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Part I

Problems and Terminology
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Problem Types

1 Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t
in G?

2 Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

3 Optimization Problem: Find a best solution among all solutions
for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 52



Terminology

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I, sol(I) is a set of feasible solutions to I.
Typical implicit assumption: given instance I and y ∈ Σ∗, there
is a way to check (efficiently!) if y ∈ sol(I). In other words,
problem is in NP.

4 For optimization problems each solution s ∈ sol(I) has an
associated value. Typical implicit assumption: given s, can
compute value efficiently.
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Problem Types

1 Decision Problem: Given I output whether sol(I) = ∅ or not.

2 Search Problem: Given I, find a solution s ∈ sol(I) if
sol(I) 6= ∅.

3 Optimization Problem: Given I,
1 Minimization problem. Find a solution s ∈ sol(I) of minimum

value
2 Maximization problem. Find a solution s ∈ sol(I) of maximum

value
3 Notation: opt(I): interchangeably (when there is no confusion)

used to denote the value of an optimum solution or some fixed
optimum solution.

Alexandra (UIUC) CS473 5 Fall 2014 5 / 52



Part II

Greedy Algorithms: Tools and
Techniques
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What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules
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Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52



Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52



Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52



Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques
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Greedy Vertex Cover

Formally, a vertex cover of a graph G is a set C of vertices such that
each edge of G is incident to at least one vertex in C. Consider a
greedy algorithm for finding the min vertex cover, that repeatedly
takes both endpoints of an edge into the vertex cover, then removes
them from the graph. This algorithm always finds:

(A) The minimum vertex cover.

(B) A vertex cover that is at most a factor of 2 bigger than the
minimum.

(C) A vertex cover that is at least a factor of log n bigger than
the minimum.

(D) IDK.
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Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!
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Greedy Template

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF
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Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.
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Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter
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Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter
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Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.
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Optimal Greedy Algorithm

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

add i to X
remove from R all requests that overlap with i

return X

Theorem
The greedy algorithm that picks jobs in the order of their finishing
times is optimal.
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Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|
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Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.
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Proof of Claim

Claim
If i1 6∈ O then there is exactly one interval j1 ∈ O that conflicts with
i1.

Proof.
1 Suppose j1, j2 ∈ O such that j1 6= j2 and both j1 and j2 conflict

with i1.

2 Since i1 has earliest finish time, j1 and i1 overlap at f(i1).

3 For same reason j2 also overlaps with i1 at f(i1).

4 Implies that j1, j2 overlap at f(i1) contradicting the feasibility of
O.

See figure in next slide.
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Figure for proof of Claim

f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure : Since i1 has the earliest finish time, any interval that conflicts
with it does so at f(i1). This implies j1 and j2 conflict.
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Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.
Let I be an instance with n intervals
I′: I with i1 and all intervals that overlap with i1 removed
G(I), G(I′): Solution produced by Greedy on I and I′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O− {i1}. O′ is a solution to I′.

|G(I)| = 1 + |G(I′)| (from Greedy description)

≥ 1 + |O′| (By induction, G(I′) is optimum for I′)

= |O|
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Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)
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Comments

1 Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

2 All requests need not be known at the beginning. Such online
algorithms are a subject of research
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Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si, a finish
time fi, and a weight wi. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

(A) Earliest start time first.

(B) Earliest finish time fist.

(C) Highest weight first.

(D) None of the above.

(E) IDK.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 52



Scheduling all Requests

Input A set of lectures, with start and end times

Goal Find the minimum number of classrooms, needed to
schedule all the lectures such two lectures do not occur
at the same time in the same room.

a
b
c d

e

f

g

h
i

j

Figure : A schedule requiring 4
classrooms

Figure : A schedule requiring 3
classrooms
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Greedy Algorithm

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty do
choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1

and schedule lecture i in d + 1
d = d + 1

What order should we process requests in? According to start times
(breaking ties arbitrarily)
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Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

h

i
j
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Depth of Lectures

Definition
1 For a set of lectures R, k are said to be in conflict if there is

some time t such that there are k lectures going on at time t.

2 The depth of a set of lectures R is the maximum number of
lectures in conflict at any time.
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Depth and Number of Class-rooms

Lemma
For any set R of lectures, the number of class-rooms required is at
least the depth of R.

Proof.
All lectures that are in conflict must be scheduled in different
rooms.
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Number of Class-rooms used by Greedy Algorithm

Lemma
Let d be the depth of the set of lectures R. The number of
class-rooms used by the greedy algorithm is d.

Proof.
1 Suppose the greedy algorithm uses more that d rooms. Let j be

the first lecture that is scheduled in room d + 1.

2 Since we process lectures according to start times, there are d
lectures that start (at or) before j and which are in conflict with
j.

3 Thus, at the start time of j, there are at least d + 1 lectures in
conflict, which contradicts the fact that the depth is d.
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Figure

s(j)

j

no such job
scheduled before j
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Correctness

Observation
The greedy algorithm does not schedule two overlapping lectures in
the same room.

Theorem
The greedy algorithm is correct and uses the optimal number of
class-rooms.
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Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3

4 Total time
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d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3 With priority queues, checking conflict takes O(log d) time.

4 Total time = O(n log n + n log d) = O(n log n)
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Random Max Cut

Formally, the Max Cut of a graph G is a partition (S, S′) of the
vertices such that the total number of edges between S and S′ is
maximized. Consider a greedy randomized algorithm that cuts each
edge of the graph w.p. 1/2. This algorithm in expectation finds:

(A) The Max Cut.

(B) A cut that is at least as large as 2/3 of the Max Cut.

(C) A cut that is at most as large as 1/4 of the Max Cut.

(D) A cut that is at least as large as half the Max Cut.

(E) IDK.
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Scheduling to Minimize Lateness

1 Given jobs with deadlines and processing times to be scheduled
on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time. di: deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 6 1 5 4

l1 = 2 l5 = 0 l4 = 6
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A Simpler Feasibility Problem

1 Given jobs with deadlines and processing times to be scheduled
on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time.

3 Schedule all jobs such that each of them completes before its
deadline (in other words L = maxi li = 0).

Definition
A schedule is feasible if all jobs finish before their deadline.
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Greedy Template

Initially R is the set of all requests

curr time = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti

if (curr time > di) then
return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Main task: Decide the order in which to process jobs in R
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Three Algorithms

1 Shortest job first — sort according to ti.

2 Shortest slack first — sort according to di − ti.

3 EDF = Earliest deadline first — sort according to di.

Counter examples for first two: exercise
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Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there
is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.
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Inversions

Definition
A schedule S is said to have an inversion if there are jobs i and j such
that S schedules i before j, but di > dj.

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.
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Main Lemma

Lemma
If there is a feasible schedule, then there is one with no inversions.

Proof Sketch.
Let S be a schedule with minimum number of inversions.

1 If S has 0 inversions, done.

2 Suppose S has one or more inversions. By claim there are two
adjacent jobs i and j that define an inversion.

3 Swap positions of i and j.

4 New schedule is still feasible. (Why?)

5 New schedule has one fewer inversion — contradiction!
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Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!
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Binary search for finding minimum lateness

L = Lmin = 0
Lmax =

∑
i ti // why is this sufficient?

While Lmin < Lmax do

L = b(Lmax + Lmin)/2c
check if there is a feasible schedule with lateness L
if ‘‘yes’’ then Lmax = L
else Lmin = L + 1

end while

return L

Running time: O(n log n · log T) where T =
∑

i ti

1 O(n log n) for feasibility test (sort by deadlines)

2 O(log T) calls to feasibility test in binary search
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Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum
lateness?
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Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time + ti

late = curr time− di

curr late = max(late, curr late)
return curr late

Exercise: argue directly that above algorithm is correct

Can be easily implemented in O(n log n) time after sorting jobs.
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Greedy Analysis: Overview

1 Greedy’s first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

3 Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm
achieves this bound. Example, Interval Partitioning.

4 Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.
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Takeaway Points

1 Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

2 Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum/correct solution with the first step of
the algorithm.

3 Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.
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Notes
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