
CS 473: Fundamental Algorithms, Fall 2014

Recurrences, Closest Pair and
Selection
Lecture 6
September 16, 2014

Alexandra (UIUC) CS473 1 Fall 2014 1 / 47

Part I

Recurrences

Alexandra (UIUC) CS473 2 Fall 2014 2 / 47

Solving Recurrences

Two general methods:
1 Recursion tree method: need to do sums

1 elementary methods, geometric series
2 integration

2 Guess and Verify
1 guessing involves intuition, experience and trial & error
2 verification is via induction

Alexandra (UIUC) CS473 3 Fall 2014 3 / 47

Recurrence: Example I

1 Consider T(n) = 2T(n/2) + n/ log n. ith level has 2i nodes,
and problem size at each node is n/2i and hence work at each
node is n

2i/ log n
2i .

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Recurrence: Example I

1 Consider T(n) = 2T(n/2) + n/ log n.

2 Construct recursion tree, and observe pattern. ith level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i/ log n
2i .

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Recurrence: Example I

1 Consider T(n) = 2T(n/2) + n/ log n.

2 Construct recursion tree, and observe pattern. ith level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i/ log n
2i .

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Recurrence: Example I

1 Consider T(n) = 2T(n/2) + n/ log n.
2 Construct recursion tree, and observe pattern. ith level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i/ log n
2i .

3 Summing over all levels

T(n) =

log n−1∑
i=0

2i

[
(n/2i)

log(n/2i)

]

=

log n−1∑
i=0

n

log n− i

= n

log n∑
j=1

1

j
= nHlog n = Θ(n log log n)

Alexandra (UIUC) CS473 4 Fall 2014 4 / 47

Recurrence: Example II

1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Recurrence: Example II

1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Recurrence: Example II

1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Recurrence: Example II

1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Recurrence: Example II

1 Consider...

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).

3 Number of levels: n2−L
= 2 means L = log log n.

4 Number of children at each level is 1, work at each node is 1

5 Thus, T(n) =
∑L

i=0 1 = Θ(L) = Θ(log log n).

Alexandra (UIUC) CS473 5 Fall 2014 5 / 47

Recurrence: Example III

1 Consider T(n) =
√

nT(
√

n) + n.

2 Using recursion trees: number of levels L = log log n

3 Work at each level? Root is n, next level is
√

n×
√

n = n, so
on. Can check that each level is n.

4 Thus, T(n) = Θ(n log log n)

Alexandra (UIUC) CS473 6 Fall 2014 6 / 47

Recurrence: Example III

1 Consider T(n) =
√

nT(
√

n) + n.

2 Using recursion trees: number of levels L = log log n

3 Work at each level? Root is n, next level is
√

n×
√

n = n, so
on. Can check that each level is n.

4 Thus, T(n) = Θ(n log log n)

Alexandra (UIUC) CS473 6 Fall 2014 6 / 47

Recurrence: Example III

1 Consider T(n) =
√

nT(
√

n) + n.

2 Using recursion trees: number of levels L = log log n

3 Work at each level? Root is n, next level is
√

n×
√

n = n, so
on. Can check that each level is n.

4 Thus, T(n) = Θ(n log log n)

Alexandra (UIUC) CS473 6 Fall 2014 6 / 47

Recurrence: Example III

1 Consider T(n) =
√

nT(
√

n) + n.

2 Using recursion trees: number of levels L = log log n

3 Work at each level? Root is n, next level is
√

n×
√

n = n, so
on. Can check that each level is n.

4 Thus, T(n) = Θ(n log log n)

Alexandra (UIUC) CS473 6 Fall 2014 6 / 47

Recurrence: Example IV

1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Recurrence: Example IV

1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Recurrence: Example IV

1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Recurrence: Example IV

1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Recurrence: Example IV

1 Consider T(n) = T(n/4) + T(3n/4) + n.

2 Using recursion tree, we observe the tree has leaves at different
levels (a lop-sided tree).

3 Total work in any level is at most n. Total work in any level
without leaves is exactly n.

4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n

5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means
T(n) = Θ(n log n)

Alexandra (UIUC) CS473 7 Fall 2014 7 / 47

Part II

Closest Pair

Alexandra (UIUC) CS473 8 Fall 2014 8 / 47

Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find p, q ∈ S such that d(p, q) is minimum

Alexandra (UIUC) CS473 9 Fall 2014 9 / 47

Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find p, q ∈ S such that d(p, q) is minimum

Alexandra (UIUC) CS473 9 Fall 2014 9 / 47

Applications

1 Basic primitive used in graphics, vision, molecular modelling

2 Ideas used in solving nearest neighbor, Voronoi diagrams,
Euclidean MST

Alexandra (UIUC) CS473 10 Fall 2014 10 / 47

Algorithm: Brute Force

1 Compute distance between every pair of points and find
minimum.

2 Takes O(n2) time.

3 Can we do better?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Algorithm: Brute Force

1 Compute distance between every pair of points and find
minimum.

2 Takes O(n2) time.

3 Can we do better?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Algorithm: Brute Force

1 Compute distance between every pair of points and find
minimum.

2 Takes O(n2) time.

3 Can we do better?

Alexandra (UIUC) CS473 11 Fall 2014 11 / 47

Closest Pair: 1-d case

Input Given a set S of n points on a line

Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm
1 Sort points based on coordinate

2 Compute the distance between successive points, keeping track
of the closest pair.

Running time O(n log n)

Can we do this in better running time?
Can reduce Distinct Elements Problem (see lecture 1) to this problem
in O(n) time. Do you see how?

Alexandra (UIUC) CS473 12 Fall 2014 12 / 47

Closest Pair: 1-d case

Input Given a set S of n points on a line

Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm
1 Sort points based on coordinate

2 Compute the distance between successive points, keeping track
of the closest pair.

Running time O(n log n)

Can we do this in better running time?
Can reduce Distinct Elements Problem (see lecture 1) to this problem
in O(n) time. Do you see how?

Alexandra (UIUC) CS473 12 Fall 2014 12 / 47

Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??
No easy generalization.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 47

Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??
No easy generalization.

Alexandra (UIUC) CS473 13 Fall 2014 13 / 47

First Attempt

Divide and Conquer I
1 Partition into 4 quadrants of roughly equal size.

2 Find closest pair in each quadrant recursively

3 Combine solutions

Alexandra (UIUC) CS473 14 Fall 2014 14 / 47

First Attempt

Divide and Conquer I
1 Partition into 4 quadrants of roughly equal size.Not always!

2 Find closest pair in each quadrant recursively

3 Combine solutions

Alexandra (UIUC) CS473 14 Fall 2014 14 / 47

Finding a negative cycle in a graph...

Let G = (V,E) be a directed graph with n vertices, m edges, and
(positive or negative) weights on the edges. Assume G has at least
one negative cycle. Outputting one of these negative cycles can be
done in

(A) You an only detect if a negative cycle exists. There is no way to
compute it.

(B) This takes exponential time (i.e., this problem is NP-Hard).

(C) O(nm) time.

(D) O(n + m).

(E) IDK (25%).

Alexandra (UIUC) CS473 15 Fall 2014 15 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

Alexandra (UIUC) CS473 16 Fall 2014 16 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

Alexandra (UIUC) CS473 16 Fall 2014 16 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

Alexandra (UIUC) CS473 16 Fall 2014 16 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

New Algorithm

Divide and Conquer II
1 Divide the set of points into two equal parts via vertical line

2 Find closest pair in each half recursively

3 Find closest pair with one point in each half

4 Return the best pair among the above 3 solutions

1 Sort points based on x-coordinate and pick the median. Time
= O(n log n)

2 How to find closest pair with points in different halves? O(n2) is
trivial. Better?

Alexandra (UIUC) CS473 17 Fall 2014 17 / 47

Combining Partial Solutions

1 Does it take O(n2) to combine solutions?

2 Let δ be the distance between closest pairs, where both points
belong to the same half.

δ

Alexandra (UIUC) CS473 18 Fall 2014 18 / 47

Combining Partial Solutions

1 Let δ be the distance between closest pairs, where both points
belong to the same half.

2 Need to consider points within δ of dividing line

δ

δ δ

Alexandra (UIUC) CS473 19 Fall 2014 19 / 47

Sparsity of Band

δ

Divide the band into square boxes of size δ/2

Lemma
Each box has at most one point

Proof.
If not, then there are a pair of points (both
belonging to one half) that are at most√

2δ/2 < δ apart!

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47

Sparsity of Band

δ

Divide the band into square boxes of size δ/2

Lemma
Each box has at most one point

Proof.
If not, then there are a pair of points (both
belonging to one half) that are at most√

2δ/2 < δ apart!

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47

Sparsity of Band

δ

Divide the band into square boxes of size δ/2

Lemma
Each box has at most one point

Proof.
If not, then there are a pair of points (both
belonging to one half) that are at most√

2δ/2 < δ apart!

Alexandra (UIUC) CS473 20 Fall 2014 20 / 47

Searching within the Band

δ

Lemma
Suppose a, b are both in the band
d(a, b) < δ then a, b have at most two rows
of boxes between them.

Proof.
Each row of boxes has height δ/2. If more
than two rows then d(a, b) > 2 · δ/2!

Alexandra (UIUC) CS473 21 Fall 2014 21 / 47

Searching within the Band

δ

Lemma
Suppose a, b are both in the band
d(a, b) < δ then a, b have at most two rows
of boxes between them.

Proof.
Each row of boxes has height δ/2. If more
than two rows then d(a, b) > 2 · δ/2!

Alexandra (UIUC) CS473 21 Fall 2014 21 / 47

Searching within the Band

δ

Corollary
Order points according to their y-coordinate. If p, q are
such that d(p, q) < δ then p and q are within 11
positions in the sorted list.

Proof.
1 ≤ 2 points between them if p and q in same row.

2 ≤ 6 points between them if p and q in two
consecutive rows.

3 ≤ 10 points between if p and q one row apart.

4 =⇒ More than ten points between them in the
sorted y order than p and q are more than two
rows apart.

5 =⇒ d(p, q) > δ. A contradiction.

Alexandra (UIUC) CS473 22 Fall 2014 22 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

The Algorithm

ClosestPair(P):
1. Find vertical line L splits P into equal halves: P1 and P2

2. δ1 ← ClosestPair(P1).
3. δ2 ← ClosestPair(P2).
4. δ = min(δ1, δ2)
5. Delete points from P further than δ from L
6. Sort P based on y-coordinate into an array A
7. for i = 1 to |A| − 1 do

for j = i + 1 to min{i + 11, |A|} do
if (dist(A[i],A[j]) < δ) update δ and closest pair

1 Step 1, involves sorting and scanning. Takes O(n log n) time.

2 Step 5 takes O(n) time.

3 Step 6 takes O(n log n) time

4 Step 7 takes O(n) time.

Alexandra (UIUC) CS473 23 Fall 2014 23 / 47

Running Time

The running time of the algorithm is given by

T(n) ≤ 2T(n/2) + O(n log n)

Thus, T(n) = O(n log2 n).

Improved Algorithm
Avoid repeated sorting of points in band: two options

1 Sort all points by y-coordinate and store the list. In conquer step
use this to avoid sorting

2 Each recursive call returns a list of points sorted by their
y-coordinates. Merge in conquer step in linear time.

Analysis: T(n) ≤ 2T(n/2) + O(n) = O(n log n)

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Running Time

The running time of the algorithm is given by

T(n) ≤ 2T(n/2) + O(n log n)

Thus, T(n) = O(n log2 n).

Improved Algorithm
Avoid repeated sorting of points in band: two options

1 Sort all points by y-coordinate and store the list. In conquer step
use this to avoid sorting

2 Each recursive call returns a list of points sorted by their
y-coordinates. Merge in conquer step in linear time.

Analysis: T(n) ≤ 2T(n/2) + O(n) = O(n log n)

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Running Time

The running time of the algorithm is given by

T(n) ≤ 2T(n/2) + O(n log n)

Thus, T(n) = O(n log2 n).

Improved Algorithm
Avoid repeated sorting of points in band: two options

1 Sort all points by y-coordinate and store the list. In conquer step
use this to avoid sorting

2 Each recursive call returns a list of points sorted by their
y-coordinates. Merge in conquer step in linear time.

Analysis: T(n) ≤ 2T(n/2) + O(n) = O(n log n)

Alexandra (UIUC) CS473 24 Fall 2014 24 / 47

Part III

Selecting in Unsorted Lists

Alexandra (UIUC) CS473 25 Fall 2014 25 / 47

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle

Alexandra (UIUC) CS473 26 Fall 2014 26 / 47

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 47

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 47

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 47

Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Alexandra (UIUC) CS473 27 Fall 2014 27 / 47

Prune and search

Consider an algorithm alg that is given an input of size n. In O(n)
time, it either solves the problem, or solve it by calling recursively on
an input of size, say, ≤ (15/16)n. The running time of alg is

(A) O(n2)

(B) O(n log n)

(C) O(n)

(D) Undefined - there are not enough details.

(E) I know the answer but unfortunately I was sworn to secrecy and
can not share it with you.

Alexandra (UIUC) CS473 28 Fall 2014 28 / 47

Problem - Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Example

A = {4, 6, 2, 1, 5, 8, 7} and j = 4. The jth smallest element is 5.

Median: j = b(n + 1)/2c

Alexandra (UIUC) CS473 29 Fall 2014 29 / 47

Algorithm I

1 Sort the elements in A

2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

Alexandra (UIUC) CS473 30 Fall 2014 30 / 47

Algorithm I

1 Sort the elements in A

2 Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?

Alexandra (UIUC) CS473 30 Fall 2014 30 / 47

Algorithm II

If j is small or n− j is small then

1 Find j smallest/largest elements in A in O(jn) time. (How?)

2 Time to find median is O(n2).

Alexandra (UIUC) CS473 31 Fall 2014 31 / 47

Divide and Conquer Approach

1 Pick a pivot element a from A

2 Partition A based on a.
Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}

3 |Aless| = j: return a

4 |Aless| > j: recursively find jth smallest element in Aless

5 |Aless| < j: recursively find kth smallest element in Agreater

where k = j− |Aless|.

Alexandra (UIUC) CS473 32 Fall 2014 32 / 47

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Alexandra (UIUC) CS473 33 Fall 2014 33 / 47

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Alexandra (UIUC) CS473 33 Fall 2014 33 / 47

Time Analysis

1 Partitioning step: O(n) time to scan A

2 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
Exercise: show that algorithm takes Ω(n2) time

Alexandra (UIUC) CS473 33 Fall 2014 33 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

A Better Pivot

Suppose pivot is the `th smallest element where n/4 ≤ ` ≤ 3n/4.
That is pivot is approximately in the middle of A
Then n/4 ≤ |Aless| ≤ 3n/4 and n/4 ≤ |Agreater| ≤ 3n/4. If we
apply recursion,

T(n) ≤ T(3n/4) + O(n)

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

Alexandra (UIUC) CS473 34 Fall 2014 34 / 47

Divide and Conquer Approach
A game of medians

Idea
1 Break input A into many subarrays: L1, . . . Lk.

2 Find median mi in each subarray Li.

3 Find the median x of the medians m1, . . . ,mk.

4 Intuition: The median x should be close to being a good median
of all the numbers in A.

5 Use x as pivot in previous algorithm.

But we have to be...
More specific...

1 Size of each group?

2 How to find median of medians?

Alexandra (UIUC) CS473 35 Fall 2014 35 / 47

Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1],A[2], . . . ,A[5]}, L2 = {A[6], . . . ,A[10]}, . . .,
Li = {A[5i + 1], . . . ,A[5i− 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . ,A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.

Alexandra (UIUC) CS473 36 Fall 2014 36 / 47

Choosing the pivot
A clash of medians

1 Partition array A into dn/5e lists of 5 items each.
L1 = {A[1],A[2], . . . ,A[5]}, L2 = {A[6], . . . ,A[10]}, . . .,
Li = {A[5i + 1], . . . ,A[5i− 4]}, . . .,
Ldn/5e = {A[5dn/5e − 4, . . . ,A[n]}.

2 For each i find median bi of Li using brute-force in O(1) time.
Total O(n) time

3 Let B = {b1, b2, . . . , bdn/5e}
4 Find median b of B

Lemma
Median of B is an approximate median of A. That is, if b is used a
pivot to partition A, then |Aless| ≤ 7n/10 + 6 and
|Agreater| ≤ 7n/10 + 6.

Alexandra (UIUC) CS473 36 Fall 2014 36 / 47

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . ,A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B?

Alexandra (UIUC) CS473 37 Fall 2014 37 / 47

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . ,A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

Alexandra (UIUC) CS473 37 Fall 2014 37 / 47

Algorithm for Selection
A storm of medians

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i− 4], . . . ,A[5i]}
Find median bi of each Li using brute-force

Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot

if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j− |Aless|)

How do we find median of B? Recursively!

Alexandra (UIUC) CS473 37 Fall 2014 37 / 47

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|),T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(1) = 1

Exercise: show that T(n) = O(n)

Alexandra (UIUC) CS473 38 Fall 2014 38 / 47

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|),T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(1) = 1

Exercise: show that T(n) = O(n)

Alexandra (UIUC) CS473 38 Fall 2014 38 / 47

Running time of deterministic median selection
A dance with recurrences

T(n) = T(dn/5e) + max{T(|Aless|),T(|Agreater)|}+ O(n)

From Lemma,

T(n) ≤ T(dn/5e) + T(b7n/10 + 6c) + O(n)

and
T(1) = 1

Exercise: show that T(n) = O(n)

Alexandra (UIUC) CS473 38 Fall 2014 38 / 47

Median of Medians: Proof of Lemma

Figure : Shaded elements are all
greater than b

Proposition

There are at least 3n/10− 6
elements greater than the median of
medians b.

Proof.
At least half of the dn/5e groups
have at least 3 elements larger than
b, except for last group and the
group containing b. So b is less than

3(d(1/2)dn/5ee−2) ≥ 3n/10−6

Alexandra (UIUC) CS473 39 Fall 2014 39 / 47

Median of Medians: Proof of Lemma

Figure : Shaded elements are all
greater than b

Proposition

There are at least 3n/10− 6
elements greater than the median of
medians b.

Proof.
At least half of the dn/5e groups
have at least 3 elements larger than
b, except for last group and the
group containing b. So b is less than

3(d(1/2)dn/5ee−2) ≥ 3n/10−6

Alexandra (UIUC) CS473 39 Fall 2014 39 / 47

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10− 6 elements greater than the median of
medians b.

Corollary

|Aless| ≤ 7n/10 + 6.

Via symmetric argument,

Corollary

|Agreater| ≤ 7n/10 + 6.

Alexandra (UIUC) CS473 40 Fall 2014 40 / 47

Questions to ponder

1 Why did we choose lists of size 5? Will lists of size 3 work?

2 Write a recurrence to analyze the algorithm’s running time if we
choose a list of size k.

Alexandra (UIUC) CS473 41 Fall 2014 41 / 47

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Alexandra (UIUC) CS473 42 Fall 2014 42 / 47

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Alexandra (UIUC) CS473 42 Fall 2014 42 / 47

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?
All except Vaughn Pratt!

Alexandra (UIUC) CS473 42 Fall 2014 42 / 47

Takeaway Points

1 Recursion tree method and guess and verify are the most reliable
methods to analyze recursions in algorithms.

2 Recursive algorithms naturally lead to recurrences.

3 Some times one can look for certain type of recursive algorithms
(reverse engineering) by understanding recurrences and their
behavior.

Alexandra (UIUC) CS473 43 Fall 2014 43 / 47

Notes

Alexandra (UIUC) CS473 44 Fall 2014 44 / 47

Notes

Alexandra (UIUC) CS473 45 Fall 2014 45 / 47

Notes

Alexandra (UIUC) CS473 46 Fall 2014 46 / 47

Notes

Alexandra (UIUC) CS473 47 Fall 2014 47 / 47

	Recurrences
	Closest Pair
	The Problem
	Algorithmic Solution
	Special Case
	Divide and Conquer
	Towards a fast solution

	Running Time Analysis

	Selecting in Unsorted Lists
	Quick Sort
	Selection
	Naïve Algorithm
	Divide and Conquer
	Median of Medians

