
CS 473: Fundamental Algorithms, Fall 2014

Greedy Algorithms
Lecture 11
October 7, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 52

Part I

Problems and Terminology

Alexandra (UIUC) CS473 2 Fall 2014 2 / 52

Problem Types

1 Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t
in G?

2 Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

3 Optimization Problem: Find a best solution among all solutions
for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 52

Terminology

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I, sol(I) is a set of feasible solutions to I.
Typical implicit assumption: given instance I and y ∈ Σ∗, there
is a way to check (efficiently!) if y ∈ sol(I). In other words,
problem is in NP.

4 For optimization problems each solution s ∈ sol(I) has an
associated value. Typical implicit assumption: given s, can
compute value efficiently.

Alexandra (UIUC) CS473 4 Fall 2014 4 / 52

Problem Types

1 Decision Problem: Given I output whether sol(I) = ∅ or not.

2 Search Problem: Given I, find a solution s ∈ sol(I) if
sol(I) 6= ∅.

3 Optimization Problem: Given I,
1 Minimization problem. Find a solution s ∈ sol(I) of minimum

value
2 Maximization problem. Find a solution s ∈ sol(I) of maximum

value
3 Notation: opt(I): interchangeably (when there is no confusion)

used to denote the value of an optimum solution or some fixed
optimum solution.

Alexandra (UIUC) CS473 5 Fall 2014 5 / 52

Part II

Greedy Algorithms: Tools and
Techniques

Alexandra (UIUC) CS473 6 Fall 2014 6 / 52

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Alexandra (UIUC) CS473 7 Fall 2014 7 / 52

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Alexandra (UIUC) CS473 7 Fall 2014 7 / 52

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:

1 make decision incrementally in small steps without backtracking

2 decision at each step is based on improving local or current state
in a myopic fashion without paying attention to the global
situation

3 decisions often based on some fixed and simple priority rules

Alexandra (UIUC) CS473 7 Fall 2014 7 / 52

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52

Pros and Cons of Greedy Algorithms

Pros:

1 Usually (too) easy to design greedy algorithms

2 Easy to implement and often run fast since they are simple

3 Several important cases where they are effective/optimal

4 Lead to a first-cut heuristic when problem not well understood

Cons:

1 Very often greedy algorithms don’t work. Easy to lull oneself
into believing they work

2 Many greedy algorithms possible for a problem and no
structured way to find effective ones

CS 473: Every greedy algorithm needs a proof of correctness

Alexandra (UIUC) CS473 8 Fall 2014 8 / 52

Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques

Alexandra (UIUC) CS473 9 Fall 2014 9 / 52

Greedy Algorithm Types

Crude classification:

1 Non-adaptive: fix some ordering of decisions a priori and stick
with the order

2 Adaptive: make decisions adaptively but greedily/locally at each
step

Plan:

1 See several examples

2 Pick up some proof techniques

Alexandra (UIUC) CS473 9 Fall 2014 9 / 52

Greedy Vertex Cover

Formally, a vertex cover of a graph G is a set C of vertices such that
each edge of G is incident to at least one vertex in C. Consider a
greedy algorithm for finding the min vertex cover, that repeatedly
takes both endpoints of an edge into the vertex cover, then removes
them from the graph. This algorithm always finds:

(A) The minimum vertex cover.

(B) A vertex cover that is at most a factor of 2 bigger than the
minimum.

(C) A vertex cover that is at least a factor of log n bigger than
the minimum.

(D) IDK.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 52

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Alexandra (UIUC) CS473 11 Fall 2014 11 / 52

Interval Scheduling

Problem (Interval Scheduling)

Input: A set of jobs with start and finish times to be scheduled on a
resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

1 Two jobs with overlapping intervals cannot both be
scheduled!

Alexandra (UIUC) CS473 11 Fall 2014 11 / 52

Greedy Template

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF

Alexandra (UIUC) CS473 12 Fall 2014 12 / 52

Greedy Template

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty do
choose i ∈ R
add i to X
remove from R all requests that overlap with i

return the set X

Main task: Decide the order in which to process requests in R
ES SP FC EF

Alexandra (UIUC) CS473 12 Fall 2014 12 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Earliest Start Time

Process jobs in the order of their starting times, beginning with those
that start earliest.

Figure : Counter example for earliest start time

Alexandra (UIUC) CS473 13 Fall 2014 13 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that
require the shortest processing.

Figure : Counter example for smallest processing time

Back Counter

Alexandra (UIUC) CS473 14 Fall 2014 14 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Fewest Conflicts

Process jobs in that have the fewest “conflicts” first.

Figure : Counter example for fewest conflicts

Back Counter

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Earliest Finish Time

Process jobs in the order of their finishing times, beginning with
those that finish earliest.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 52

Optimal Greedy Algorithm

R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

add i to X
remove from R all requests that overlap with i

return X

Theorem
The greedy algorithm that picks jobs in the order of their finishing
times is optimal.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proving Optimality

1 Correctness: Clearly the algorithm returns a set of jobs that does
not have any conflicts

2 For a set of requests R, let O be an optimal set and let X be the
set returned by the greedy algorithm. Then O = X? Not likely!

Instead we will show that |O| = |X|

Alexandra (UIUC) CS473 18 Fall 2014 18 / 52

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 52

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 52

Proof of Optimality: Key Lemma

Lemma
Let i1 be first interval picked by Greedy. There exists an optimum
solution that contains i1.

Proof.
Let O be an arbitrary optimum solution. If i1 ∈ O we are done.
Claim: If i1 6∈ O then there is exactly one interval j1 ∈ O that
conflicts with i1. (proof later)

1 Form a new set O′ by removing j1 from O and adding i1, that is
O′ = (O− {j1}) ∪ {i1}.

2 From claim, O′ is a feasible solution (no conflicts).

3 Since |O′| = |O|, O′ is also an optimum solution and it
contains i1.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 52

Proof of Claim

Claim
If i1 6∈ O then there is exactly one interval j1 ∈ O that conflicts with
i1.

Proof.
1 Suppose j1, j2 ∈ O such that j1 6= j2 and both j1 and j2 conflict

with i1.

2 Since i1 has earliest finish time, j1 and i1 overlap at f(i1).

3 For same reason j2 also overlaps with i1 at f(i1).

4 Implies that j1, j2 overlap at f(i1) contradicting the feasibility of
O.

See figure in next slide.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 52

Figure for proof of Claim

f(i1) f(j1)

i1

j1

j2

f(j2) time

Figure : Since i1 has the earliest finish time, any interval that conflicts
with it does so at f(i1). This implies j1 and j2 conflict.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 52

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for i < n.
Let I be an instance with n intervals
I′: I with i1 and all intervals that overlap with i1 removed
G(I), G(I′): Solution produced by Greedy on I and I′

From Lemma, there is an optimum solution O to I and i1 ∈ O.
Let O′ = O− {i1}. O′ is a solution to I′.

|G(I)| = 1 + |G(I′)| (from Greedy description)

≥ 1 + |O′| (By induction, G(I′) is optimum for I′)

= |O|

Alexandra (UIUC) CS473 22 Fall 2014 22 / 52

Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52

Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52

Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52

Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52

Implementation and Running Time

Initially R is the set of all requests

X is empty (* X will store all the jobs that will be scheduled *)

while R is not empty

choose i ∈ R such that finishing time of i is least

if i does not overlap with requests in X
add i to X

remove i from R
return the set X

1 Presort all requests based on finishing time. O(n log n) time
2 Now choosing least finishing time is O(1)
3 Keep track of the finishing time of the last request added to A.

Then check if starting time of i later than that
4 Thus, checking non-overlapping is O(1)
5 Total time O(n log n + n) = O(n log n)

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52

Comments

1 Interesting Exercise: smallest interval first picks at least half the
optimum number of intervals.

2 All requests need not be known at the beginning. Such online
algorithms are a subject of research

Alexandra (UIUC) CS473 24 Fall 2014 24 / 52

Weighted Interval Scheduling

Suppose we are given n jobs. Each job i has a start time si, a finish
time fi, and a weight wi. We would like to find a set S of compatible
jobs whose total weight is maximized. Which of the following greedy
algorithms finds the optimum schedule?

(A) Earliest start time first.

(B) Earliest finish time fist.

(C) Highest weight first.

(D) None of the above.

(E) IDK.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 52

Scheduling all Requests

Input A set of lectures, with start and end times

Goal Find the minimum number of classrooms, needed to
schedule all the lectures such two lectures do not occur
at the same time in the same room.

a
b
c d

e

f

g

h
i

j

Figure : A schedule requiring 4
classrooms

Figure : A schedule requiring 3
classrooms

Alexandra (UIUC) CS473 26 Fall 2014 26 / 52

Scheduling all Requests

Input A set of lectures, with start and end times

Goal Find the minimum number of classrooms, needed to
schedule all the lectures such two lectures do not occur
at the same time in the same room.

a
b
c d

e

f

g

h
i

j

Figure : A schedule requiring 4
classrooms

a
b
c d

e

f
g

h
i

j

Figure : A schedule requiring 3
classrooms

Alexandra (UIUC) CS473 26 Fall 2014 26 / 52

Scheduling all Requests

Input A set of lectures, with start and end times

Goal Find the minimum number of classrooms, needed to
schedule all the lectures such two lectures do not occur
at the same time in the same room.

a
b
c d

e

f

g

h
i

j

Figure : A schedule requiring 4
classrooms

a
b
c d

e

f
g

h
i

j

Figure : A schedule requiring 3
classrooms

Alexandra (UIUC) CS473 26 Fall 2014 26 / 52

Greedy Algorithm

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty do
choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1

and schedule lecture i in d + 1
d = d + 1

What order should we process requests in? According to start times
(breaking ties arbitrarily)

Alexandra (UIUC) CS473 27 Fall 2014 27 / 52

Greedy Algorithm

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty do
choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1

and schedule lecture i in d + 1
d = d + 1

What order should we process requests in? According to start times
(breaking ties arbitrarily)

Alexandra (UIUC) CS473 27 Fall 2014 27 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

h

i
j

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

b
a

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a

c

a
b

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

aa
b
c

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

d

a
b
c

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

e

a
b
c d

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

f

a
b
c d

e

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

g

a
b
c d

e
f

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

h
a
b
c d

e
f

g

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

h

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

i

a
b
c d

e
f

g

h

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

h
i

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

j

a
b
c d

e
f

g

h
i

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Example of algorithm execution
“Few things are harder to put up with than a good example.” – Mark Twain

a
b
c d

e
f

g

h
i

j

Alexandra (UIUC) CS473 28 Fall 2014 28 / 52

Depth of Lectures

Definition
1 For a set of lectures R, k are said to be in conflict if there is

some time t such that there are k lectures going on at time t.

2 The depth of a set of lectures R is the maximum number of
lectures in conflict at any time.

a
b
c d

e

f
g

h
i

j

Alexandra (UIUC) CS473 29 Fall 2014 29 / 52

Depth of Lectures

Definition
1 For a set of lectures R, k are said to be in conflict if there is

some time t such that there are k lectures going on at time t.

2 The depth of a set of lectures R is the maximum number of
lectures in conflict at any time.

a
b
c d

e

f
g

h
i

j

Alexandra (UIUC) CS473 29 Fall 2014 29 / 52

Depth of Lectures

Definition
1 For a set of lectures R, k are said to be in conflict if there is

some time t such that there are k lectures going on at time t.

2 The depth of a set of lectures R is the maximum number of
lectures in conflict at any time.

a
b
c d

e

f
g

h
i

j

Alexandra (UIUC) CS473 29 Fall 2014 29 / 52

Depth and Number of Class-rooms

Lemma
For any set R of lectures, the number of class-rooms required is at
least the depth of R.

Proof.
All lectures that are in conflict must be scheduled in different
rooms.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 52

Depth and Number of Class-rooms

Lemma
For any set R of lectures, the number of class-rooms required is at
least the depth of R.

Proof.
All lectures that are in conflict must be scheduled in different
rooms.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 52

Number of Class-rooms used by Greedy Algorithm

Lemma
Let d be the depth of the set of lectures R. The number of
class-rooms used by the greedy algorithm is d.

Proof.
1 Suppose the greedy algorithm uses more that d rooms. Let j be

the first lecture that is scheduled in room d + 1.

2 Since we process lectures according to start times, there are d
lectures that start (at or) before j and which are in conflict with
j.

3 Thus, at the start time of j, there are at least d + 1 lectures in
conflict, which contradicts the fact that the depth is d.

Alexandra (UIUC) CS473 31 Fall 2014 31 / 52

Number of Class-rooms used by Greedy Algorithm

Lemma
Let d be the depth of the set of lectures R. The number of
class-rooms used by the greedy algorithm is d.

Proof.
1 Suppose the greedy algorithm uses more that d rooms. Let j be

the first lecture that is scheduled in room d + 1.

2 Since we process lectures according to start times, there are d
lectures that start (at or) before j and which are in conflict with
j.

3 Thus, at the start time of j, there are at least d + 1 lectures in
conflict, which contradicts the fact that the depth is d.

Alexandra (UIUC) CS473 31 Fall 2014 31 / 52

Number of Class-rooms used by Greedy Algorithm

Lemma
Let d be the depth of the set of lectures R. The number of
class-rooms used by the greedy algorithm is d.

Proof.
1 Suppose the greedy algorithm uses more that d rooms. Let j be

the first lecture that is scheduled in room d + 1.

2 Since we process lectures according to start times, there are d
lectures that start (at or) before j and which are in conflict with
j.

3 Thus, at the start time of j, there are at least d + 1 lectures in
conflict, which contradicts the fact that the depth is d.

Alexandra (UIUC) CS473 31 Fall 2014 31 / 52

Figure

s(j)

j

no such job
scheduled before j

Alexandra (UIUC) CS473 32 Fall 2014 32 / 52

Correctness

Observation
The greedy algorithm does not schedule two overlapping lectures in
the same room.

Theorem
The greedy algorithm is correct and uses the optimal number of
class-rooms.

Alexandra (UIUC) CS473 33 Fall 2014 33 / 52

Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3

4 Total time

Alexandra (UIUC) CS473 34 Fall 2014 34 / 52

Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3

4 Total time

Alexandra (UIUC) CS473 34 Fall 2014 34 / 52

Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3

4 Total time

Alexandra (UIUC) CS473 34 Fall 2014 34 / 52

Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3 Checking conflict takes O(d) time.

4 Total time = O(n log n + nd)

Alexandra (UIUC) CS473 34 Fall 2014 34 / 52

Implementation and Running Time

Initially R is the set of all requests

d = 0 (* number of classrooms *)

while R is not empty

choose i ∈ R such that start time of i is earliest

if i can be scheduled in some class-room k ≤ d
schedule lecture i in class-room k

else
allocate a new class-room d + 1 and schedule lecture i in d + 1
d = d + 1

1 Presort according to start times. Picking lecture with earliest
start time can be done in O(1) time.

2 Keep track of the finish time of last lecture in each room.

3 With priority queues, checking conflict takes O(log d) time.

4 Total time = O(n log n + n log d) = O(n log n)

Alexandra (UIUC) CS473 34 Fall 2014 34 / 52

Random Max Cut

Formally, the Max Cut of a graph G is a partition (S, S′) of the
vertices such that the total number of edges between S and S′ is
maximized. Consider a greedy randomized algorithm that cuts each
edge of the graph w.p. 1/2. This algorithm in expectation finds:

(A) The Max Cut.

(B) A cut that is at least as large as 2/3 of the Max Cut.

(C) A cut that is at most as large as 1/4 of the Max Cut.

(D) A cut that is at least as large as half the Max Cut.

(E) IDK.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 52

Scheduling to Minimize Lateness

1 Given jobs with deadlines and processing times to be scheduled
on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time. di: deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 6 1 5 4

l1 = 2 l5 = 0 l4 = 6

Alexandra (UIUC) CS473 36 Fall 2014 36 / 52

Scheduling to Minimize Lateness

1 Given jobs with deadlines and processing times to be scheduled
on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time. di: deadline.

3 The lateness of a job is li = max(0, fi − di).
4 Schedule all jobs such that L = max li is minimized.

1 2 3 4 5 6
ti 3 2 1 4 3 2
di 6 8 9 9 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 6 1 5 4

l1 = 2 l5 = 0 l4 = 6

Alexandra (UIUC) CS473 36 Fall 2014 36 / 52

A Simpler Feasibility Problem

1 Given jobs with deadlines and processing times to be scheduled
on a single resource.

2 If a job i starts at time si then it will finish at time fi = si + ti,
where ti is its processing time.

3 Schedule all jobs such that each of them completes before its
deadline (in other words L = maxi li = 0).

Definition
A schedule is feasible if all jobs finish before their deadline.

Alexandra (UIUC) CS473 37 Fall 2014 37 / 52

Greedy Template

Initially R is the set of all requests

curr time = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti

if (curr time > di) then
return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Main task: Decide the order in which to process jobs in R

Alexandra (UIUC) CS473 38 Fall 2014 38 / 52

Greedy Template

Initially R is the set of all requests

curr time = 0
while R is not empty do

choose i ∈ R
curr time = curr time + ti

if (curr time > di) then
return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Main task: Decide the order in which to process jobs in R

Alexandra (UIUC) CS473 38 Fall 2014 38 / 52

Three Algorithms

1 Shortest job first — sort according to ti.

2 Shortest slack first — sort according to di − ti.

3 EDF = Earliest deadline first — sort according to di.

Counter examples for first two: exercise

Alexandra (UIUC) CS473 39 Fall 2014 39 / 52

Three Algorithms

1 Shortest job first — sort according to ti.

2 Shortest slack first — sort according to di − ti.

3 EDF = Earliest deadline first — sort according to di.

Counter examples for first two: exercise

Alexandra (UIUC) CS473 39 Fall 2014 39 / 52

Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there
is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 52

Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there
is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 52

Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there
is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 52

Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there
is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time
before all jobs are finished.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 52

Inversions

Definition
A schedule S is said to have an inversion if there are jobs i and j such
that S schedules i before j, but di > dj.

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 52

Inversions

Definition
A schedule S is said to have an inversion if there are jobs i and j such
that S schedules i before j, but di > dj.

Claim
If a schedule S has an inversion then there is an inversion between
two adjacently scheduled jobs.

Proof: exercise.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 52

Main Lemma

Lemma
If there is a feasible schedule, then there is one with no inversions.

Proof Sketch.
Let S be a schedule with minimum number of inversions.

1 If S has 0 inversions, done.

2 Suppose S has one or more inversions. By claim there are two
adjacent jobs i and j that define an inversion.

3 Swap positions of i and j.

4 New schedule is still feasible. (Why?)

5 New schedule has one fewer inversion — contradiction!

Alexandra (UIUC) CS473 42 Fall 2014 42 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Back to Minimizing Lateness

Goal: schedule to minimize L = maxi li.

How can we use algorithm for simpler feasibility problem?

Given a lateness bound L, can we check if there is a schedule such
that maxi li ≤ L?

Yes! Set d′i = di + L for each job i. Use feasibility algorithm with
new deadlines.

How can we find minimum L? Binary search!

Alexandra (UIUC) CS473 43 Fall 2014 43 / 52

Binary search for finding minimum lateness

L = Lmin = 0
Lmax =

∑
i ti // why is this sufficient?

While Lmin < Lmax do

L = b(Lmax + Lmin)/2c
check if there is a feasible schedule with lateness L
if ‘‘yes’’ then Lmax = L
else Lmin = L + 1

end while

return L

Running time: O(n log n · log T) where T =
∑

i ti

1 O(n log n) for feasibility test (sort by deadlines)

2 O(log T) calls to feasibility test in binary search

Alexandra (UIUC) CS473 44 Fall 2014 44 / 52

Binary search for finding minimum lateness

L = Lmin = 0
Lmax =

∑
i ti // why is this sufficient?

While Lmin < Lmax do

L = b(Lmax + Lmin)/2c
check if there is a feasible schedule with lateness L
if ‘‘yes’’ then Lmax = L
else Lmin = L + 1

end while

return L

Running time: O(n log n · log T) where T =
∑

i ti

1 O(n log n) for feasibility test (sort by deadlines)

2 O(log T) calls to feasibility test in binary search

Alexandra (UIUC) CS473 44 Fall 2014 44 / 52

Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum
lateness?

Alexandra (UIUC) CS473 45 Fall 2014 45 / 52

Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum
lateness?

Alexandra (UIUC) CS473 45 Fall 2014 45 / 52

Do we need binary search?

What happens in each call?
EDF algorithm with deadlines d′i = di + L.

Greedy with EDF schedules the jobs in the same order for all L!!!

Maybe there is a direct greedy algorithm for minimizing maximum
lateness?

Alexandra (UIUC) CS473 45 Fall 2014 45 / 52

Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time + ti

late = curr time− di

curr late = max(late, curr late)
return curr late

Exercise: argue directly that above algorithm is correct

Can be easily implemented in O(n log n) time after sorting jobs.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 52

Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time + ti

late = curr time− di

curr late = max(late, curr late)
return curr late

Exercise: argue directly that above algorithm is correct

Can be easily implemented in O(n log n) time after sorting jobs.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 52

Greedy Algorithm for Minimizing Lateness

Initially R is the set of all requests

curr time = 0
curr late = 0
while R is not empty

choose i ∈ R with earliest deadline

curr time = curr time + ti

late = curr time− di

curr late = max(late, curr late)
return curr late

Exercise: argue directly that above algorithm is correct

Can be easily implemented in O(n log n) time after sorting jobs.

Alexandra (UIUC) CS473 46 Fall 2014 46 / 52

Greedy Analysis: Overview

1 Greedy’s first step leads to an optimum solution. Show that
there is an optimum solution leading from the first step of
Greedy and then use induction. Example, Interval Scheduling.

2 Greedy algorithm stays ahead. Show that after each step the
solution of the greedy algorithm is at least as good as the
solution of any other algorithm. Example, Interval scheduling.

3 Structural property of solution. Observe some structural bound
of every solution to the problem, and show that greedy algorithm
achieves this bound. Example, Interval Partitioning.

4 Exchange argument. Gradually transform any optimal solution
to the one produced by the greedy algorithm, without hurting its
optimality. Example, Minimizing lateness.

Alexandra (UIUC) CS473 47 Fall 2014 47 / 52

Takeaway Points

1 Greedy algorithms come naturally but often are incorrect. A
proof of correctness is an absolute necessity.

2 Exchange arguments are often the key proof ingredient. Focus
on why the first step of the algorithm is correct: need to show
that there is an optimum/correct solution with the first step of
the algorithm.

3 Thinking about correctness is also a good way to figure out
which of the many greedy strategies is likely to work.

Alexandra (UIUC) CS473 48 Fall 2014 48 / 52

Notes

Alexandra (UIUC) CS473 49 Fall 2014 49 / 52

Notes

Alexandra (UIUC) CS473 50 Fall 2014 50 / 52

Notes

Alexandra (UIUC) CS473 51 Fall 2014 51 / 52

Notes

Alexandra (UIUC) CS473 52 Fall 2014 52 / 52

	Problems and Terminology
	Problem Types

	Greedy Algorithms: Tools and Techniques
	Interval Scheduling
	The Algorithm
	Correctness
	Running Time
	Extensions and Comments

	Interval Partitioning
	The Problem
	The Algorithm
	Correctness
	Running Time

	Scheduling to Minimize Lateness
	The Problem
	The Algorithm

