
CS 473: Fundamental Algorithms, Fall 2014

More Dynamic Programming
Lecture 10
October 2, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 42



Part I

All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge

lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

3 Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge
lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m + n) log n) with heaps and O(m + n log n) with
advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:
O(nm).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge

lengths. For edge e = (u, v), `(e) = `(u, v) is its
length.

1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

1 Non-negative lengths. O(nm log n) with heaps and
O(nm + n2 log n) using advanced priority queues.

2 Arbitrary edge lengths: O(n2m).
Θ
(
n4
)

if m = Ω
(
n2
)
.

Can we do better?
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Shortest Paths and Recursion

1 Compute the shortest path distance from s to t recursively?

2 What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recur’: Single-Source Shortest Paths

Single-source problem: fix source s.

OPT(v, k): shortest path dist. from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n− 1). Recursion for OPT(v, k):

OPT(v, k) = min

{
minu∈V(OPT(u, k− 1) + c(u, v)).

OPT(v, k− 1)

Base case: OPT(v, 1) = c(s, v) if (s, v) ∈ E otherwise∞
Leads to Bellman-Ford algorithm — see text book.

OPT(v, k) values are also of independent interest: shortest paths
with at most k hops
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All-Pairs: Recursion on index of intermediate nodes

1 Number vertices arbitrarily as v1, v2, . . . , vn

2 dist(i, j, k): shortest path distance between vi and vj among all
paths in which the largest index of an intermediate node is at
most k

i

4

1

100

1

10
2 j

3

5

1
1

2

dist(i, j, 0) = 100

dist(i, j, 1) = 9

dist(i, j, 2) = 8

dist(i, j, 3) = 5
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For the following graph, dist(i, j, 2) is...

i

8

5

200

1

10

2
j

3

5

1

1

2

2

(A) 9

(B) 10

(C) 11

(D) 12

(E) 15
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i, j, k) = min

{
dist(i, j, k− 1)

dist(i, k, k− 1) + dist(k, j, k− 1)

Base case: dist(i, j, 0) = c(i, j) if (i, j) ∈ E, otherwise∞
Correctness: If i→ j shortest path goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

Check if G has a negative cycle // Bellman-Ford: O(mn) time

if there is a negative cycle then return ‘‘Negative cycle’’

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

dist(i, j, k) = min

{
dist(i, j, k− 1),

dist(i, k, k− 1) + dist(k, j, k− 1)

Correctness: Recursion works under the assumption that all shortest
paths are defined (no negative length cycle).
Running Time: Θ(n3), Space: Θ(n3).
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Floyd-Warshall Algorithm
for All-Pairs Shortest Paths

Do we need a separate algorithm to check if there is negative cycle?

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

not edge, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
dist(i, j, k) = min(dist(i, j, k− 1), dist(i, k, k− 1) + dist(k, j, k− 1))

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G

Correctness: exercise
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

1 Create a n× n array Next that stores the next vertex on
shortest path for each pair of vertices

2 With array Next, for any pair of given vertices i, j can compute a
shortest path in O(n) time.
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Floyd-Warshall Algorithm
Finding the Paths

for i = 1 to n do
for j = 1 to n do

dist(i, j, 0) = c(i, j) (* c(i, j) =∞ if (i, j) not edge, 0 if i = j *)

Next(i, j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (dist(i, j, k− 1) > dist(i, k, k− 1) + dist(k, j, k− 1)) then
dist(i, j, k) = dist(i, k, k− 1) + dist(k, j, k− 1)
Next(i, j) = k

for i = 1 to n do
if (dist(i, i, n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i, j describe an
O(n) algorithm to find a i-j shortest path.
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Summary of results on shortest paths

Single vertex
No negative edges Dijkstra O(n log n + m)

Edges cost might be negative
But no negative cycles

Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O
(
n2 log n + nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4
)

No negative cycles Floyd-Warshall O
(
n3
)
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Part II

Knapsack
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Knapsack Problem

Input Given a Knapsack of capacity W lbs. and n objects with
ith object having weight wi and value vi; assume
W, wi, vi are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 42



Knapsack Problem

Input Given a Knapsack of capacity W lbs. and n objects with
ith object having weight wi and value vi; assume
W, wi, vi are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 42



Knapsack Example

Example

Item I1 I2 I3 I4 I5

Value 1 6 18 22 28
Weight 1 2 5 6 7

If W = 11, the best is {I3, I4} giving value 40.

Special Case
When vi = wi, the Knapsack problem is called the Subset Sum
Problem.
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Knapsack

For the following instance of Knapsack:

Item I1 I2 I3 I4 I5

Value 1 6 16 22 28
Weight 1 2 5 6 7

and weight limit W = 15. The best solution has value:

(A) 22

(B) 28

(C) 38

(D) 50

(E) 56
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Greedy Approach

1 Pick objects with greatest value
1 Let W = 2, w1 = w2 = 1, w3 = 2, v1 = v2 = 2 and v3 = 3;

greedy strategy will pick {3}, but the optimal is {1, 2}
2 Pick objects with smallest weight

1 Let W = 2, w1 = 1, w2 = 2, v1 = 1 and v2 = 3; greedy
strategy will pick {1}, but the optimal is {2}

3 Pick objects with largest vi/wi ratio
1 Let W = 4, w1 = w2 = 2, w3 = 3, v1 = v2 = 3 and v3 = 5;

greedy strategy will pick {3}, but the optimal is {1, 2}
2 Can show that a slight modification always gives half the

optimum profit: pick the better of the output of this algorithm
and the largest value item. Also, the algorithms gives better
approximations when all item weights are small when compared
to W.
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Towards a Recursive Solution

First guess: Opt(i) is the optimum solution value for items 1, . . . , i.

Observation
Consider an optimal solution O for 1, . . . , i

Case item i 6∈ O O is an optimal solution to items 1 to i− 1

Case item i ∈ O Then O − {i} is an optimum solution for items 1
to n− 1 in knapsack of capacity W − wi.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1), . . . ,Opt(i− 1).

Opt(i, w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n, W)
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Dynamic Programming Solution

Definition
Let Opt(i, w) be the optimal way of picking items from 1 to i, with
total weight not exceeding w.

Opt(i, w) =


0 if i = 0
Opt(i− 1, w) if wi > w

max

{
Opt(i− 1, w)

Opt(i− 1, w − wi) + vi

otherwise

Alexandra (UIUC) CS473 22 Fall 2014 22 / 42



An Iterative Algorithm

for w = 0 to W do
M[0, w] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M[i, w] = M[i− 1, w]

else
M[i, w] = max(M[i− 1, w], M[i− 1, w − wi] + vi)

Running Time
1 Time taken is O(nW)

2 Input has size O(n + log W +
∑n

i=1(log vi + log wi)); so
running time not polynomial but “pseudo-polynomial”!
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Knapsack Algorithm and Polynomial time

1 Input size for Knapsack:
O(n) + log W +

∑n
i=1(log wi + log vi).

2 Running time of dynamic programming algorithm: O(nW).

3 Not a polynomial time algorithm.

4 Example: W = 2n and wi, vi ∈ [1..2n]. Input size is O(n2),
running time is O(n2n) arithmetic/comparisons.

5 Algorithm is called a pseudo-polynomial time algorithm
because running time is polynomial if numbers in input are of
size polynomial in the combinatorial size of problem.

6 Knapsack is NP-Hard if numbers are not polynomial in n.
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How much is n!?

(A) n! = Θ(nn)

(B) n! = 2Θ(n)

(C) n! = Θ(2n)

(D) n! = 2Θ(n log n)

(E) n! = Θ
(
2n log n

)
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Part III

Traveling Salesman Problem
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Traveling Salesman Problem

Input A graph G = (V, E) with non-negative edge
costs/lengths. c(e) for edge e

Goal Find a tour of minimum cost that visits each node.

No polynomial time algorithm known. Problem is NP-Hard.
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Drawings using TSP
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Drawings using TSP
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Example: optimal tour for cities of a country

(which one?)
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An Exponential Time Algorithm

How many different tours are there? n!

Stirling’s formula: n! '
√

n(n/e)n which is Θ(2cn log n) for some
constant c > 1

Can we do better? Can we get a 2O(n) time algorithm?
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Towards a Recursive Solution

1 Order vertices as v1, v2, . . . , vn

2 OPT(S): optimum TSP tour for the vertices S ⊆ V in the
graph restricted to S. Want OPT(V).

Can we compute OPT(S) recursively?

1 Say v ∈ S. What are the two neighbors of v in optimum tour in
S?

2 If u, w are neighbors of v in an optimum tour of S then
removing v gives an optimum path from u to w visiting all
nodes in S− {v}.

Path from u to w is not a recursive subproblem! Need to find a more
general problem to allow recursion.
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A More General Problem: TSP Path

Input A graph G = (V, E) with non-negative edge
costs/lengths(c(e) for edge e) and two nodes s, t

Goal Find a path from s to t of minimum cost that visits each
node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

1 OPT(u, v, S): optimum TSP Path from u to v in the graph
restricted to S (here u, v ∈ S).
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A More General Problem: TSP Path
Continued...

What is the next node in the optimum path from u to v? Suppose it
is w. Then what is OPT(u, v, S)?

OPT(u, v, S) = c(u, w) + OPT(w, v, S− {u})

We do not know w! So try all possibilities for w.

Alexandra (UIUC) CS473 33 Fall 2014 33 / 42



A More General Problem: TSP Path
Continued...

What is the next node in the optimum path from u to v? Suppose it
is w. Then what is OPT(u, v, S)?

OPT(u, v, S) = c(u, w) + OPT(w, v, S− {u})

We do not know w! So try all possibilities for w.

Alexandra (UIUC) CS473 33 Fall 2014 33 / 42



A Recursive Solution

OPT(u, v, S) = minw∈S,w 6=u,v

(
c(u, w) + OPT(w, v, S− {u})

)
What are the subproblems for the original problem OPT(s, t, V)?
OPT(u, v, S) for u, v ∈ S, S ⊆ V.

How many subproblems?

1 number of distinct subsets S of V is at most 2n

2 number of pairs of nodes in a set S is at most n2

3 hence number of subproblems is O(n22n)

Exercise: Show that one can compute TSP using above dynamic
program in O(n32n) time and O(n22n) space.

Disadvantage of dynamic programming solution: memory!
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Hamiltonian path?

Given an undirected graph G, deciding computing a Hamiltonian path
in G can be done in (faster is better):

(A) O(n) time.

(B) O(n2) time.

(C) O(n10) time.

(D) O(n32n) time.

(E) O(2n3
) time.
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Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

1 How to come up with the recursion?

2 How to recognize that dynamic programming may apply?
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Some Tips

1 Problems where there is a natural linear ordering: sequences,
paths, intervals, DAGs etc. Recursion based on ordering (left to
right or right to left or topological sort) usually works.

2 Problems involving trees: recursion based on subtrees.
3 More generally:

1 Problem admits a natural recursive divide and conquer
2 If optimal solution for whole problem can be simply composed

from optimal solution for each separate pieces then plain divide
and conquer works directly

3 If optimal solution depends on all pieces then can apply
dynamic programming if interface/interaction between pieces is
limited. Augment recursion to not simply find an optimum
solution but also an optimum solution for each possible way to
interact with the other pieces.
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Examples

1 Longest Increasing Subsequence: break sequence in the middle
say. What is the interaction between the two pieces in a
solution?

2 Sequence Alignment: break both sequences in two pieces each.
What is the interaction between the two sets of pieces?

3 Independent Set in a Tree: break tree at root into subtrees.
What is the interaction between the sutrees?

4 Independent Set in an graph: break graph into two graphs.
What is the interaction? Very high!

5 Knapsack: Split items into two sets of half each. What is the
interaction?
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Notes
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