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Part I

Introduction to Randomized
Algorithms
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Example: Randomized QuickSort

QuickSort Hoare [1962]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.
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Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.

Theorem
Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
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Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A, B, C is AB = C?

Deterministic algorithm:

1 Multiply A and B and check if equal to C.

2 Running time? O(n3) by straight forward approach. O(n2.37)
with fast matrix multiplication (complicated and impractical).
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Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A, B, C is AB = C?

Randomized algorithm:
1 Pick a random n× 1 vector r.
2 Return the answer of the equality ABr = Cr.
3 Running time? O(n2)!

Theorem
If AB = C then the algorithm will always say YES. If AB 6= C then
the algorithm will say YES with probability at most 1/2. Can repeat
the algorithm 100 times independently to reduce the probability of a
false positive to 1/2100.
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Why randomized algorithms?

1 Many many applications in algorithms, data structures and
computer science!

2 In some cases only known algorithms are randomized or
randomness is provably necessary.

3 Often randomized algorithms are (much) simpler and/or more
efficient.

4 Several deep connections to mathematics, physics etc.

5 . . .

6 Lots of fun!
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Where do I get random bits?

Question: Are true random bits available in practice?

1 Buy them!

2 CPUs use physical phenomena to generate random bits.

3 Can use pseudo-random bits or semi-random bits from nature.
Several fundamental unresolved questions in complexity theory
on this topic. Beyond the scope of this course.

4 In practice pseudo-random generators work quite well in many
applications.

5 The model is interesting to think in the abstract and is very
useful even as a theoretical construct. One can derandomize
randomized algorithms to obtain deterministic algorithms.
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Average case analysis vs Randomized algorithms

Average case analysis:

1 Fix a deterministic algorithm.

2 Assume inputs comes from a probability distribution.

3 Analyze the algorithm’s average performance over the
distribution over inputs.

Randomized algorithms:

1 Algorithm uses random bits in addition to input.

2 Analyze algorithms average performance over the given input
where the average is over the random bits that the algorithm
uses.

3 On each input behaviour of algorithm is random. Analyze
worst-case over all inputs of the (average) performance.
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Discrete Probability

We restrict attention to finite probability spaces.

Definition
A discrete probability space is a pair (Ω, Pr) consists of finite set Ω
of elementary events and function p : Ω→ [0, 1] which assigns a
probability Pr[ω] for each ω ∈ Ω such that

∑
ω∈Ω Pr[ω] = 1.

Example

An unbiased coin. Ω = {H, T} and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.
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Discrete Probability
And more examples

Example

A biased coin. Ω = {H, T} and Pr[H] = 2/3, Pr[T] = 1/3.

Example

Two independent unbiased coins. Ω = {HH, TT, HT, TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

Example

A pair of (highly) correlated dice.
Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Pr[i, i] = 1/6 for 1 ≤ i ≤ 6 and Pr[i, j] = 0 if i 6= j.
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Events

Definition
Given a probability space (Ω, Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability
of an event A, denoted by Pr[A], is

∑
ω∈A Pr[ω].

The complement event of an event A ⊆ Ω is the event Ω \ A
frequently denoted by Ā.
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Events
Examples

Example

A pair of independent dice. Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
1 Let A be the event that the sum of the two numbers on the dice

is even.
Then A =

{
(i, j) ∈ Ω

∣∣∣ (i + j) is even
}

.

Pr[A] = |A|/36 = 1/2.

2 Let B be the event that the first die has 1. Then
B =

{
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

}
.

Pr[B] = 6/36 = 1/6.
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Independent Events

Definition
Given a probability space (Ω, Pr) and two events A, B are
independent if and only if Pr[A ∩ B] = Pr[A] Pr[B]. Otherwise
they are dependent. In other words A, B independent implies one
does not affect the other.

Example

Two coins. Ω = {HH, TT, HT, TH} and
Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

1 A is the event that the first coin is heads and B is the event
that second coin is tails. A, B are independent.

2 A is the event that the two coins are different. B is the event
that the second coin is heads. A, B independent.
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Independent Events
Examples

Example
A is the event that both are not tails and B is event that second coin
is heads. A, B are dependent.
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Dependent or independent?

Consider two rolls of the dice.

1 A = the event that the first roll is odd.

2 B = the event that the sum of the two rolls is odd.

The events A and B are

(A) dependent.

(B) independent.
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Union bound
The probability of the union of two events, is no bigger than the probability of the
sum of their probabilities.

Lemma
For any two events E and F, we have that

Pr
[
E ∪ F

]
≤ Pr

[
E
]

+ Pr
[
F
]

.

Proof.
Consider E and F to be a collection of elmentery events (which they
are). We have

Pr
[
E ∪ F

]
=

∑
x∈E∪F

Pr[x]

≤
∑
x∈E

Pr[x] +
∑
x∈F

Pr[x] = Pr
[
E
]

+ Pr
[
F
]
.
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Random Variables

Definition
Given a probability space (Ω, Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real
number. In other words X : Ω→ R.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

1 X : Ω→ R where X(i) = i mod 2.

2 Y : Ω→ R where Y(i) = i2.

Definition
A binary random variable is one that takes on values in {0, 1}.
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Indicator Random Variables

Special type of random variables that are quite useful.

Definition
Given a probability space (Ω, Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if
ω ∈ A and XA(ω) = 0 if ω 6∈ A.

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6. Let A be the even that i is divisible by 3. Then
XA(i) = 1 if i = 3, 6 and 0 otherwise.
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Expectation

Definition
For a random variable X over a probability space (Ω, Pr) the
expectation of X is defined as

∑
ω∈Ω Pr[ω] X(ω). In other words,

the expectation is the average value of X according to the
probabilities given by Pr[·].

Example

A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for
1 ≤ i ≤ 6.

1 X : Ω→ R where X(i) = i mod 2. Then E[X] = 1/2.

2 Y : Ω→ R where Y(i) = i2. Then

E[Y] =
∑6

i=1
1
6
· i2 = 91/6.
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Expected number of vertices?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from deleting every vertex of G with probability
1/2. The expected number of vertices in H is

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.
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Expectation

Proposition

For an indicator variable XA, E[XA] = Pr[A].

Proof.

E[XA] =
∑
y∈Ω

XA(y) Pr[y]

=
∑
y∈A

1 · Pr[y] +
∑

y∈Ω\A

0 · Pr[y]

=
∑
y∈A

Pr[y]

= Pr[A] .
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Dude, where is my car?

Suppose you’re on a game show, and you’re given the choice of three
doors: Behind one door is a car; behind the others, vampires. You
pick a door, say No. 1, and the host, who knows what’s behind the
doors, opens another door, say No. 3, which has a vampire. He then
says to you, ”Do you want to pick door No. 2?” Is it to your
advantage to switch your choice?

(A) Yep. Changing doors is a good idea.

(B) Nope. The probability that you are on the right door is the
same, whether you change the door, or stay with your
current selection.
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Linearity of Expectation

Lemma
Let X, Y be two random variables (not necessarily independent) over
a probability space (Ω, Pr). Then E[X + Y] = E[X] + E[Y].

Proof.

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X(ω) + Y(ω))

=
∑
ω∈Ω

Pr[ω] X(ω) +
∑
ω∈Ω

Pr[ω] Y(ω) = E[X] + E[Y] .

Corollary

E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].
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Expected number of edges?

Let G = (V, E) be a graph with n vertices and m edges. Let H be
the graph resulting from deleting every vertex of G with probability
1/2. The expected number of edges in H is

(A) n/2.

(B) n/4.

(C) m/2.

(D) m/4.

(E) none of the above.
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Expected number of triangles?

Let G = (V, E) be a graph with n vertices and m edges. Assume G
has t triangles (i.e., a triangle is a simple cycle with three vertices).
Let H be the graph resulting from deleting every vertex of G with
probability 1/2. The expected number of triangles in H is

(A) t/2.

(B) t/4.

(C) t/8.

(D) t/16.

(E) none of the above.
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Types of Randomized Algorithms

Typically one encounters the following types:

1 Las Vegas randomized algorithms: for a given input x
output of algorithm is always correct but the running time is a
random variable. In this case we are interested in analyzing the
expected running time.

2 Monte Carlo randomized algorithms: for a given input x the
running time is deterministic but the output is random; correct
with some probability. In this case we are interested in analyzing
the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random.
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Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
1 Let Q(x) be the time for Q to run on input x of length |x|.
2 Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:
1 Let R(x) be the time for Q to run on input x of length |x|.
2 R(x) is a random variable: depends on random bits used by R.
3 E[R(x)] is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .
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Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:

1 Let M(x) be the time for M to run on input x of length |x|. For
Monte Carlo, assumption is that run time is deterministic.

2 Let Pr[x] be the probability that M is correct on x.

3 Pr[x] is a random variable: depends on random bits used by M.

4 Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x:|x|=n

Pr[x] .
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Part II

Why does randomization help?
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Ping and find.

Consider a deterministic algorithm A that is trying to find an element
in an array X of size n. At every step it is allowed to ask the value of
one cell in the array, and the adversary is allowed after each such
ping, to shuffle elements around in the array in any way it seems fit.
For the best possible deterministic algorithm the number of rounds it
has to play this game till it finds the required element is

(A) O(1)

(B) O(n)

(C) O(n log n)

(D) O(n2)

(E) ∞.
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Ping and find randomized.

Consider an algorithm randFind that is trying to find an element in
an array X of size n. At every step it asks the value of one random
cell in the array, and the adversary is allowed after each such ping, to
shuffle elements around in the array in any way it seems fit. This
algorithm would stop in expectation after

(A) O(1)

(B) O(log n)

(C) O(n)

(D) O(n2)

(E) ∞.

steps.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head given 1, tail
gives zero. How many heads? ...we get a binomial distribution.
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Massive randomness.. Is not that random.

This is known as concentration of mass.
This is a very special case of the law of large numbers.
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Side note...
Law of large numbers (weakest form)...

Informal statement of law of large numbers
For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Massive randomness.. Is not that random.

Intuitive conclusion
Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.
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Binomial distribution

Xn = numbers of heads when flipping a coin n times.

Claim

Pr
[
Xn = i

]
=

(n
i)

2n .

Where:
(n

k

)
= n!

(n−k)!k!
.

Indeed,
(n

i

)
is the number of ways to choose i elements out of n

elements (i.e., pick which i coin flip come up heads).
Each specific such possibility (say 0100010...) had probability 1/2n.
We are interested in the bad event Pr[Xn ≤ n/4] (way too few
heads). We are going to prove this probability is tiny.
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Binomial distribution
Playing around with binomial coefficients

Lemma
n! ≥ (n/e)n.

Proof.

nn

n!
≤
∞∑
i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i!
. This implies that

(n/e)n ≤ n!, as required.
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Binomial distribution
Playing around with binomial coefficients

Lemma

For any k ≤ n, we have
(n

k

)
≤
(

ne
k

)k
.

Proof.(
n

k

)
=

n!

(n− k)!k!
=

n(n− 1)(n− 2) . . . (n− k + 1)

k!

≤
nk

k!
≤

nk(
k
e

)k
=

(
ne

k

)k

.

since k! ≥ (k/e)k (by previous lemma).
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Binomial distribution
Playing around with binomial coefficients

Pr

[
Xn ≤

n

4

]
=

n/4∑
k=0

1

2n

(
n

k

)
≤

1

2n
2 ·
(

n

n/4

)

For k ≤ n/4 the above sequence behave like a geometric variable.(
n

k + 1

)
/

(
n

k

)
=

n!

(k + 1)!(n− k− 1)!
/

n!

(k)!(n− k)!

=
n− k

k + 1
≥

(3/4)n

n/4 + 1
≥ 2.
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Binomial distribution
Playing around with binomial coefficients

Pr

[
Xn ≤

n

4

]
≤

1

2n
2 ·
(

n

n/4

)
≤

1

2n
2 ·
(

ne

n/4

)n/4

≤ 2 ·
(

4e

24

)n/4

≤ 2 · 0.68n/4.

We just proved the following theorem.

Theorem
Let Xn be the random variable which is the number of heads when
flipping an unbiased coin independently n times. Then

Pr

[
Xn ≤

n

4

]
≤ 2 · 0.68n/4 and Pr

[
Xn ≥

3n

4

]
≤ 2 · 0.68n/4.
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Flipping a coin.

If you flip an unbiased coin 1000 times, the probability you get at
most 250 heads is at most

(A) ≤ 2 · 0.682000 ≤ 10−336.

(B) ≤ 2 · 0.681000 ≤ 10−168.

(C) ≤ 2 · 0.68500 ≤ 3.593 · 10−84.

(D) ≤ 2 · 0.68250 ≤ 3 · 10−42.

(E) 0.1.
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Part III

Randomized Quick Sort and Selection
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Randomized QuickSort

Randomized QuickSort
1 Pick a pivot element uniformly at random from the array.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.
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Example

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
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Analysis via Recurrence

1 Given array A of size n, let Q(A) be number of comparisons of
randomized QuickSort on A.

2 Note that Q(A) is a random variable.
3 Let Ai

left and Ai
right be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n +
n∑

i=1

Pr
[

pivot has rank i
] (

Q(Ai
left) + Q(Ai

right)
)
.

Since each element of A has probability exactly of 1/n of being
chosen:

Q(A) = n +
n∑

i=1

1

n

(
Q(Ai

left) + Q(Ai
right)

)
.
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Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr
[

pivot has rank i
] (

Q(Ai
left) + Q(Ai

right)
)

Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr

[
pivot is

of rank i

](
E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i− 1) + T(n− i)) .
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Analysis via Recurrence

Let T(n) = maxA:|A|=n E[Q(A)] be the worst-case expected running
time of randomized QuickSort on arrays of size n.
We derived:

E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T(i− 1) + T(n− i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T(n) ≤ n +
n∑

i=1

1

n
(T(i− 1) + T(n− i)) .
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Solving the Recurrence

T(n) ≤ n +
n∑

i=1

1

n
(T(i− 1) + T(n− i))

with base case T(1) = 0.

Lemma
T(n) = O(n log n).

Proof.
(Guess and) Verify by induction.
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Notes
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