CS 473: Fundamental Algorithms, Fall 2014

Binary Search, Introduction
to Dynamic Programming

Lecture 7
September 18, 2014
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Exponentiation

Input Two numbers: a and integer n > 0

Goal Compute a"
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Exponentiation

Input Two numbers: a and integer n > 0

Goal Compute a"

Obvious algorithm:

SlowPow (a,n) :

x =1;

for i =1 to n do
X = xX*a

Output x

O(n) multiplications.
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Let a > 1 and n > 1 be two integer numbers. Representing a" in
base 2 requires

(A) O(loga + log n) bits.
(B) O(nlog a) bits.

(C) O(alog n) bits.

(D) O(logalogn) bits.

(E) o((log a)'°g") bits.
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Fast Exponentiation

Observation: a" = al"/2lan/2] = aln/2l4(n/2]qln/2]1=In/2]
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Fast Exponentiation

Observation: a" = al"/2lan/2] = aln/2l4(n/2]qln/2]1=In/2]

FastPow (a,n):
if (n=0) return 1
x =FastPow(a, [n/2])
X = X * X
if (n is odd) then
X=xx*a
return x
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Fast Exponentiation

Observation: a" = al"/2lan/2] = aln/2l4(n/2]qln/2]1=In/2]

FastPow(a,n):
if (n=0) return 1
x =FastPow(a, [n/2])
X=X*xX
if (n is odd) then
X=xx*a
return x

T(n): number of multiplications for n
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Fast Exponentiation

Observation: a" = al"/2lan/2] = aln/2l4(n/2]qln/2]1=In/2]

FastPow(a,n):
if (n=0) return 1
x =FastPow(a, [n/2])
X=X*xX
if (n is odd) then
X=xx*a
return x

T(n): number of multiplications for n
T(n) < T([n/2]) +2

T(n) =
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Fast Exponentiation

Observation: a" = al"/2lan/2] = aln/2l4(n/2]qln/2]1=In/2]

FastPow(a,n):
if (n=0) return 1
x =FastPow(a, [n/2])
X=X*xX
if (n is odd) then
X=xx*a
return x

T(n): number of multiplications for n
T(n) < T([n/2]) +2

T(n) =O(logn)
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Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
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Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
Input size: O(log a + log n)
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Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
Input size: O(log a + log n)
Output size:
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Complexity of Exponentiation

Question: Is SlowPow() a polynomial time algorithm? FastPow?
Input size: O(log a + log n)
Output size: O(nloga).

Not necessarily polynomial in input size!

Both SlowPow and FastPow are polynomial in output size.
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26 mod 7 is?

(A) O
(B) 1
(C) 3
(D) 5
(E) 7
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Exponentiation modulo a given number

Exponentiation in applications:

Input Three integers: a, n > 0, p > 2 (typically a prime)
Goal Compute a" mod p
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Exponentiation modulo a given number

Exponentiation in applications:
Input Three integers: a, n > 0, p > 2 (typically a prime)

Goal Compute a" mod p

Input size: ©(loga + logn + log p)
Output size: O(log p) and hence polynomial in input size.
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Exponentiation modulo a given number

Exponentiation in applications:
Input Three integers: a, n > 0, p > 2 (typically a prime)
Goal Compute a" mod p

Input size: ©(loga + logn + log p)
Output size: O(log p) and hence polynomial in input size.

Observation: xy mod p = ((x mod p)(y mod p)) mod p
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Exponentiation modulo a given number

Input Three integers: a, n > 0, p > 2 (typically a prime)
Goal Compute a" mod p

FastPowMod (a,n,p):
if (n=0) return 1
x =FastPowMod(a, |n/2],p)
X =x*X mod p
if (n is odd)
x=x%a modp
return x
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Exponentiation modulo a given number

Input Three integers: a, n > 0, p > 2 (typically a prime)
Goal Compute a" mod p

FastPowMod (a,n,p):
if (n=0) return 1
x =FastPowMod(a, |n/2],p)
X =x*X mod p
if (n is odd)
x=x%a modp
return x

FastPowMod is a polynomial time algorithm. SlowPowMod is not
(why?).
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A7
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A7

BinarySearch(A[a..b], x):
if (b —a < 0) return NO
mid = A[|(a + b)/2]]
if (x =mid) return YES
if (x < mid)
return BinarySearch(A[a..|(a + b)/2] — 1], x)
else
return BinarySearch(A[|(a + b)/2] + 1..b],x)
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A7

BinarySearch(A[a..b], x):
if (b —a < 0) return NO
mid = A[|(a + b)/2]]
if (x =mid) return YES
if (x < mid)
return BinarySearch(A[a..|(a + b)/2] — 1], x)
else
return BinarySearch(A[|(a + b)/2] + 1..b],x)

Analysis: T(n) = T(|n/2]) + O(1). T(n) = O(logn).
Observation: After k steps, size of array left is n/2k
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Another common use of binary search

© Optimization version: find solution of best (say minimum) value

@ Decision version: is there a solution of value at most a given
value v?
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Another common use of binary search

© Optimization version: find solution of best (say minimum) value
@ Decision version: is there a solution of value at most a given
value v?
Reduce optimization to decision (may be easier to think about):
@ Given instance | compute upper bound U(l) on best value
@ Compute lower bound L(I) on best value

@ Do binary search on interval [L(1), U(l)] using decision version
as black box

© O(log(U(l) — L(1))) calls to decision version if U(I), L(I) are
integers
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© Problem: shortest paths in a graph.

@ Decision version: given G with non-negative integer edge
lengths, nodes s, t and bound B, is there an s-t path in G of
length at most B?

© Optimization version: find the length of a shortest path between
sand tin G.

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?
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Example continued

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

@ Let U be maximum edge length in G.

© Minimum edge length is L.

@ s-t shortest path length is at most (n — 1)U and at least L.

@ Apply binary search on the interval [L, (n — 1)U] via the
algorithm for the decision problem.

@ O(log((n — 1)U — L)) calls to the decision problem algorithm
sufficient. Polynomial in input size.
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Which of the following facts is wrong?

(A) Valhalla is a city in Sweden.

(B) The term “dynamic programming” was invented in the
1940s by Richard Bellman (from the Bellman-Ford fame).

(C) In 1202, Fibonacci wrote a book introducing the Arabic
numeral system to Europe.

(D) Vandalia was once the capital of lllinois,
(E) Only 39% of U.S. citizens have a valid passport.

Alexandra (UIUC) CS473 14 Fall 2014 14 / 44



Part 1l

Introduction to Dynamic Programming
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Recursion
Reduction:
Reduce one problem to another

A special case of reduction

© reduce problem to a smaller instance of itself
@ self-reduction
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Recursion

Reduction:

Reduce one problem to another

A special case of reduction

© reduce problem to a smaller instance of itself
@ self-reduction

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

@ For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

@ Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

@ Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

© Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n — 1) + F(n — 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

@ F(n) = (¢" — (1 — ¢)")/+/5 where ¢ is the golden ratio
(1+ +/5)/2 ~ 1.618.
Q lim,F(n+1)/F(n) = ¢
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Consider the nth Fibonacci number F(n). Writing the number F(n)
in base 2 requires

(A) ©(n?) bits.

(B) ©(logn) bits.
(C) O(loglogn) bits.
(D) ©(n) bits.

(E) IDK.
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

T() =T —1)+T(h—2)+1and T(0) = T(1) = 0
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).
TnN)=Tn—-1)+T(n—-2)4+1and T(0) =T(1) =0

Roughly same as F(n)
T(n) = O(¢")

The number of additions is exponential in n. Can we do better?
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Running time of binom?

binom(t, b) // computes (lt))

// Using the identity: (f) = ({2}) + (31
if b =t then return 1
if b =0 then return 0

return binom(t — 1,b — 1) + binom(t — 1, b).

Assuming each arithmetic operation takes O(1) time, the running
time of binom(n, [n/2]) is

(A) ©(1).

(B) ©(n).

(C) ©(nlogn).

(D) ©(n).

(B) ©((12))
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An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0O]=0
F[1] =1
for i =2 to n do
F[i] <= F[i — 1] + F[i — 2]
return F[n]
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An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0O]=0
F[1] =1
for i =2 to n do
F[i] <= F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm?
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An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0O]=0
F[1] =1
for i =2 to n do
F[i] <= F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

© lterative algorithm is storing computed values and building
bottom up the final value.
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What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

© lterative algorithm is storing computed values and building
bottom up the final value. Memoization.
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What is the difference?

© Recursive algorithm is computing the same numbers again and
again.

© lterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Fnding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n —2)
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n —2)

How do we keep track of previously computed values?
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n —2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Fib(n):

if (n=0)
return 0

if (n=1)
return 1

if (M[n] # —1) (* M|n] has stored value of Fib(n) *)
return M[n]

M[n] <= Fib(n — 1) 4 Fib(n — 2)

return M[n]

Need to know upfront the number of subproblems to allocate
memory
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val <= Fib(n — 1) + Fib(n — 2)
Store (n,val) in D
return val
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Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

@ Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

©® Need to pay overhead of data-structure.

@ Functional languages such as LISP automatically do
memoization, usually via hashing based dictionaries.
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?
@ input is n and hence input size is ©(log n)
@ output is F(n) and output size is ©(n). Why?
© Hence output size is exponential in input size so no polynomial
time algorithm possible!

© Running time of iterative algorithm: @(n) additions but number
sizes are O(n) bits long! Hence total time is O(n?), in fact
©(n?). Why?

@ Running time of recursive algorithm is O(n¢") but can in fact
shown to be O(¢@") by being careful. Doubly exponential in
input size and exponential even in output size.
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How many distinct calls?

binom(t, b) // computes (lt))
if b =t then return 1
if b =0 then return 0
return binom(t — 1,b — 1) 4 binom(t — 1, b).

How many distinct calls does binom(n, [n/2]) makes during its
recursive execution?

(A) ©(1).
(B) ©(n).
(C) O(nlogn).
(D) ©(n?).

(B) ©( (1))

That is, if the algorithm calls recursively binom(17,5) about 5000
times during the computation, we count this is a single distinct call.
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Running time of memoized binom?

D: Initially an empty dictionary.
binomM(t, b)  // computes (;)
if b =t then return 1
if b =0 then return 0
if D[t,b] is defined then return D[t, b]
D[t, b] <= binomM(t — 1,b — 1) 4+ binomM(t — 1, b).
return DJ[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, |[n/2])?

(A) ©(1).

(B) ©(n).

(C) ©(n?).

(D) O(n?).

(B) ©((1a)))-
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Brute Force Search, Recursion and

Backtracking
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Maximum Independent Set in a Graph

Definition

Given undirected graph G = (V, E) a subset of nodes S C V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u,v € S then (u,v) & E.

Some independent sets in graph above:
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Maximum Independent Set Problem

Input Graph G = (V, E)

Goal Find maximum sized independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V, E), weights w(v) > 0 forv € V

Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

@ No one knows an efficient (polynomial time) algorithm for this
problem

© Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet (G = (V, E)):
max =0
for each subset SC V do
check if S is an independent set
if S is an independent set and w(S) > max then
max = w(S)
Output max
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet (G = (V, E)):
max =0
for each subset SC V do
check if S is an independent set
if S is an independent set and w(S) > max then
max = w(S)
Output max

Running time: suppose G has n vertices and m edges
@ 2" subsets of V
@ checking each subset S takes O(m) time
@ total time is O(m2")
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A Recursive Algorithm

Let V.= {vi,va,..., v, }.
For a vertex u let N(u) be its neighbors.
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A Recursive Algorithm

Let V.= {vi,va,..., v, }.
For a vertex u let N(u) be its neighbors.

Observation

v,. Vertex in the graph.
One of the following two cases is true

Case 1 v, is in some maximum independent set.

Case 2 v, is in no maximum independent set.
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A Recursive Algorithm

Let V.= {vi,va,..., v, }.
For a vertex u let N(u) be its neighbors.

Observation

v,. Vertex in the graph.
One of the following two cases is true

Case 1 v, is in some maximum independent set.

Case 2 v, is in no maximum independent set.

RecursiveMIS (G) :
if G is empty then Output 0
a = RecursiveMIS (G — v,,)
b = w(v,) + RecursiveMIS(G — v,, — N(v,))
Output max(a, b)
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Recursive Algorithms

..for Maximum Independent Set

Running time:

T(n) = T(n— 1) + T(n 1 deg(v,,)) + O(1 + deg(v,))

where deg(v,) is the degree of v,. T(0) = T(1) = 1 is base case.

Worst case is when deg(v,) = 0 when the recurrence becomes
T(n) =2T(n —1) + O(1)

Solution to this is T(n) = O(2").
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Backtrack Search via Recursion

© Recursive algorithm generates a tree of computation where each
node is a smaller problem (subproblem)

@ Simple recursive algorithm computes/explores the whole tree
blindly in some order.

© Backtrack search is a way to explore the tree intelligently to
prune the search space

@ Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

@ Memoization to avoid recomputing same problem

© Stop the recursion at a subproblem if it is clear that there is no
need to explore further.

O Leads to a number of heuristics that are widely used in practice
although the worst case running time may still be exponential.
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Example
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