CS 473: Fundamental Algorithms, Fall 2014

Greedy Algorithms for Minimum Spanning Trees

Lecture 12 October 9, 2014

Part I

[Greedy Algorithms: Minimum](#page-1-0) [Spanning Tree](#page-1-0)

Minimum Spanning Tree

Input Connected graph $G = (V, E)$ with edge costs Goal Find $T \subset E$ such that (V, T) is connected and total cost of all edges in T is smallest

 \bullet T is the minimum spanning tree (MST) of G

Minimum Spanning Tree

Input Connected graph $G = (V, E)$ with edge costs Goal Find $T \subset E$ such that (V, T) is connected and total cost of all edges in T is smallest

 \bullet T is the minimum spanning tree (MST) of G

Applications

1 Network Design

- **O** Designing networks with minimum cost but maximum connectivity
- 2 Approximation algorithms
	- **•** Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
- **3** Cluster Analysis

```
Initially E is the set of all edges in GT is empty (* T will store edges of a MST *)
while E is not empty do
    choose i \in Eif (i satisfies condition)
        add i to T
return the set T
```
Main Task: In what order should edges be processed? When should we add edge to spanning tree?

Figure : Graph G

Figure : MST of G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : Graph G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : Graph G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : Graph G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : Graph G

Figure : MST of G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : Graph G

Figure : MST of G

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T .

Figure : MST of G

```
Initially E is the set of all edges in GT is E (* T will store edges of a MST *)
while E is not empty do
    choose i \in E of largest cost
    if removing i does not disconnect T then
        remove i from T
return the set T
```
Returns a minimum spanning tree.

Can we use Prim's algorithm for MST to find the Shortest Path?

- (A) Yes. Prim's algorithm uses the same principle as Dijkstra.
- (B) No. Shortest path is NP-hard and Prim runs in polynomial time.
- (C) No. Shortest path algorithms like Dijkstra, preserve a global optimality invariant, whereas MST can be found with non-adaptive greedy choices.

(D) IDK.

Correctness of MST Algorithms

- **1** Many different MST algorithms
- 2 All of them rely on some basic properties of MSTs, in particular the **Cut Property** to be seen shortly.

Assumption

Edge costs are distinct, that is no two edge costs are equal.

Cuts

Definition

Given a graph $G = (V, E)$, a cut is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

Cuts

Definition

Given a graph $G = (V, E)$, a cut is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into **S** and **V** \setminus **S** and **e** is the unique minimum cost edge crossing **S** (one end in **S** and the other in $V \setminus S$).

An edge $e = (u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C .

If edge costs are distinct then every edge is either safe or unsafe.

Exercise.

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into **S** and **V** \setminus **S** and **e** is the unique minimum cost edge crossing **S** (one end in **S** and the other in $V \setminus S$).

Definition

An edge $e = (u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C .

If edge costs are distinct then every edge is either safe or unsafe.

Exercise.

Safe and Unsafe Edges

Definition

An edge $e = (u, v)$ is a safe edge if there is some partition of V into **S** and **V** \setminus **S** and **e** is the unique minimum cost edge crossing **S** (one end in **S** and the other in $V \setminus S$).

Definition

An edge $e = (u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C .

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

Safe edge Example...

Every cut identifies one safe edge...

...the cheapest edge in the cut. Note: An edge **e** may be a safe edge for *many* cuts!

Safe edge Example...

Every cut identifies one safe edge...

Safe edge in the cut $(S, V \setminus S)$

...the cheapest edge in the cut. Note: An edge **e** may be a safe edge for *many* cuts!

Every cycle identifies one **unsafe** edge...

...the most expensive edge in the cycle.

Every cycle identifies one **unsafe** edge...

...the most expensive edge in the cycle.

Example

Figure : Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Example

Figure : Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...

Example

Figure : Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...
Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T^o may not be

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost!

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

Lemma

If e is a safe edge then every minimum spanning tree contains e .

- \bullet Suppose (for contradiction) **e** is not in MST **T**.
- **2** Since **e** is safe there is an $S \subset V$ such that **e** is the unique min cost edge crossing S.
- **3** Since **T** is connected, there must be some edge **f** with one end in S and the other in $V \setminus S$
- \bullet Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

(A) Consider adding the edge f.

 (A) Consider adding the edge **f**. (B) It is safe because it is the cheapest edge in the cut.

- \bigcirc (A) Consider adding the edge f. ² (B) It is safe because it is the cheapest edge in the cut.
- ³ (C) Lets throw out the edge **e** currently in the spanning tree which is more expensive than **f** and is in the same cut. Put it f instead...

- (A) Consider adding the edge f. (B) It is safe because it is the cheapest edge in the cut.
- ³ (C) Lets throw out the edge **e** currently in the spanning tree which is more expensive than **f** and is in the same cut. Put it f instead...
	- (D) New graph of selected edges is not a tree anymore. BUG.

Small Cuts

The **min-cut** of a graph **G** is a partition of **G** in $(S, V \setminus S)$ that minimizes the number of edges that cross the cut, $E(S, V \setminus S)$. The sparsest-cut of G is a partition $(S, V \setminus S)$ that minimizes the ratio $\phi(\mathsf{G}) = \frac{\mathsf{E}(\mathsf{S},\mathsf{V}\setminus \mathsf{S})}{|\mathsf{S}||\mathsf{V}\setminus \mathsf{S}|}$. Is the min-cut achieved by the same partition as the sparsest-cut?

- (A) Yes. The ratio $\phi(G)$ is minimized when $E(S, V \setminus S)$ is minimized.
- (B) No. Mincut is in P but sparsest-cut is NP-complete.
- (C) Yes. They can both be solved by a greedy algorithm.
- (D) No. sparsest-cut is in P but min-cut is NP-Complete.

Proof.

1 Suppose $\mathbf{e} = (\mathbf{v}, \mathbf{w})$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

2 T is spanning tree: there is a unique path P from v to w in T

3 Let **w'** be the first vertex in P belonging to $\textbf{V} \setminus \textbf{S}$; let \textbf{v}' be the vertex just before it on P, and let $\mathsf{e}' = (\mathsf{v}',\mathsf{w}')$

 $\mathbf{T}' = (\mathbf{T} \setminus \{ \mathbf{e}' \}) \cup \{ \mathbf{e} \}$ is spanning tree of lower cost. (Why?)

- **1** Suppose $\mathbf{e} = (\mathbf{v}, \mathbf{w})$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.
- **2 T** is spanning tree: there is a unique path P from v to w in T
- **3** Let **w** be the first vertex in **P** belonging to $\textbf{V} \setminus \textbf{S}$; let \textbf{v}' be the vertex just before it on P, and let $\mathsf{e}' = (\mathsf{v}',\mathsf{w}')$
- $\mathbf{T}' = (\mathbf{T} \setminus \{ \mathbf{e}' \}) \cup \{ \mathbf{e} \}$ is spanning tree of lower cost. (Why?)

Proof.

1 Suppose $\mathbf{e} = (\mathbf{v}, \mathbf{w})$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

2 T is spanning tree: there is a unique path P from v to w in T

3 Let **w** be the first vertex in **P** belonging to $\textbf{V} \setminus \textbf{S}$; let \textbf{v}' be the vertex just before it on P, and let $\mathsf{e}' = (\mathsf{v}',\mathsf{w}')$

 $\mathbf{T}' = (\mathbf{T} \setminus \{ \mathbf{e}' \}) \cup \{ \mathbf{e} \}$ is spanning tree of lower cost. (Why?)

Proof.

1 Suppose $\mathbf{e} = (\mathbf{v}, \mathbf{w})$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

2 T is spanning tree: there is a unique path P from v to w in T

3 Let **w**' be the first vertex in **P** belonging to $\textsf{V} \setminus \textsf{S}$; let \textsf{v}' be the vertex just before it on P , and let $\mathsf{e}' = (\mathsf{v}', \mathsf{w}')$

 $\mathbf{T}' = (\mathbf{T} \setminus \{ \mathbf{e}' \}) \cup \{ \mathbf{e} \}$ is spanning tree of lower cost. (Why?)

Proof.

1 Suppose $\mathbf{e} = (\mathbf{v}, \mathbf{w})$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.

2 T is spanning tree: there is a unique path P from v to w in T

3 Let **w**' be the first vertex in **P** belonging to $\textsf{V} \setminus \textsf{S}$; let \textsf{v}' be the vertex just before it on P , and let $\mathsf{e}' = (\mathsf{v}', \mathsf{w}')$

 $\mathbf{T}' = (\mathbf{T} \setminus \{e'\}) \cup \{e\}$ is spanning tree of lower cost. (Why?)

Proof of Cut Property (contd)

Observation

 $\mathsf{T}' = (\mathsf{T} \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

T' is connected.

Removed $e' = (v', w')$ from **T** but v' and w' are connected by the path $\mathsf{P}-\mathsf{f}+\mathsf{e}$ in T' . Hence T' is connected if T is.

T' is a tree

T' is connected and has $n - 1$ edges (since T had $n - 1$ edges) and hence T' is a tree

Proof of Cut Property (contd)

Observation

 $\mathsf{T}' = (\mathsf{T} \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

T' is connected.

Removed $e' = (v', w')$ from **T** but v' and w' are connected by the path $P - f + e$ in T' . Hence T' is connected if T is.

 T' is a tree

T' is connected and has $n - 1$ edges (since T had $n - 1$ edges) and hence T' is a tree

Proof of Cut Property (contd)

Observation

 $\mathsf{T}' = (\mathsf{T} \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

T' is connected.

Removed $e' = (v', w')$ from **T** but v' and w' are connected by the path $P - f + e$ in T' . Hence T' is connected if T is.

 T' is a tree

T' is connected and has $n - 1$ edges (since T had $n - 1$ edges) and hence T' is a tree

Safe Edges form a Tree

Lemma

Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

- **1** Suppose not. Let **S** be a connected component in the graph induced by the safe edges.
- 2 Consider the edges crossing **S**, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G .

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G .

Consequence: Every correct MST algorithm when **G** has unique edge costs includes exactly the safe edges.

Cycle Property

Lemma

If e is an unsafe edge then no MST of G contains e .

Proof.

Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- **1** Let **S** be the vertices connected by edges in **T** when **e** is added. **2 e** is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- 2 Set of edges output is a spanning tree
	- **1** Set of edges output forms a connected graph: by induction, **S** is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- **Q** Let **S** be the vertices connected by edges in **T** when **e** is added.
- **2 e** is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- 2 Set of edges output is a spanning tree
	- **1** Set of edges output forms a connected graph: by induction, **S** is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- **1** Let **S** be the vertices connected by edges in **T** when **e** is added.
- **2** e is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- 2 Set of edges output is a spanning tree
	- **1** Set of edges output forms a connected graph: by induction, **S** is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- **1** Let **S** be the vertices connected by edges in **T** when **e** is added.
- **2** e is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- 2 Set of edges output is a spanning tree
	- **1** Set of edges output forms a connected graph: by induction, **S** is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- **1** Let **S** be the vertices connected by edges in **T** when **e** is added.
- **2** e is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- 2 Set of edges output is a spanning tree
	- **1** Set of edges output forms a connected graph: by induction, **S** is connected in each iteration and eventually $S = V$.
	- **2** Only safe edges added and they do not have a cycle

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then **e** is safe

- **1** When algorithm adds **e** let **S** and **S**' be the connected components containing **u** and **v** respectively
- **2** e is the lowest cost edge crossing **S** (and also **S**').
- \bullet If there is an edge \mathbf{e}' crossing $\mathbf S$ and has lower cost than \mathbf{e} , then e' would come before e in the sorted order and would be added by the algorithm to T

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

- **1** If $e = (u, v)$ is added to tree, then **e** is safe
	- When algorithm adds **e** let **S** and **S**' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
	- **2** e is the lowest cost edge crossing **S** (and also **S**').
	- \bullet If there is an edge \mathbf{e}' crossing $\mathbf S$ and has lower cost than \mathbf{e} , then e' would come before e in the sorted order and would be added by the algorithm to T

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then **e** is safe

- When algorithm adds **e** let **S** and **S**' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
- **2** e is the lowest cost edge crossing **S** (and also **S**').
- \bullet If there is an edge \mathbf{e}' crossing $\mathbf S$ and has lower cost than \mathbf{e} , then e' would come before e in the sorted order and would be added by the algorithm to T

² Set of edges output is a spanning tree : exercise

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

1 If $e = (u, v)$ is added to tree, then **e** is safe

- When algorithm adds **e** let **S** and **S**' be the connected components containing \boldsymbol{u} and \boldsymbol{v} respectively
- **2** e is the lowest cost edge crossing S (and also S').
- **3** If there is an edge e' crossing S and has lower cost than e, then e' would come before e in the sorted order and would be added by the algorithm to **T**
- ² Set of edges output is a spanning tree : exercise

Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm

Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

Proof of correctness.

Argue that only unsafe edges are removed (see text book).

What does MST stand for...

...according to popular culture? (google)

- (A) Masters of Sacred Theology.
- (B) Minimum Spanning Tree.
- (C) Missouri University of Science and Technology.
- (D) Mountain Standard Time.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- \bullet ${\bf e_i}\prec {\bf e_j}$ if either ${\bf c}({\bf e_i})<{\bf c}({\bf e_j})$ or $({\bf c}({\bf e_i})={\bf c}({\bf e_j})$ and ${\bf i}<{\bf j})$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.
Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $\bf{D}\; \bf{e}_i \prec \bf{e}_j$ if either $\bf{c}(\bf{e}_i) < \bf{c}(\bf{e}_j)$ or $(\bf{c}(\bf{e}_i) = \bf{c}(\bf{e}_j)$ and $\bf{i} < \bf{j})$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $\bf{D}\; \bf{e}_i \prec \bf{e}_j$ if either $\bf{c}(\bf{e}_i) < \bf{c}(\bf{e}_j)$ or $(\bf{c}(\bf{e}_i) = \bf{c}(\bf{e}_j)$ and $\bf{i} < \bf{j})$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $\bf{D}\; \bf{e}_i \prec \bf{e}_j$ if either $\bf{c}(\bf{e}_i) < \bf{c}(\bf{e}_j)$ or $(\bf{c}(\bf{e}_i) = \bf{c}(\bf{e}_j)$ and $\bf{i} < \bf{j})$
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B))$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$)
- ³ Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Edge Costs: Positive and Negative

- **1** Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- 2 Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- **3** Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST.

Part II

[Data Structures for MST: Priority](#page-76-0) [Queues and Union-Find](#page-76-0)

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```

```
1 Number of iterations = O(n), where n is number of vertices
```

```
2 Picking e is O(m) where m is the number of edges
3 Total time O(nm)
```

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
- Number of iterations $= O(n)$, where **n** is number of vertices
- **2** Picking **e** is $O(m)$ where **m** is the number of edges **3** Total time **O(nm)**

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
- Number of iterations $= O(n)$, where **n** is number of vertices
- **2** Picking **e** is $O(m)$ where **m** is the number of edges **3** Total time **O(nm)**

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)while S \neq V do
        pick e = (v, w) \in E such that
            v \in S and w \in V - Se has minimum cost
        T = T \cup eS = S \cup wreturn the set T
```
- Number of iterations $= O(n)$, where **n** is number of vertices
- **2** Picking **e** is $O(m)$ where **m** is the number of edges
- **3** Total time $O(nm)$

Implementing Prim's Algorithm More Efficient Implementation

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
    while S \neq V do
        pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
    return the set T
```
Maintain vertices in **V** \setminus **S** in a priority queue with key **a**(**v**).

Implementing Prim's Algorithm More Efficient Implementation

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
    while S \neq V do
        pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
    return the set T
```
Maintain vertices in **V** \setminus **S** in a priority queue with key **a**(**v**).

Implementing Prim's Algorithm More Efficient Implementation

```
Prim ComputeMST
    E is the set of all edges in G
    S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
    while S \neq V do
        pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
    return the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations

- **1** makeQ: create an empty queue
- **2** findMin: find the minimum key in S
- \bullet **extractMin**: Remove $v \in S$ with smallest key and return it
- \bullet add(v, $k(v)$): Add new element v with key $k(v)$ to S
- **5 Delete(v)**: Remove element **v** from **S**
- **O** decreaseKey $(v, k'(v))$: decrease key of v from $k(v)$ (current key) to $\mathsf{k}'(\mathsf{v})$ (new key). Assumption: $\mathsf{k}'(\mathsf{v}) \leq \mathsf{k}(\mathsf{v})$
- **2** meld: merge two separate priority queues into one

Prim's using priority queues

```
E is the set of all edges in G
S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
return the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

- **1** Requires **O(n) extractMin** operations
- **2** Requires **O(m) decreaseKey** operations

Prim's using priority queues

```
E is the set of all edges in G
S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
return the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

 \bullet Requires $O(n)$ extractMin operations

2 Requires **O(m) decreaseKey** operations

Prim's using priority queues

```
E is the set of all edges in G
S = \{1\}T is empty (* T will store edges of a MST *)for v \notin S, a(v) = min_{w \in S} c(w, v)for v \notin S, e(v) = w such that w \in S and c(w, v) is minimum
while S \neq V do
    pick v with minimum a(v)T = T \cup \{(e(v), v)\}\S = S \cup \{v\}update arrays a and e
return the set T
```
Maintain vertices in $V \setminus S$ in a priority queue with key $a(v)$

- \bullet Requires $O(n)$ extractMin operations
- **2** Requires **O(m)** decreaseKey operations

Running time of Prim's Algorithm

 $O(n)$ extractMin operations and $O(m)$ decreaseKey operations

- **1** Using standard Heaps, extractMin and decreaseKey take $O(\log n)$ time. Total: $O((m + n) \log n)$
- **2** Using Fibonacci Heaps, O(log n) for extractMin and O(1) (amortized) for decreaseKey. Total: $O(n \log n + m)$.

Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?

Running time of Prim's Algorithm

 $O(n)$ extractMin operations and $O(m)$ decreaseKey operations

- **1** Using standard Heaps, extractMin and decreaseKey take $O(\log n)$ time. Total: $O((m + n) \log n)$
- 2 Using Fibonacci Heaps, O(log n) for extractMin and O(1) (amortized) for decreaseKey. Total: $O(n \log n + m)$.

Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?

- ¹ Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- Do BFS/DFS on T ∪ $\{e\}$. Takes $O(n)$ time
- \odot Total time $O(m \log m) + O(mn) = O(mn)$

- ¹ Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- Do BFS/DFS on T ∪ $\{e\}$. Takes $O(n)$ time
- \odot Total time $O(m \log m) + O(mn) = O(mn)$

```
Kruskal ComputeMST
    Initially E is the set of all edges in GT is empty (* T will store edges of a MST *)while E is not empty do
        choose e \in E of minimum cost
        if (T \cup \{e\} does not have cycles)
            add e to T
    return the set T
```
1 Presort edges based on cost. Choosing minimum can be done in $O(1)$ time

- Do BFS/DFS on T ∪ $\{e\}$. Takes $O(n)$ time
- \bullet Total time $O(m \log m) + O(mn) = O(mn)$

1 Presort edges based on cost. Choosing minimum can be done in $O(1)$ time

- Do BFS/DFS on T ∪ $\{e\}$. Takes $O(n)$ time
- \bullet Total time $O(m \log m) + O(mn) = O(mn)$

```
Kruskal ComputeMST
    Initially E is the set of all edges in GT is empty (* T will store edges of a MST *)while E is not empty do
        choose e \in E of minimum cost
        if (T \cup \{e\} does not have cycles)
            add e to T
    return the set T
```
- **1** Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- ² Do BFS/DFS on T ∪ {e}. Takes O(n) time
- \bullet Total time $O(m \log m) + O(mn) = O(mn)$

```
Kruskal ComputeMST
   Initially E is the set of all edges in GT is empty (* T will store edges of a MST *)while E is not empty do
       choose e \in E of minimum cost
       if ( does not have cycles)
           add e to T
   return the set T
```
- **1** Presort edges based on cost. Choosing minimum can be done in $O(1)$ time
- ² Do BFS/DFS on T ∪ {e}. Takes O(n) time
- \odot Total time $O(m \log m) + O(mn) = O(mn)$

Implementing Kruskal's Algorithm Efficiently

Need a data structure to check if two elements belong to same set and to merge two sets.

Implementing Kruskal's Algorithm Efficiently

Need a data structure to check if two elements belong to same set and to merge two sets.

Implementing Kruskal's Algorithm Efficiently

```
Kruskal ComputeMST
   Sort edges in E based on cost
   T is empty (* T will store edges of a MST *)each vertex u is placed in a set by itself
   while E is not empty do
        pick e = (u, v) \in E of minimum cost
        if u and v belong to different sets
            add e to T
            merge the sets containing u and v
   return the set T
```
Need a data structure to check if two elements belong to same set and to merge two sets.

MST for really sparse graphs?

Given a graph G with **n** vertices, and $n + 20$ edges, its MST can be computed in

 (A) O(n²). (B) O(n log n). (C) O(n log log n). (D) O(n $log^* n$). (E) O(n).

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following operations

- \bullet makeUnionFind(S) returns a data structure where each element of S is in a separate set
- **2 find(u)** returns the *name* of set containing element \bf{u} . Thus, \bf{u} and **v** belong to the same set if and only if **find(u) = find(v)**
- $\mathsf{union}(\mathbf{A}, \mathbf{B})$ merges two sets **A** and **B**. Here **A** and **B** are the names of the sets. Typically the name of a set is some element in the set.

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following operations

- \bullet makeUnionFind(S) returns a data structure where each element of S is in a separate set
- **2 find(u)** returns the *name* of set containing element \bf{u} . Thus, \bf{u} and **v** belong to the same set if and only if $find(u) = find(v)$
- $\textsf{union}(A, B)$ merges two sets A and B. Here A and B are the names of the sets. Typically the name of a set is some element in the set.

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following operations

- \bullet makeUnionFind(S) returns a data structure where each element of S is in a separate set
- **2 find(u)** returns the *name* of set containing element \bf{u} . Thus, \bf{u} and **v** belong to the same set if and only if $find(u) = find(v)$
- **3** union(A, B) merges two sets A and B. Here A and B are the names of the sets. Typically the name of a set is some element in the set.

Using lists

- Each set stored as list with a name associated with the list.
- **2** For each element $u \in S$ a pointer to the its set. Array for pointers: component [u] is pointer for $\mathbf u$.
- \odot makeUnionFind (S) takes $O(n)$ time and space.

Example

- \bullet find(u) reads the entry component[u]: $O(1)$ time
- **union(A,B)** involves updating the entries component [u] for all elements **u** in **A** and **B**: $O(|A| + |B|)$ which is $O(n)$

- \bullet find(u) reads the entry component[u]: $O(1)$ time
- **2 union(A,B)** involves updating the entries component[u] for all elements **u** in **A** and **B**: $O(|A| + |B|)$ which is $O(n)$

- \bullet find(u) reads the entry component[u]: $O(1)$ time
- $union(A,B)$ involves updating the entries component [u] for all elements **u** in **A** and **B**: $O(|A| + |B|)$ which is $O(n)$

New Implementation

As before use component $[u]$ to store set of u . Change to $union(A,B)$:

- **1** with each set, keep track of its size
- 2 assume $|A| < |B|$ for now
- \bullet Merge the list of **A** into that of **B**: $O(1)$ time (linked lists)
- \bullet Update component [u] only for elements in the smaller set A
- **5 Total** $O(|A|)$ **time.** Worst case is still $O(n)$.

find still takes $O(1)$ time

New Implementation

As before use component $[u]$ to store set of u . Change to $union(A,B)$:

- **1** with each set, keep track of its size
- 2 assume $|A| < |B|$ for now
- \bullet Merge the list of **A** into that of **B**: $O(1)$ time (linked lists)
- \bullet Update component [u] only for elements in the smaller set A
- \bullet Total $O(|A|)$ time. Worst case is still $O(n)$.

find still takes $O(1)$ time

New Implementation

As before use component $[u]$ to store set of u . Change to $union(A,B)$:

- **1** with each set, keep track of its size
- 2 assume $|A| < |B|$ for now
- \bullet Merge the list of **A** into that of **B**: $O(1)$ time (linked lists)
- \bullet Update component [u] only for elements in the smaller set A
- \bullet Total $O(|A|)$ time. Worst case is still $O(n)$.

find still takes $O(1)$ time

Example

The smaller set (list) is appended to the largest set (list)

Mergers

Consider an element **x**. Assume **x** is in a set **X**, and let **Y** be a bigger set. After $union(X, Y)$ the size of the set containing x is at least:

- (A) At least double what it was.
- (B) Same.
- (C) Maybe bigger, maybe the same size.

```
(D) |X| * |Y|.
```
 (E) |X|(|Y| – |X|).

Consider starting with **n** singletons. Consider an element **x**. The element x can be participate in at most

- (A) Θ(1). (B) Θ(log n). (C) $\Theta(\sqrt{n})$.
- (D) Θ(n).
- (E) I was sworn to secrecy on this topic and as such can not answer this question

mergers where it belongs to the smaller set, throughout the execution of Union-Find.

Question

Is the improved implementation provably better or is it simply a nice heuristic?

Any sequence of **k union** operations, starting from makeUnionFind(S) on set S of size n, takes at most $O(k \log k)$.

Kruskal's algorithm can be implemented in $O(m \log m)$ time.

Sorting takes $O(m \log m)$ time, $O(m)$ finds take $O(m)$ time and O(n) unions take O(n log n) time.

Question

Is the improved implementation provably better or is it simply a nice heuristic?

Theorem

Any sequence of **k** union operations, starting from makeUnionFind(S) on set S of size n, takes at most $O(k \log k)$.

Kruskal's algorithm can be implemented in $O(m \log m)$ time.

Sorting takes $O(m \log m)$ time, $O(m)$ finds take $O(m)$ time and O(n) unions take O(n log n) time.

Question

Is the improved implementation provably better or is it simply a nice heuristic?

Theorem

Any sequence of k union operations, starting from makeUnionFind(S) on set S of size n, takes at most $O(k \log k)$.

Corollary

Kruskal's algorithm can be implemented in $O(m \log m)$ time.

Sorting takes $O(m \log m)$ time, $O(m)$ finds take $O(m)$ time and O(n) unions take O(n log n) time.

Amortized Analysis

Why does theorem work?

Key Observation

union(A, B) takes $O(|A|)$ time where $|A| \leq |B|$. Size of new set is \geq 2|A|. Cannot double too many times.

Proof of Theorem

Proof.

- **1** Any union operation involves at most 2 of the original one-element sets; thus at least $n - 2k$ elements have never been involved in a union
- 2 Also, maximum size of any set (after k unions) is 2k
- **3** union(A, B) takes $O(|A|)$ time where $|A| \leq |B|$.
- \bullet Charge each element in **A** constant time to pay for $O(|A|)$ time.
- **5** How much does any element get charged?
- **•** If component $[v]$ is updated, set containing **v** doubles in size
- *O* component [v] is updated at most log 2k times
- **8** Total number of updates is $2k \log 2k = O(k \log k)$

Improving Worst Case Time

Better data structure

Maintain elements in a forest of in-trees; all elements in one tree belong to a set with root's name.

- \bullet find(u): Traverse from u to the root
- union (A, B) : Make root of A (smaller set) point to root of B . Takes $O(1)$ time.

Improving Worst Case Time

Better data structure

Maintain elements in a forest of in-trees; all elements in one tree belong to a set with root's name.

- \bullet find(u): Traverse from **u** to the root
- union (A, B) : Make root of A (smaller set) point to root of B . Takes $O(1)$ time.

Improving Worst Case Time

Better data structure

Maintain elements in a forest of in-trees; all elements in one tree belong to a set with root's name.

- \bullet find(u): Traverse from u to the root
- **2** union (A, B) : Make root of A (smaller set) point to root of B . Takes $O(1)$ time.

Each element $u \in S$ has a pointer parent(u) to its ancestor.

makeUnionFind(S) for each u in S do $parent(u) = u$

 $find(u)$ while (parent(u) \neq u) do $u = parent(u)$ return u

 $union(component(u), component(v))$ (* parent(u) = u & parent(v) = v *) if $(|\text{component}(u)| \leq |\text{component}(v)|)$ then $parent(u) = v$ else $parent(v) = u$ set new component size to $|component(u)| + |component(v)|$

Each element $u \in S$ has a pointer parent (u) to its ancestor.

makeUnionFind(S) for each u in S do $parent(u) = u$

 $find(u)$ while (parent(u) \neq u) do $u = parent(u)$ return u

 $union(component(u), component(v))$ (* parent(u) = u & parent(v) = v *) if $(|\text{component}(u)| \leq |\text{component}(v)|)$ then $parent(u) = v$ else $parent(v) = u$ set new component size to $|component(u)| + |component(v)|$

Each element $u \in S$ has a pointer $parent(u)$ to its ancestor.

makeUnionFind(S) for each u in S do $parent(u) = u$

 $find(u)$ while (parent(u) \neq u) do $u = parent(u)$ return u

 $union(component(u), component(v))$ (* parent(u) = u & parent(v) = v *) if $(|\text{component}(u)| \leq |\text{component}(v)|)$ then $parent(u) = v$ else $parent(v) = u$ set new component size to $|component(u)| + |component(v)|$

Each element $u \in S$ has a pointer parent (u) to its ancestor.

makeUnionFind(S) for each u in S do $parent(u) = u$

 $find(u)$ while (parent(u) \neq u) do $u = parent(u)$ return u

 $union(component(u), component(v))$ (* parent(u) = u & parent(v) = v *) if $(|\text{component}(u)| < |\text{component}(v)|)$ then $parent(u) = v$ else $parent(v) = u$ set new component size to $|component(u)| + |component(v)|$

Theorem

The forest based implementation for a set of size **n**, has the following complexity for the various operations: makeUnionFind takes $O(n)$, union takes $O(1)$, and find takes $O(\log n)$.

Proof.

- \bullet find(u) depends on the height of tree containing **u**.
- **2** Height of **u** increases by at most 1 only when the set containing u changes its name.
- **3** If height of **u** increases then size of the set containing **u** (at least) doubles.
- **4** Maximum set size is **n**; so height of any tree is at most O(log n).

Further Improvements: Path Compression

Observation

Consecutive calls of find(u) take $O(\log n)$ time each, but they traverse the same sequence of pointers.

Make all nodes encountered in the $find(u)$ point to root.

Further Improvements: Path Compression

Observation

Consecutive calls of find(u) take $O(\log n)$ time each, but they traverse the same sequence of pointers.

Idea: Path Compression

Make all nodes encountered in the $find(u)$ point to root.

Path Compression: Example

Path Compression

$find(u):$ if (parent(u) \neq u) then $parent(u) = find(parent(u))$ return parent(u)

Does Path Compression help?

Yes!

With Path Compression, **k** operations (find and/or union) take $O(k\alpha(k, min\{k, n\}))$ time where α is the inverse Ackermann function.

Path Compression

$find(u):$ if (parent(u) \neq u) then $parent(u) = find(parent(u))$ return parent(u)

Question

Does Path Compression help?

Yes!

With Path Compression, **k** operations (find and/or union) take $O(k\alpha(k, min\{k, n\}))$ time where α is the inverse Ackermann function.

Path Compression

$find(u):$ if (parent(u) \neq u) then $parent(u) = find(parent(u))$ return parent(u)

Question

Does Path Compression help?

Yes!

Theorem

With Path Compression, **k** operations (find and/or union) take $O(k\alpha(k, min\{k, n\}))$ time where α is the **inverse Ackermann** function.

Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n > 0$ recursively

$$
A(m, n) = \begin{cases} n+1 & \text{if } m = 0 \\ A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}
$$

$$
A(3, n) = 2^{n+3} - 3
$$

$$
A(4, 3) = 2^{65536} - 3
$$

 α (m, n) is inverse Ackermann function defined as

 $\alpha(m, n) = min\{i \mid A(i, |m/n|) > log_2 n\}$

For all practical purposes $\alpha(m, n) \leq 5$

Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n > 0$ recursively

$$
A(m, n) = \begin{cases} n+1 & \text{if } m = 0 \\ A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}
$$

$$
A(3, n) = 2^{n+3} - 3
$$

$$
A(4, 3) = 2^{65536} - 3
$$

 $\alpha(m, n)$ is inverse Ackermann function defined as

 $\alpha(m, n) = \min\{i \mid A(i, |m/n|) > \log_2 n\}$

For all practical purposes $\alpha(m, n) \leq 5$

Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n > 0$ recursively

$$
A(m, n) = \begin{cases} n+1 & \text{if } m = 0 \\ A(m-1, 1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1, A(m, n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}
$$

$$
A(3, n) = 2^{n+3} - 3
$$

$$
A(4, 3) = 2^{65536} - 3
$$

 $\alpha(m, n)$ is inverse Ackermann function defined as

 $\alpha(m, n) = \min\{i \mid A(i, |m/n|) > \log_2 n\}$

For all practical purposes $\alpha(m, n) \leq 5$

Lower Bound for Union-Find Data Structure

Amazing result:

Theorem (Tarjan)

For **Union-Find**, any data structure in the pointer model requires $\Omega(\text{m}\alpha(\text{m},\text{n}))$ time for **m** operations.

Running time of Kruskal's Algorithm

Using Union-Find data structure:

- \odot $O(m)$ find operations (two for each edge)
- \odot $O(n)$ union operations (one for each edge added to T)
- **3** Total time: $O(m \log m)$ for sorting plus $O(m \alpha(n))$ for union-find operations. Thus $O(m \log m)$ time despite the improved Union-Find data structure.

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If **m** is $O(n)$ then running time is $\Omega(n \log n)$.

Is there a linear time $(O(m + n)$ time) algorithm for MST?

- ¹ O(m log[∗] m) time Fredman and Tarjan [1987].
- \odot $O(m + n)$ time using bit operations in RAM model Fredman and Willard [1994].
- \odot $O(m + n)$ expected time (randomized algorithm) Karger et al. [1995].
- \odot O((n + m) α (m, n)) time Chazelle [2000].
- **•** Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If **m** is $O(n)$ then running time is $\Omega(n \log n)$.

Question

Is there a linear time $(O(m + n)$ time) algorithm for MST?

- ¹ O(m log[∗] m) time Fredman and Tarjan [1987].
- \odot $O(m + n)$ time using bit operations in RAM model Fredman and Willard [1994].
- \odot $O(m + n)$ expected time (randomized algorithm) Karger et al. [1995].
- \odot O((n + m) α (m, n)) time Chazelle [2000].
- **•** Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If **m** is $O(n)$ then running time is $\Omega(n \log n)$.

Question

Is there a linear time $(O(m + n)$ time) algorithm for MST?

- ¹ O(m log[∗] m) time Fredman and Tarjan [1987].
- \odot $O(m + n)$ time using bit operations in RAM model Fredman and Willard [1994].
- \odot $O(m + n)$ expected time (randomized algorithm) Karger et al. [1995].
- Θ O((n + m) α (m, n)) time Chazelle [2000].
- **•** Still open: Is there an $O(n + m)$ time deterministic algorithm in the comparison model?

Notes

Notes

Notes
Notes

- Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-ackermann type complexity. [J. Assoc. Comput. Mach.](http://www.acm.org/jacm/), 47(6):1028–1047.
- Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. [J. Assoc.](http://www.acm.org/jacm/) [Comput. Mach.](http://www.acm.org/jacm/), 34(3):596–615.
- Fredman, M. L. and Willard, D. E. (1994). Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Sys. Sci., 48(3):533–551.
- Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-time algorithm to find minimum spanning trees. [J. Assoc.](http://www.acm.org/jacm/) [Comput. Mach.](http://www.acm.org/jacm/), 42(2):321–328.