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Part I

Greedy Algorithms: Minimum
Spanning Tree
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Minimum Spanning Tree

Input Connected graph G = (V,E) with edge costs

Goal Find T ⊆ E such that (V,T) is connected and total
cost of all edges in T is smallest

1 T is the minimum spanning tree (MST) of G
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Applications

1 Network Design
1 Designing networks with minimum cost but maximum

connectivity

2 Approximation algorithms
1 Can be used to bound the optimality of algorithms to

approximate Traveling Salesman Problem, Steiner Trees, etc.

3 Cluster Analysis
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Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E
if (i satisfies condition)

add i to T
return the set T

Main Task: In what order should edges be processed? When should
we add edge to spanning tree?

KA PA RD
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Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and
add edges to T as long as they don’t form a cycle.
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Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T. In
each iteration, pick edge with least attachment cost to T.
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Reverse Delete Algorithm

Initially E is the set of all edges in G
T is E (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E of largest cost

if removing i does not disconnect T then
remove i from T

return the set T

Returns a minimum spanning tree. Back
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To be or not to be Greedy?

Can we use Prim’s algorithm for MST to find the Shortest Path?

(A) Yes. Prim’s algorithm uses the same principle as Dijkstra.

(B) No. Shortest path is NP-hard and Prim runs in polynomial
time.

(C) No. Shortest path algorithms like Dijkstra, preserve a
global optimality invariant, whereas MST can be found
with non-adaptive greedy choices.

(D) IDK.
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Correctness of MST Algorithms

1 Many different MST algorithms

2 All of them rely on some basic properties of MSTs, in particular
the Cut Property to be seen shortly.
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Assumption
And for now . . .

Assumption
Edge costs are distinct, that is no two edge costs are equal.
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Cuts

Definition
Given a graph G = (V,E), a cut is a
partition of the vertices of the graph
into two sets (S,V \ S).

Edges having an endpoint on both
sides are the edges of the cut.

A cut edge is crossing the cut.

S V \ S
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Safe and Unsafe Edges

Definition
An edge e = (u, v) is a safe edge if there is some partition of V into
S and V \ S and e is the unique minimum cost edge crossing S (one
end in S and the other in V \ S).

Definition
An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C.

Proposition
If edge costs are distinct then every edge is either safe or unsafe.

Proof.
Exercise.
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Safe edge
Example...

Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

...the cheapest edge in the cut.
Note: An edge e may be a safe edge for many cuts!
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Unsafe edge
Example...

Every cycle identifies one unsafe edge...
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...the most expensive edge in the cycle.
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Example
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Figure : Graph with unique edge costs. Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case...
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Key Observation: Cut Property

Lemma
If e is a safe edge then every minimum spanning tree contains e.

Proof.
1 Suppose (for contradiction) e is not in MST T.

2 Since e is safe there is an S ⊂ V such that e is the unique min
cost edge crossing S.

3 Since T is connected, there must be some edge f with one end
in S and the other in V \ S

4 Since cf > ce, T′ = (T \ {f}) ∪ {e} is a spanning tree of
lower cost! Error: T′ may not be a spanning tree!!
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Error in Proof: Example
Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6). T− f + e is not a
spanning tree.
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1 (A) Consider adding the edge f.
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1 (A) Consider adding the edge f.

2 (B) It is safe because it is the
cheapest edge in the cut.

3 (C) Lets throw out the edge e
currently in the spanning tree
which is more expensive than f
and is in the same cut. Put it f
instead...

4 (D) New graph of selected edges
is not a tree anymore. BUG.
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Small Cuts

The min-cut of a graph G is a partition of G in (S,V \ S) that
minimizes the number of edges that cross the cut, E(S,V \ S). The
sparsest-cut of G is a partition (S,V \ S) that minimizes the ratio

φ(G) = E(S,V\S)
|S||V\S| . Is the min-cut achieved by the same partition as

the sparsest-cut?

(A) Yes. The ratio φ(G) is minimized when E(S,V \ S) is
minimized.

(B) No. Mincut is in P but sparsest-cut is NP-complete.

(C) Yes. They can both be solved by a greedy algorithm.

(D) No. sparsest-cut is in P but min-cut is NP-Complete.
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Proof of Cut Property

Proof.
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1 Suppose e = (v,w) is not in MST
T and e is min weight edge in cut
(S,V \ S). Assume v ∈ S.

2 T is spanning tree: there is a unique
path P from v to w in T

3 Let w′ be the first vertex in P
belonging to V \ S; let v′ be the
vertex just before it on P, and let
e′ = (v′,w′)

4 T′ = (T \ {e′}) ∪ {e} is spanning
tree of lower cost. (Why?)
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Proof of Cut Property (contd)

Observation
T′ = (T \ {e′}) ∪ {e} is a spanning tree.

Proof.
T′ is connected.

Removed e′ = (v′,w′) from T but v′ and w′ are connected by
the path P− f + e in T′. Hence T′ is connected if T is.

T′ is a tree

T′ is connected and has n− 1 edges (since T had n− 1 edges)
and hence T′ is a tree
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Safe Edges form a Tree

Lemma
Let G be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

Proof.
1 Suppose not. Let S be a connected component in the graph

induced by the safe edges.

2 Consider the edges crossing S, there must be a safe edge among
them since edge costs are distinct and so we must have picked it.
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Safe Edges form an MST

Corollary
Let G be a connected graph with distinct edge costs, then set of safe
edges form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique
edge costs includes exactly the safe edges.
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Cycle Property

Lemma
If e is an unsafe edge then no MST of G contains e.

Proof.
Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not
distinct. Safe and unsafe definitions do not rely on distinct cost
assumption.
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Correctness of Prim’s Algorithm

Prim’s Algorithm
Pick edge with minimum attachment cost to current tree, and add to
current tree.

Proof of correctness.
1 If e is added to tree, then e is safe and belongs to every MST.

1 Let S be the vertices connected by edges in T when e is added.
2 e is edge of lowest cost with one end in S and the other in

V \ S and hence e is safe.

2 Set of edges output is a spanning tree
1 Set of edges output forms a connected graph: by induction, S is

connected in each iteration and eventually S = V.
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Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm
Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.
1 If e = (u, v) is added to tree, then e is safe

1 When algorithm adds e let S and S’ be the connected
components containing u and v respectively

2 e is the lowest cost edge crossing S (and also S’).
3 If there is an edge e′ crossing S and has lower cost than e, then

e′ would come before e in the sorted order and would be added
by the algorithm to T

2 Set of edges output is a spanning tree : exercise
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Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm
Consider edges in decreasing cost and remove an edge if it does not
disconnect the graph

Proof of correctness.
Argue that only unsafe edges are removed (see text book).
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What does MST stand for...

...according to popular culture? (google)

(A) Masters of Sacred Theology.

(B) Minimum Spanning Tree.

(C) Missouri University of Science and Technology.

(D) Mountain Standard Time.
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When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny
and different cost to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

3 Can order all spanning trees according to lexicographic order of
their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.
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Edge Costs: Positive and Negative

1 Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

2 Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why does
this work for MSTs but not for shortest paths?

3 Can compute maximum weight spanning tree by negating edge
costs and then computing an MST.
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Part II

Data Structures for MST: Priority
Queues and Union-Find

Alexandra (UIUC) CS473 31 Fall 2014 31 / 65



Implementing Prim’s Algorithm
Implementing Prim’s Algorithm

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

while S 6= V do
pick e = (v,w) ∈ E such that

v ∈ S and w ∈ V − S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis
1 Number of iterations = O(n), where n is number of vertices
2 Picking e is O(m) where m is the number of edges
3 Total time O(nm)
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Implementing Prim’s Algorithm
More Efficient Implementation

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w, v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v).
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Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

1 makeQ: create an empty queue

2 findMin: find the minimum key in S

3 extractMin: Remove v ∈ S with smallest key and return it

4 add(v, k(v)): Add new element v with key k(v) to S

5 Delete(v): Remove element v from S

6 decreaseKey (v, k′(v)): decrease key of v from k(v) (current
key) to k′(v) (new key). Assumption: k′(v) ≤ k(v)

7 meld: merge two separate priority queues into one
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Prim’s using priority queues

E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w, v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

1 Requires O(n) extractMin operations

2 Requires O(m) decreaseKey operations
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Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

1 Using standard Heaps, extractMin and decreaseKey take
O(log n) time. Total: O((m + n) log n)

2 Using Fibonacci Heaps, O(log n) for extractMin and O(1)
(amortized) for decreaseKey. Total: O(n log n + m).

Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the
difference?
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Kruskal’s Algorithm

Kruskal ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose e ∈ E of minimum cost

if (T ∪ {e} does not have cycles)

add e to T
return the set T

1 Presort edges based on cost. Choosing minimum can be done in
O(1) time

2 Do BFS/DFS on T ∪ {e}. Takes O(n) time

3 Total time O(m log m) + O(mn) = O(mn)
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Implementing Kruskal’s Algorithm Efficiently

Kruskal ComputeMST
Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do
pick e = (u, v) ∈ E of minimum cost

if u and v belong to different sets

add e to T
merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set
and to merge two sets.
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MST for really sparse graphs?

Given a graph G with n vertices, and n + 20 edges, its MST can be
computed in

(A) O(n2).

(B) O(n log n).

(C) O(n log log n).

(D) O(n log∗ n).

(E) O(n).
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Union-Find Data Structure

Data Structure
Store disjoint sets of elements that supports the following operations

1 makeUnionFind(S) returns a data structure where each
element of S is in a separate set

2 find(u) returns the name of set containing element u. Thus, u
and v belong to the same set if and only if find(u) = find(v)

3 union(A,B) merges two sets A and B. Here A and B are the
names of the sets. Typically the name of a set is some element
in the set.
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Implementing Union-Find using Arrays and Lists

Using lists
1 Each set stored as list with a name associated with the list.

2 For each element u ∈ S a pointer to the its set. Array for
pointers: component[u] is pointer for u.

3 makeUnionFind (S) takes O(n) time and space.
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Implementing Union-Find using Arrays and Lists

1 find(u) reads the entry component[u]: O(1) time

2 union(A,B) involves updating the entries component[u] for all
elements u in A and B: O(|A|+ |B|) which is O(n)
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Improving the List Implementation for Union

New Implementation

As before use component[u] to store set of u.
Change to union(A,B):

1 with each set, keep track of its size

2 assume |A| ≤ |B| for now

3 Merge the list of A into that of B: O(1) time (linked lists)

4 Update component[u] only for elements in the smaller set A

5 Total O(|A|) time. Worst case is still O(n).

find still takes O(1) time
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1 with each set, keep track of its size

2 assume |A| ≤ |B| for now

3 Merge the list of A into that of B: O(1) time (linked lists)
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Example
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Union(find(u), find(v))
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The smaller set (list) is appended to the largest set (list)
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Mergers

Consider an element x. Assume x is in a set X, and let Y be a bigger
set. After union(X, Y) the size of the set containing x is at least:

(A) At least double what it was.

(B) Same.

(C) Maybe bigger, maybe the same size.

(D) |X| ∗ |Y|.
(E) |X|(|Y| − |X|).
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Mergers

Consider starting with n singletons. Consider an element x. The
element x can be participate in at most

(A) Θ(1).

(B) Θ(log n).

(C) Θ
(√

n
)
.

(D) Θ(n).

(E) I was sworn to secrecy on this topic and as such can not
answer this question

mergers where it belongs to the smaller set, throughout the execution
of Union-Find.
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Improving the List Implementation for Union

Question
Is the improved implementation provably better or is it simply a nice
heuristic?

Theorem
Any sequence of k union operations, starting from
makeUnionFind(S) on set S of size n, takes at most O(k log k).

Corollary

Kruskal’s algorithm can be implemented in O(m log m) time.

Sorting takes O(m log m) time, O(m) finds take O(m) time and
O(n) unions take O(n log n) time.
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Amortized Analysis

Why does theorem work?

Key Observation

union(A,B) takes O(|A|) time where |A| ≤ |B|. Size of new set is
≥ 2|A|. Cannot double too many times.
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Proof of Theorem

Proof.
1 Any union operation involves at most 2 of the original

one-element sets; thus at least n− 2k elements have never been
involved in a union

2 Also, maximum size of any set (after k unions) is 2k

3 union(A,B) takes O(|A|) time where |A| ≤ |B|.
4 Charge each element in A constant time to pay for O(|A|) time.

5 How much does any element get charged?

6 If component[v] is updated, set containing v doubles in size

7 component[v] is updated at most log 2k times

8 Total number of updates is 2k log 2k = O(k log k)
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Improving Worst Case Time

u

v ws

Better data structure
Maintain elements in a forest of in-trees; all elements in one tree
belong to a set with root’s name.

1 find(u): Traverse from u to the root

2 union(A,B): Make root of A (smaller set) point to root of B.
Takes O(1) time.
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Improving Worst Case Time
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v w

Union(find(v), find(u))
u

v ws s
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Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)
for each u in S do

parent(u) = u

find(u)
while (parent(u) 6= u) do

u = parent(u)
return u

union(component(u), component(v))

(* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|) then
parent(u) = v

else
parent(v) = u

set new component size to |component(u)|+ |component(v)|
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Analysis

Theorem
The forest based implementation for a set of size n, has the following
complexity for the various operations: makeUnionFind takes O(n),
union takes O(1), and find takes O(log n).

Proof.
1 find(u) depends on the height of tree containing u.

2 Height of u increases by at most 1 only when the set containing
u changes its name.

3 If height of u increases then size of the set containing u (at
least) doubles.

4 Maximum set size is n; so height of any tree is at most
O(log n).
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Further Improvements: Path Compression

Observation
Consecutive calls of find(u) take O(log n) time each, but they
traverse the same sequence of pointers.

Idea: Path Compression

Make all nodes encountered in the find(u) point to root.
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Path Compression: Example

r

v

w

u
after find(u)

r

v

w

uu u
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Path Compression

find(u):
if (parent(u) 6= u) then

parent(u) = find(parent(u))
return parent(u)

Question
Does Path Compression help?

Yes!

Theorem
With Path Compression, k operations (find and/or union) take
O(kα(k,min{k, n})) time where α is the inverse Ackermann
function.
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Ackermann and Inverse Ackermann Functions

Ackermann function A(m, n) defined for m, n ≥ 0 recursively

A(m, n) =


n + 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1,A(m, n− 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m, n) is inverse Ackermann function defined as

α(m, n) = min{i | A(i, bm/nc) ≥ log2 n}

For all practical purposes α(m, n) ≤ 5
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Lower Bound for Union-Find Data Structure

Amazing result:

Theorem (Tarjan)

For Union-Find, any data structure in the pointer model requires
Ω(mα(m, n)) time for m operations.

Alexandra (UIUC) CS473 58 Fall 2014 58 / 65



Running time of Kruskal’s Algorithm

Using Union-Find data structure:

1 O(m) find operations (two for each edge)

2 O(n) union operations (one for each edge added to T)

3 Total time: O(m log m) for sorting plus O(mα(n)) for
union-find operations. Thus O(m log m) time despite the
improved Union-Find data structure.

Alexandra (UIUC) CS473 59 Fall 2014 59 / 65



Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question
Is there a linear time (O(m + n) time) algorithm for MST?

1 O(m log∗m) time Fredman and Tarjan [1987].
2 O(m + n) time using bit operations in RAM model Fredman

and Willard [1994].
3 O(m + n) expected time (randomized algorithm) Karger et al.

[1995].
4 O((n + m)α(m, n)) time Chazelle [2000].
5 Still open: Is there an O(n + m) time deterministic algorithm in

the comparison model?
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Notes
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