mathbf{A}$ .
- $(A, B) \subseteq E'$ . Why?

### Corollary

#### Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that  $(A, B) \subseteq E'$ .

#### Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- **1** Let **A** be set of all nodes reachable by **s** in (V, E E').
- 2 Since  $\mathbf{E}'$  is a cut,  $\mathbf{t} \not\in \mathbf{A}$ .
- **3**  $(A, B) \subseteq E'$ . Why? If some edge  $(u, v) \in (A, B)$  is not in E' then v will be reachable by s and should be in A, hence a contradiction.

### Corollary

#### Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that  $(A, B) \subseteq E'$ .

#### Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- **1** Let **A** be set of all nodes reachable by **s** in (V, E E').
- 2 Since  $\mathbf{E}'$  is a cut,  $\mathbf{t} \not\in \mathbf{A}$ .
- **3**  $(A, B) \subseteq E'$ . Why?If some edge  $(u, v) \in (A, B)$  is not in E' then v will be reachable by s and should be in A, hence a contradiction.

### Corollary

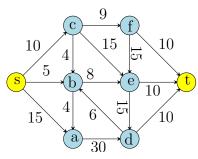
# Minimum Cut

#### **Definition**

Given a flow network an **s-t minimum** cut is a cut **E**' of smallest capacity amongst all **s-t** cuts.

The minimum cut in the network flow depicted is:

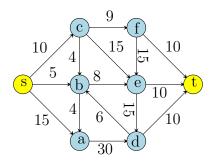
- (A) 10
- **(B)** 18
- (C) 28
- **(D)** 30
- **(E)** 48.
- (F) No minimum cut, no cry.



# Minimum Cut

#### **Definition**

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

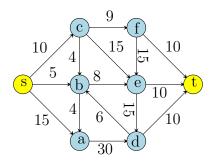


Observation: exponential number of **s-t** cuts and no "easy" algorithm to find a minimum cut.

# Minimum Cut

#### **Definition**

Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.



Observation: exponential number of **s-t** cuts and no "easy" algorithm to find a minimum cut.

### The Minimum-Cut Problem

#### Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

#### Lemma

For any s-t cut  $\mathbf{E}'$ , maximum s-t flow  $\leq$  capacity of  $\mathbf{E}'$ .

#### Proof.

Formal proof easier with path based definition of flow.

Suppose  $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$  is a max-flow.

Every path  $\mathbf{p} \in \mathcal{P}$  contains an edge  $\mathbf{e} \in \mathbf{E}'$ . Why? Assign each path  $\mathbf{p} \in \mathcal{P}$  to exactly one edge  $\mathbf{e} \in \mathbf{E}'$ . Let  $\mathcal{P}_{\mathbf{e}}$  be paths assigned to  $\mathbf{e} \in \mathbf{E}'$ . Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

#### Lemma

For any s-t cut  $\mathbf{E}'$ , maximum s-t flow  $\leq$  capacity of  $\mathbf{E}'$ .

#### Proof.

Formal proof easier with path based definition of flow.

Suppose  $f:\mathcal{P}\to\mathbb{R}^{\geq 0}$  is a max-flow.

Every path  $\mathbf{p} \in \mathcal{P}$  contains an edge  $\mathbf{e} \in \mathbf{E}'$ . Why?

Assign each path  $\mathbf{p} \in \mathcal{P}$  to exactly one edge  $\mathbf{e} \in \mathbf{E}'$ . Let  $\mathcal{P}_{\mathbf{e}}$  be paths assigned to  $\mathbf{e} \in \mathbf{E}'$ . Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

#### Lemma

For any s-t cut  $\mathbf{E}'$ , maximum s-t flow  $\leq$  capacity of  $\mathbf{E}'$ .

#### Proof.

Formal proof easier with path based definition of flow.

Suppose  $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$  is a max-flow.

Every path  $\mathbf{p} \in \mathcal{P}$  contains an edge  $\mathbf{e} \in \mathbf{E'}$ . Why? Assign each path  $\mathbf{p} \in \mathcal{P}$  to exactly one edge  $\mathbf{e} \in \mathbf{E'}$ . Let  $\mathcal{P}_{\mathbf{e}}$  be paths assigned to  $\mathbf{e} \in \mathbf{E'}$ . Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

#### Lemma

For any s-t cut  $\mathbf{E}'$ , maximum s-t flow  $\leq$  capacity of  $\mathbf{E}'$ .

#### Proof.

Formal proof easier with path based definition of flow.

Suppose  $f: \mathcal{P} \to \mathbb{R}^{\geq 0}$  is a max-flow.

Every path  $\mathbf{p} \in \mathcal{P}$  contains an edge  $\mathbf{e} \in \mathbf{E}'$ . Why? Assign each path  $\mathbf{p} \in \mathcal{P}$  to exactly one edge  $\mathbf{e} \in \mathbf{E}'$ . Let  $\mathcal{P}_{\mathbf{e}}$  be paths assigned to  $\mathbf{e} \in \mathbf{E}'$ . Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

#### Lemma

For any s-t cut  $\mathbf{E}'$ , maximum s-t flow  $\leq$  capacity of  $\mathbf{E}'$ .

# Corollary

*Maximum* **s-t** *flow* < *minimum* **s-t** *cut.* 

### Max-Flow Min-Cut Theorem

#### **Theorem**

In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

### Max-Flow Min-Cut Theorem

#### **Theorem**

In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!

Proof coming shortly

Many applications

- optimization
- graph theory
- combinatorics

### Max-Flow Min-Cut Theorem

#### **Theorem**

In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa! Proof coming shortly.

Many applications:

- optimization
- graph theory
- combinatorics

### The Maximum-Flow Problem

#### **Problem**

Input A network **G** with capacity **c** and source **s** and sink **t**.

Goal Find flow of **maximum** value from **s** to **t**.

**Exercise:** Given **G**, **s**, **t** as above, show that one can remove all edges into **s** and all edges out of **t** without affecting the flow value between **s** and **t**.

### The Maximum-Flow Problem

#### **Problem**

Input A network  $\bf G$  with capacity  $\bf c$  and source  $\bf s$  and sink  $\bf t$ .

Goal Find flow of maximum value from s to t.

**Exercise:** Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.







