
CS 473: Fundamental Algorithms, Fall 2014

Dynamic Programming
Lecture 8
September 23, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 45

Part I

Longest Increasing Subsequence

Alexandra (UIUC) CS473 2 Fall 2014 2 / 45

Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 45

Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

Alexandra (UIUC) CS473 4 Fall 2014 4 / 45

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Alexandra (UIUC) CS473 5 Fall 2014 5 / 45

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Alexandra (UIUC) CS473 5 Fall 2014 5 / 45

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.

Alexandra (UIUC) CS473 6 Fall 2014 6 / 45

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.

Alexandra (UIUC) CS473 6 Fall 2014 6 / 45

Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if
a given sequence is increasing.

Alexandra (UIUC) CS473 6 Fall 2014 6 / 45

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 45

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 45

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 45

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
if A[n] is in the longest increasing subsequence then all the elements
before it must be smaller.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 45

Recursive Approach: Take 1

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

Recursion for running time: T(n) ≤ 2T(n− 1) + O(n).
Easy to see that T(n) is O(n2n).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 45

Recursive Approach: Take 1

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

Recursion for running time: T(n) ≤ 2T(n− 1) + O(n).
Easy to see that T(n) is O(n2n).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 45

Recursive Approach: Take 1

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

Recursion for running time: T(n) ≤ 2T(n− 1) + O(n).
Easy to see that T(n) is O(n2n).

Alexandra (UIUC) CS473 8 Fall 2014 8 / 45

How many different recursive calls does

algLIS1(A[1..n]) really makes?

algLIS(A[1..n]):
if (n = 0) then return 0
m = algLIS(A[1..(n− 1)])
B is subsequence of A[1..(n− 1)] with

only elements less than A[n]
(* let h be size of B, h ≤ n− 1 *)

m = max(m, 1 + algLIS(B[1..h]))
Output m

(A) Θ(n2)

(B) Θ(2n)

(C) Θ(n2n)

(D) Θ(2n2
)

(E) Θ(nn)

Alexandra (UIUC) CS473 9 Fall 2014 9 / 45

Recursive Approach: Take 2

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n− 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n− 1)] that
is restricted to numbers less than A[n]. This suggests that a more
general problem is LIS smaller(A[1..n], x) which gives the longest
increasing subsequence in A where each number in the sequence is
less than x.

Alexandra (UIUC) CS473 10 Fall 2014 10 / 45

Recursive Approach: Take 2

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Recursion for running time: T(n) ≤ 2T(n− 1) + O(1).

Question: Is there any advantage?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 45

Recursive Approach: Take 2

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Recursion for running time: T(n) ≤ 2T(n− 1) + O(1).

Question: Is there any advantage?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 45

Recursive Approach: Take 2

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n− 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n− 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Recursion for running time: T(n) ≤ 2T(n− 1) + O(1).

Question: Is there any advantage?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 45

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 45

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 45

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 45

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 45

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by
LIS smaller(A[1..n], x) is O(n2).

Memoization the recursive algorithm leads to an O(n2) running time!

Question: What are the recursive subproblem generated by
LIS smaller(A[1..n], x)?

1 For 0 ≤ i < n LIS smaller(A[1..i], y) where y is either x or
one of A[i + 1], . . . ,A[n].

Observation
previous recursion also generates only O(n2) subproblems. Slightly
harder to see.

Alexandra (UIUC) CS473 12 Fall 2014 12 / 45

Recursive Algorithm: Take 3

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i:A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Alexandra (UIUC) CS473 13 Fall 2014 13 / 45

Recursive Algorithm: Take 3

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that
ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = max
i:A[i]<A[n]

(
1 + LISEnding(A[1..i])

)

Alexandra (UIUC) CS473 13 Fall 2014 13 / 45

Recursive Algorithm: Take 3

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(

m, 1 + LIS ending alg(A[1..i])
)

return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

Question:
How many distinct subproblems generated by
LIS ending alg(A[1..n])? n.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 45

Recursive Algorithm: Take 3

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(

m, 1 + LIS ending alg(A[1..i])
)

return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

Question:
How many distinct subproblems generated by
LIS ending alg(A[1..n])? n.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 45

Recursive Algorithm: Take 3

LIS ending alg(A[1..n]):
if (n = 0) return 0

m = 1
for i = 1 to n− 1 do

if (A[i] < A[n]) then

m = max
(

m, 1 + LIS ending alg(A[1..i])
)

return m

LIS(A[1..n]):
return maxn

i=1LIS ending alg(A[1 . . . i])

Question:
How many distinct subproblems generated by
LIS ending alg(A[1..n])? n.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 45

Iterative Algorithm via Memoization

Compute the values LIS ending alg(A[1..i]) iteratively in a bottom
up fashion.

LIS ending alg(A[1..n]):
Array L[1..n] (* L[i] = value of LIS ending alg(A[1..i]) *)

for i = 1 to n do
L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do
L[i] = max(L[i], 1 + L[j])

return L

LIS(A[1..n]):
L = LIS ending alg(A[1..n])
return the maximum value in L

Alexandra (UIUC) CS473 15 Fall 2014 15 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)

m = 0
for i = 1 to n do

L[i] = 1
for j = 1 to i− 1 do

if (A[j] < A[i]) do

L[i] = max(L[i], 1 + L[j])
m = max(m, L[i])

return m

Correctness: Via induction following the recursion
Running time: O(n2), Space: Θ(n)

Alexandra (UIUC) CS473 16 Fall 2014 16 / 45

Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]

2 Recursive algorithm computes L[i] from L[1] to L[i− 1]

3 Iterative algorithm builds up the values from L[1] to L[n]

Alexandra (UIUC) CS473 17 Fall 2014 17 / 45

Example

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Longest increasing subsequence: 3, 5, 7, 8

1 L[i] is value of longest increasing subsequence ending in A[i]

2 Recursive algorithm computes L[i] from L[1] to L[i− 1]

3 Iterative algorithm builds up the values from L[1] to L[n]

Alexandra (UIUC) CS473 17 Fall 2014 17 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Memoizing LIS smaller

LIS(A[1..n]):
A[n + 1] =∞ (* add a sentinel at the end *)

Array L[(n + 1), (n + 1)] (* two-dimensional array*)

(* L[i, j] for j ≥ i stores the value LIS smaller(A[1..i],A[j]) *)

for j = 1 to n + 1 do
L[0, j] = 0

for i = 1 to n + 1 do
for j = i to n + 1 do

L[i, j] = L[i− 1, j]
if (A[i] < A[j]) then

L[i, j] = max(L[i, j], 1 + L[i− 1, i])

return L[n, (n + 1)]

Correctness: Via induction following the recursion (take 2)
Running time: O(n2), Space: Θ(n2)

Alexandra (UIUC) CS473 18 Fall 2014 18 / 45

Longest increasing subsequence
Another way to get quadratic time algorithm

1 G = ({s, 1, . . . , n} , {}): directed graph.

1 ∀i, j: If i < j and A[i] < A[j] then
add the edge i→ j to G.

2 ∀i: Add s→ i.

2 The graph G is a DAG. LIS corresponds to longest path in G
starting at s.

3 We know how to compute this in
O(|V(G)|+ |E(G)|) = O(n2).

Comment: One can compute LIS in O(n log n) time with a bit more
work.

Alexandra (UIUC) CS473 19 Fall 2014 19 / 45

Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further

Alexandra (UIUC) CS473 20 Fall 2014 20 / 45

Part II

Weighted Interval Scheduling

Alexandra (UIUC) CS473 21 Fall 2014 21 / 45

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights
(or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

Alexandra (UIUC) CS473 22 Fall 2014 22 / 45

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights
(or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

Alexandra (UIUC) CS473 22 Fall 2014 22 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Interval Scheduling
Greedy Solution

Input A set of jobs with start and finish times to be scheduled
on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.
1 Greedy strategy of considering jobs according to

finish times produces optimal schedule (to be seen
later).

Alexandra (UIUC) CS473 23 Fall 2014 23 / 45

Greedy Strategies

1 Largest weight/profit first

2 Largest weight to length ratio first

3 Shortest length first

4 . . .

None of the above strategies lead to an optimum solution.

Moral: Greedy strategies often don’t work!

Alexandra (UIUC) CS473 24 Fall 2014 24 / 45

Greedy Strategies

1 Largest weight/profit first

2 Largest weight to length ratio first

3 Shortest length first

4 . . .

None of the above strategies lead to an optimum solution.

Moral: Greedy strategies often don’t work!

Alexandra (UIUC) CS473 24 Fall 2014 24 / 45

Reductions

There is a polynomial time reduction from Weighted Interval
Scheduling to Independent Set. Assume Independent Set can
not be solved in polynomial time.

It follows that Weighted Interval Scheduling can not be solved in
polynomial time. This statement is

(A) True

(B) False.

(C) IDK.

Alexandra (UIUC) CS473 25 Fall 2014 25 / 45

Conventions

Definition
1 Let the requests be sorted according to finish time, i.e., i < j

implies fi ≤ fj

2 Define p(j) to be the largest i (less than j) such that job i and
job j are not in conflict

Example

1

2

3

4

5

6

v1 = 2

v2 = 4

v3 = 4

v4 = 7

v5 = 2

v6 = 1

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

Alexandra (UIUC) CS473 26 Fall 2014 26 / 45

Towards a Recursive Solution

Observation
Consider an optimal schedule O
Case n ∈ O : None of the jobs between n and p(n) can be

scheduled. Moreover O must contain an optimal
schedule for the first p(n) jobs.

Case n 6∈ O : O is an optimal schedule for the first n− 1 jobs.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 45

Towards a Recursive Solution

Observation
Consider an optimal schedule O
Case n ∈ O : None of the jobs between n and p(n) can be

scheduled. Moreover O must contain an optimal
schedule for the first p(n) jobs.

Case n 6∈ O : O is an optimal schedule for the first n− 1 jobs.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 45

A Recursive Algorithm

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1

else
On = Op(n) + w(vn)

return On

Time Analysis

Running time is T(n) = T(p(n)) + T(n− 1) + O(1) which is . . .

Alexandra (UIUC) CS473 28 Fall 2014 28 / 45

A Recursive Algorithm

Let Oi be value of an optimal schedule for the first i jobs.

Schedule(n):
if n = 0 then return 0
if n = 1 then return w(v1)
Op(n) ←Schedule(p(n))
On−1 ←Schedule(n− 1)
if (Op(n) + w(vn) < On−1) then

On = On−1

else
On = Op(n) + w(vn)

return On

Time Analysis

Running time is T(n) = T(p(n)) + T(n− 1) + O(1) which is . . .

Alexandra (UIUC) CS473 28 Fall 2014 28 / 45

The solution to the following recurrence is?

T(n) = T(n− 2) + T(n− 17) + 65

(A) 2Θ(n).

(B) Θ(n).

(C) 65.

(D) Θ(Fn), where Fn is the nth Fibonacci number..

(E) Θ(0).

Alexandra (UIUC) CS473 29 Fall 2014 29 / 45

Bad Example

Figure : Bad instance for recursive algorithm

Running time on this instance is

T(n) = T(n− 1) + T(n− 2) + O(1) = Θ(φn)

where φ ≈ 1.618 is the golden ratio.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 45

Bad Example

Figure : Bad instance for recursive algorithm

Running time on this instance is

T(n) = T(n− 1) + T(n− 2) + O(1) = Θ(φn)

where φ ≈ 1.618 is the golden ratio.

Alexandra (UIUC) CS473 30 Fall 2014 30 / 45

Analysis of the Problem

n − 2 n − 3 n − 3 n − 4

n − 1 n − 2

n

.

.

.

.

.

.

.

.

.

.

.

.

Figure : Label of node indicates size of sub-problem. Tree of sub-problems
grows very quickly

Alexandra (UIUC) CS473 31 Fall 2014 31 / 45

Memo(r)ization

Observation
1 Number of different sub-problems in recursive algorithm is O(n);

they are O1,O2, . . . ,On−1

2 Exponential time is due to recomputation of solutions to
sub-problems

Solution
Store optimal solution to different sub-problems, and perform
recursive call only if not already computed.

Alexandra (UIUC) CS473 32 Fall 2014 32 / 45

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 45

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 45

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 45

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 45

Recursive Solution with Memoization

schdIMem(j)
if j = 0 then return 0
if M[j] is defined then (* sub-problem already solved *)

return M[j]
if M[j] is not defined then

M[j] = max
(

w(vj) + schdIMem(p(j)), schdIMem(j− 1)
)

return M[j]

Time Analysis

Each invocation, O(1) time plus: either return a computed
value, or generate 2 recursive calls and fill one M[·]
Initially no entry of M[] is filled; at the end all entries of M[] are
filled

So total time is O(n) (Assuming input is presorted...)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 45

Automatic Memoization

Fact
Many functional languages (like LISP) automatically do memoization
for recursive function calls!

Alexandra (UIUC) CS473 34 Fall 2014 34 / 45

Back to Weighted Interval Scheduling

Iterative Solution

M[0] = 0
for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)],M[i− 1]
)

M: table of subproblems

1 Implicitly dynamic programming fills the values of M.

2 Recursion determines order in which table is filled up.

3 Think of decomposing problem first (recursion) and then worry
about setting up table — this comes naturally from recursion.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 45

Back to Weighted Interval Scheduling

Iterative Solution

M[0] = 0
for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)],M[i− 1]
)

M: table of subproblems

1 Implicitly dynamic programming fills the values of M.

2 Recursion determines order in which table is filled up.

3 Think of decomposing problem first (recursion) and then worry
about setting up table — this comes naturally from recursion.

Alexandra (UIUC) CS473 35 Fall 2014 35 / 45

Example

30

70

80

20 10

1

2

3

4

5

p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0

Alexandra (UIUC) CS473 36 Fall 2014 36 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Solutions + First Attempt

1 Memoization + Recursion/Iteration allows one to compute the
optimal value. What about the actual schedule?

M[0] = 0
S[0] is empty schedule

for i = 1 to n do

M[i] = max
(

w(vi) + M[p(i)], M[i− 1]
)

if w(vi) + M[p(i)] < M[i− 1] then
S[i] = S[i− 1]

else
S[i] = S[p(i)] ∪ {i}

2 Näıvely updating S[] takes O(n) time

3 Total running time is O(n2)

4 Using pointers and linked lists running time can be improved to
O(n).

Alexandra (UIUC) CS473 37 Fall 2014 37 / 45

Computing Implicit Solutions

Observation
Solution can be obtained from M[] in O(n) time, without any
additional information

findSolution(j)

if (j = 0) then return empty schedule

if (vj + M[p(j)] > M[j− 1]) then
return findSolution(p(j)) ∪{j}

else
return findSolution(j− 1)

Makes O(n) recursive calls, so findSolution runs in O(n) time.

Alexandra (UIUC) CS473 38 Fall 2014 38 / 45

Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:

1 Keep track of the decision in computing the optimum value of a
sub-problem. decision space depends on recursion

2 Once the optimum values are computed, go back and use the
decision values to compute an optimum solution.

Question: What is the decision in computing M[i]?
A: Whether to include i or not.

Alexandra (UIUC) CS473 39 Fall 2014 39 / 45

Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:

1 Keep track of the decision in computing the optimum value of a
sub-problem. decision space depends on recursion

2 Once the optimum values are computed, go back and use the
decision values to compute an optimum solution.

Question: What is the decision in computing M[i]?
A: Whether to include i or not.

Alexandra (UIUC) CS473 39 Fall 2014 39 / 45

Computing Implicit Solutions

M[0] = 0
for i = 1 to n do

M[i] = max(vi + M[p(i)],M[i− 1])
if (vi + M[p(i)] > M[i− 1])then

Decision[i] = 1 (* 1: i included in solution M[i] *)

else
Decision[i] = 0 (* 0: i not included in solution M[i] *)

S = ∅, i = n
while (i > 0) do

if (Decision[i] = 1) then
S = S ∪ {i}
i = p(i)

else
i = i− 1

return S

Alexandra (UIUC) CS473 40 Fall 2014 40 / 45

Running time with memoization?

If we memoize the following function, what would be the running
time of the resulting function, if we call Confused(n, n)?

Confused(x, y)
if x > y or x < 0 then if x = 0 then return 2y
α = Confused(x− 1, y), β = Confused(x− 1, y − 1),
γ = Confused(x− 1, y − 1), δ = Confused(x− 1, y − 17),
µ = Confused(x− 32, y − 17),
return 1 + max(α, β, γ, δ, µ)

(A) Θ(n)

(B) Θ(n2)

(C) Θ(n3)

(D) Θ(n4)

(E) Θ(n5)

Alexandra (UIUC) CS473 41 Fall 2014 41 / 45

Notes

Alexandra (UIUC) CS473 42 Fall 2014 42 / 45

Notes

Alexandra (UIUC) CS473 43 Fall 2014 43 / 45

Notes

Alexandra (UIUC) CS473 44 Fall 2014 44 / 45

Notes

Alexandra (UIUC) CS473 45 Fall 2014 45 / 45

	Longest Increasing Subsequence
	Longest Increasing Subsequence

	Weighted Interval Scheduling
	Weighted Interval Scheduling
	The Problem
	Greedy Solution
	Recursive Solution
	Dynamic Programming
	Computing Solutions

