
CS 473: Fundamental Algorithms, Fall 2014

More Dynamic Programming
Lecture 9
September 30, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 47

What is the running time of the following?

Consider computing f(x, y) by recursive function + memoization.

f(x, y) =

x+y−1∑
i=1

x ∗ f(x + y − i, i− 1),

f(0, y) = y f(x, 0) = x.

The resulting algorithm when computing f(n, n) would take:

(A) O(n)

(B) O(n log n)

(C) O(n2)

(D) O(n3)

(E) The function is ill defined - it can not be computed.

Alexandra (UIUC) CS473 2 Fall 2014 2 / 47

Part I

Maximum Weighted Independent Set
in Trees

Alexandra (UIUC) CS473 3 Fall 2014 3 / 47

Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G

A

B

C

DE

F

20

5

2

2

10

15

Maximum weight independent set in above graph: {B,D}

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Maximum Weight Independent Set in a Tree

Input Tree T = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in T

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Maximum weight independent set in above tree: ??

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Independent set in a tree...

In a tree with n nodes, there is always an independent set of size
(bigger is better [this is America!])

(A) Ω(1)

(B) Ω(log n)

(C) Ω(
√

n)

(D) n/2

(E) n− 5

Alexandra (UIUC) CS473 6 Fall 2014 6 / 47

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Towards a Recursive Solution

For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn

2 Find recursively optimum solutions without vn (recurse on
G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

3 Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 47

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 47

Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.

Alexandra (UIUC) CS473 8 Fall 2014 8 / 47

A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)

Alexandra (UIUC) CS473 9 Fall 2014 9 / 47

A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)

Alexandra (UIUC) CS473 9 Fall 2014 9 / 47

Iterative Algorithm

1 Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 47

Iterative Algorithm

1 Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

2 What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max

(∑
vj child of vi

M[vj],

w(vi) +
∑

vj grandchild of vi
M[vj]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

2 Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Example

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Alexandra (UIUC) CS473 12 Fall 2014 12 / 47

Dominating set

Definition
G = (V, E). The set X ⊆ V is a dominating set, if any vertex
v ∈ V is either in X or is adjacent to a vertex in X.

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Alexandra (UIUC) CS473 13 Fall 2014 13 / 47

Dominating set

Definition
G = (V, E). The set X ⊆ V is a dominating set, if any vertex
v ∈ V is either in X or is adjacent to a vertex in X.

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Problem
Given weights on
vertices, compute the
minimum weight
dominating set in G.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 47

Dominating set

Definition
G = (V, E). The set X ⊆ V is a dominating set, if any vertex
v ∈ V is either in X or is adjacent to a vertex in X.

r

a b

c d e f g

h i j

10

5 8

4 4
9

2 7 8

11

3

Problem
Given weights on
vertices, compute the
minimum weight
dominating set in G.

Dominating Set is
NP-Hard!

Alexandra (UIUC) CS473 13 Fall 2014 13 / 47

Minimum weight dominating set in a tree can be

computed using the recursive formula...

(A) O(u) = min

{∑
v child of uO(v),

w(u) +
∑

v grandchild of uO(v)
.

(B) O(u) = w(u) + min

{∑
v child of uO(v),∑
v grandchild of uO(v)

.

(C) O(u) = w(u) + max

{∑
v child of uO(v),∑
v grandchild of uO(v)

.

(D) O(u) = w(u) +
∑

v grandchild of uO(v).

(E) None of the above.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 47

Part II

DAGs and Dynamic Programming

Alexandra (UIUC) CS473 15 Fall 2014 15 / 47

Recursion and DAGs

Observation
Let A be a recursive algorithm for problem Π. For each instance I of
Π there is an associated DAG G(I).

1 Create directed graph G(I) as follows...

2 For each sub-problem in the execution of A on I create a node.

3 If sub-problem v depends on or recursively calls sub-problem u
add directed edge (u, v) to graph.

4 G(I) is a DAG. Why? If G(I) has a cycle then A will not
terminate on I.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 47

Recursion and DAGs

Observation
Let A be a recursive algorithm for problem Π. For each instance I of
Π there is an associated DAG G(I).

1 Create directed graph G(I) as follows...

2 For each sub-problem in the execution of A on I create a node.

3 If sub-problem v depends on or recursively calls sub-problem u
add directed edge (u, v) to graph.

4 G(I) is a DAG. Why? If G(I) has a cycle then A will not
terminate on I.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 47

Iterative Algorithm for...
Dynamic Programming and DAGs

Observation
An iterative algorithm B obtained from a recursive algorithm A for a
problem Π does the following:

For each instance I of Π, it computes a topological sort
of G(I) and evaluates sub-problems according to the
topological ordering.

1 Sometimes the DAG G(I) can be obtained directly without
thinking about the recursive algorithm A

2 In some cases (not all) the computation of an optimal solution
reduces to a shortest/longest path in DAG G(I)

3 Topological sort based shortest/longest path computation is
dynamic programming!

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

A quick reminder...
A Recursive Algorithm for weighted interval scheduling

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1

else
On = Op(n) + w(vn)

return On

Alexandra (UIUC) CS473 18 Fall 2014 18 / 47

Weighted Interval Scheduling via...
Longest Path in a DAG

Given intervals, create a DAG as follows:

1 Create one node for each interval, plus a dummy sink node 0 for
interval 0, plus a dummy source node s.

2 For each interval i add edge (i, p(i)) of the length/weight of vi.

3 Add an edge from s to n of length 0.

4 For each interval i add edge (i, i− 1) of length 0.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 47

Example

30

70

80

20 10

1

2

3

4

5

p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

0 1

2

3
4

5

s30

20

70
80

10

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47

Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG
constructed as described.

Claim
Optimum solution to weighted interval scheduling instance I is given
by longest path from s to 0 in G(I).

Assuming claim is true,

1 If I has n intervals, DAG G(I) has n + 2 nodes and O(n)
edges. Creating G(I) takes O(n log n) time: to find p(i) for
each i. How?

2 Longest path can be computed in O(n) time — recall
O(m + n) algorithm for shortest/longest paths in DAGs.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 47

Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG
constructed as described.

Claim
Optimum solution to weighted interval scheduling instance I is given
by longest path from s to 0 in G(I).

Assuming claim is true,

1 If I has n intervals, DAG G(I) has n + 2 nodes and O(n)
edges. Creating G(I) takes O(n log n) time: to find p(i) for
each i. How?

2 Longest path can be computed in O(n) time — recall
O(m + n) algorithm for shortest/longest paths in DAGs.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 47

DAG for Longest Increasing Sequence

Given sequence a1, a2, . . . , an create DAG as follows:

1 add sentinel a0 to sequence where a0 is less than smallest
element in sequence

2 for each i there is a node vi

3 if i < j and ai < aj add an edge (vi, vj)

4 find longest path from v0

6 3 5 2 7 8 1a0

Alexandra (UIUC) CS473 22 Fall 2014 22 / 47

DAG for Longest Increasing Sequence

Given sequence a1, a2, . . . , an create DAG as follows:

1 add sentinel a0 to sequence where a0 is less than smallest
element in sequence

2 for each i there is a node vi

3 if i < j and ai < aj add an edge (vi, vj)

4 find longest path from v0

6 3 5 2 7 8 1a0

Alexandra (UIUC) CS473 22 Fall 2014 22 / 47

Part III

Edit Distance and Sequence Alignment

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY

Alexandra (UIUC) CS473 25 Fall 2014 25 / 47

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 47

Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

Alexandra (UIUC) CS473 28 Fall 2014 28 / 47

Similarity Metric

Definition
For two strings X and Y, the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M, we incur cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 47

Similarity Metric

Definition
For two strings X and Y, the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M, we incur cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

Alexandra (UIUC) CS473 29 Fall 2014 29 / 47

An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 47

What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

SURFING

STUDYING

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Alexandra (UIUC) CS473 31 Fall 2014 31 / 47

Sequence Alignment

Input Given two words X and Y, and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

Alexandra (UIUC) CS473 32 Fall 2014 32 / 47

Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Observation
Prefixes must have optimal alignment!

Alexandra (UIUC) CS473 33 Fall 2014 33 / 47

Problem Structure

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the mth position of X remains unmatched or the
nth position of Y remains unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min

αxiyj

+ Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

Alexandra (UIUC) CS473 35 Fall 2014 35 / 47

Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min

αxiyj

+ Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

Alexandra (UIUC) CS473 35 Fall 2014 35 / 47

Dynamic Programming Solution

for all i do M[i, 0] = iδ
for all j do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i, j] = min

αxiyj + M[i− 1, j− 1],

δ + M[i− 1, j],

δ + M[i, j− 1]

Analysis
1 Running time is O(mn).

Alexandra (UIUC) CS473 36 Fall 2014 36 / 47

Dynamic Programming Solution

for all i do M[i, 0] = iδ
for all j do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i, j] = min

αxiyj + M[i− 1, j− 1],

δ + M[i− 1, j],

δ + M[i, j− 1]

Analysis
1 Running time is O(mn).

Alexandra (UIUC) CS473 36 Fall 2014 36 / 47

Dynamic Programming Solution

for all i do M[i, 0] = iδ
for all j do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i, j] = min

αxiyj + M[i− 1, j− 1],

δ + M[i− 1, j],

δ + M[i, j− 1]

Analysis
1 Running time is O(mn).

2 Space used is O(mn).

Alexandra (UIUC) CS473 36 Fall 2014 36 / 47

Matrix and DAG of Computation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure : Iterative algorithm in previous slide computes values in row order.
Optimal value is a shortest path from (0, 0) to (m, n) in DAG.

Alexandra (UIUC) CS473 37 Fall 2014 37 / 47

Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?

Alexandra (UIUC) CS473 38 Fall 2014 38 / 47

Optimizing Space

1 Recall

M(i, j) = min

αxiyj

+ M(i− 1, j− 1),

δ + M(i− 1, j),

δ + M(i, j− 1)

2 Entries in jth column only depend on (j− 1)st column and
earlier entries in jth column

3 Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j− 1) and N(i, 1) stores M(i, j)

Alexandra (UIUC) CS473 39 Fall 2014 39 / 47

Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure : M(i, j) only depends on previous column values. Keep only two
columns and compute in column order.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 47

Space Efficient Algorithm

for all i do N[i, 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i, 1] = min

αxiyj + N[i− 1, 0]

δ + N[i− 1, 1]

δ + N[i, 0]
for i = 1 to m do

Copy N[i, 0] = N[i, 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

Alexandra (UIUC) CS473 41 Fall 2014 41 / 47

Analyzing Space Efficiency

1 From the m× n matrix M we can construct the actual
alignment (exercise)

2 Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

3 Space efficient computation of alignment? More complicated
algorithm — see text book.

Alexandra (UIUC) CS473 42 Fall 2014 42 / 47

Takeaway Points

1 Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

2 Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

3 The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Alexandra (UIUC) CS473 43 Fall 2014 43 / 47

Notes

Alexandra (UIUC) CS473 44 Fall 2014 44 / 47

Notes

Alexandra (UIUC) CS473 45 Fall 2014 45 / 47

Notes

Alexandra (UIUC) CS473 46 Fall 2014 46 / 47

Notes

Alexandra (UIUC) CS473 47 Fall 2014 47 / 47

	Maximum Weighted Independent Set in Trees
	DAGs and Dynamic Programming
	Edit Distance and Sequence Alignment

