CS 473: Fundamental Algorithms, Fall 2014

Recurrences, Closest Pair and Selection

Lecture 6 September 16, 2014

Part I

Recurrences

Solving Recurrences

Two general methods:

- Recursion tree method: need to do sums
 - elementary methods, geometric series
 - integration
- Q Guess and Verify
 - guessing involves intuition, experience and trial & error
 - verification is via induction

• Consider $T(n) = 2T(n/2) + n/\log n$. it level has 2ⁱ nodes,

and problem size at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/\log \frac{n}{2^i}$.

- Consider $T(n) = 2T(n/2) + n/\log n$.
- Construct recursion tree, and observe pattern. it level has 2ⁱ nodes, and problem size at each node is n/2ⁱ and hence work at each node is n/2ⁱ / log n/2ⁱ.

- Consider $T(n) = 2T(n/2) + n/\log n$.
- ⁽²⁾ Construct recursion tree, and observe pattern. ith level has 2^{i} nodes, and problem size at each node is $n/2^{i}$ and hence work at each node is $\frac{n}{2^{i}}/\log \frac{n}{2^{i}}$.

- Consider $T(n) = 2T(n/2) + n/\log n$.
- ² Construct recursion tree, and observe pattern. ith level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/\log \frac{n}{2^i}$.
- Summing over all levels

$$T(n) = \sum_{i=0}^{\log n-1} 2^{i} \left[\frac{(n/2^{i})}{\log(n/2^{i})} \right]$$
$$= \sum_{i=0}^{\log n-1} \frac{n}{\log n - i}$$
$$= n \sum_{j=1}^{\log n} \frac{1}{j} = n H_{\log n} = \Theta(n \log \log n)$$

Consider...

What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \dots, O(1).$

- 3 Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is 1, work at each node is 1
- **3** Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.

- Consider...
- What is the depth of recursion?

 $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \dots, O(1).$

- Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- ④ Number of children at each level is ${f 1}$, work at each node is ${f 1}$
- **3** Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.

- Consider...
- What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \dots, O(1).$
- Solution Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is 1, work at each node is 1
 Thus, T(n) = \sum_{i=0}^{L} 1 = \Omega(L) = \Omega(log log n).

- Consider...
- What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \dots, O(1).$
- Solution Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is 1, work at each node is 1
 Thus, T(n) = \sum_{i=0}^{L} 1 = \Omega(L) = \Omega(\log \log n).

- Consider...
- What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \dots, O(1).$
- Solution Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is ${f 1}$, work at each node is ${f 1}$
- **3** Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.

• Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.

Osing recursion trees: number of levels L = log log n

- Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is n.
- Thus, $T(n) = \Theta(n \log \log n)$

- Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.
- Osing recursion trees: number of levels L = log log n
- Work at each level? Root is n, next level is \sqrt{n} \times \sqrt{n} = n, so on. Can check that each level is n.
- Thus, $T(n) = \Theta(n \log \log n)$

- Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.
- Osing recursion trees: number of levels L = log log n
- Work at each level? Root is **n**, next level is $\sqrt{\mathbf{n}} \times \sqrt{\mathbf{n}} = \mathbf{n}$, so on. Can check that each level is **n**.
- Thus, $T(n) = \Theta(n \log \log n)$

- Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$.
- Osing recursion trees: number of levels L = log log n
- Work at each level? Root is **n**, next level is $\sqrt{n} \times \sqrt{n} = n$, so on. Can check that each level is **n**.
- Thus, $T(n) = \Theta(n \log \log n)$

• Consider T(n) = T(n/4) + T(3n/4) + n.

- Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- In Highest leaf is at level log₄ n and lowest leaf is at level log_{4/3} n
- Thus, $n \log_4 n \le T(n) \le n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

- Consider T(n) = T(n/4) + T(3n/4) + n.
- Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- In Highest leaf is at level log₄ n and lowest leaf is at level log_{4/3} n
- Thus, $n \log_4 n \le T(n) \le n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

- Consider T(n) = T(n/4) + T(3n/4) + n.
- Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- Itighest leaf is at level log₄ n and lowest leaf is at level log_{4/3} n
- Thus, $n \log_4 n \le T(n) \le n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

- Consider T(n) = T(n/4) + T(3n/4) + n.
- Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- Itighest leaf is at level log₄ n and lowest leaf is at level log_{4/3} n
- Thus, $n \log_4 n \le T(n) \le n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

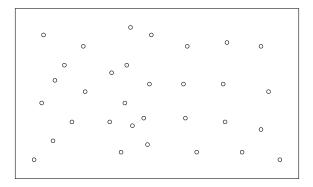
- Consider T(n) = T(n/4) + T(3n/4) + n.
- Using recursion tree, we observe the tree has leaves at different levels (a *lop-sided* tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- Itighest leaf is at level log₄ n and lowest leaf is at level log_{4/3} n
- Thus, $n \log_4 n \le T(n) \le n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

Part II

Closest Pair

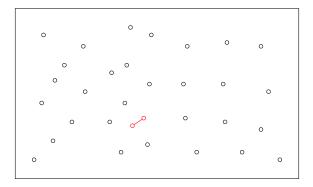
Closest Pair - the problem

Input Given a set **S** of **n** points on the plane Goal Find $\mathbf{p}, \mathbf{q} \in \mathbf{S}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{q})$ is minimum



Closest Pair - the problem

Input Given a set **S** of **n** points on the plane Goal Find $\mathbf{p}, \mathbf{q} \in \mathbf{S}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{q})$ is minimum



Applications

- Basic primitive used in graphics, vision, molecular modelling
- Ideas used in solving nearest neighbor, Voronoi diagrams, Euclidean MST

Algorithm: Brute Force

- Compute distance between every pair of points and find minimum.
- 2 Takes O(n²) time.
- Can we do better?

Algorithm: Brute Force

- Compute distance between every pair of points and find minimum.
- Takes O(n²) time.
- Can we do better?

Algorithm: Brute Force

- Compute distance between every pair of points and find minimum.
- Takes O(n²) time.
- Oan we do better?

Closest Pair: 1-d case

Input Given a set **S** of **n** points on a line Goal Find $\mathbf{p}, \mathbf{q} \in \mathbf{S}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{q})$ is minimum

Algorithm

- Sort points based on coordinate
- Compute the distance between successive points, keeping track of the closest pair.

Running time **O(n log n)**

Can we do this in better running time? Can reduce Distinct Elements Problem (see lecture 1) to this problem in **O(n)** time. Do you see how?

Closest Pair: 1-d case

Input Given a set **S** of **n** points on a line Goal Find $\mathbf{p}, \mathbf{q} \in \mathbf{S}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{q})$ is minimum

Algorithm

- Sort points based on coordinate
- Ocmpute the distance between successive points, keeping track of the closest pair.

Running time **O(n log n)**

Can we do this in better running time? Can reduce Distinct Elements Problem (see lecture 1) to this problem in **O(n)** time. Do you see how?

Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d? Sort according to x or y-coordinate?? No easy generalization.

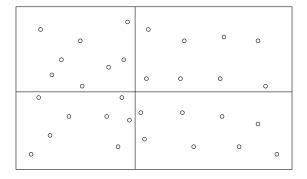
Generalizing 1-d case

Can we generalize **1**-d algorithm to **2**-d? Sort according to **x** or **y**-coordinate?? No easy generalization.

First Attempt

Divide and Conquer I

- Partition into 4 quadrants of roughly equal size.
- Ind closest pair in each quadrant recursively
- Combine solutions



First Attempt

Divide and Conquer I

- Partition into 4 quadrants of roughly equal size.Not always!
- Ind closest pair in each quadrant recursively
- Combine solutions

0	>	0		0					
		0 0	0	0		0			
0	000		00 00						
					0			0	
					00	0	ම		0
						0		0	
0					0	0		0	0

14

Finding a negative cycle in a graph...

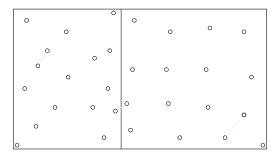
Let G = (V, E) be a directed graph with **n** vertices, **m** edges, and (positive or negative) weights on the edges. Assume G has at least one negative cycle. Outputting one of these negative cycles can be done in

- (A) You an only detect if a negative cycle exists. There is no way to compute it.
- **(B)** This takes exponential time (i.e., this problem is **NP-Hard**).
- (C) O(nm) time.
- (D) O(n + m).
- **(E)** IDK (25%).

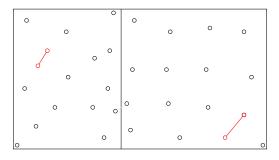
New Algorithm

Divide and Conquer II

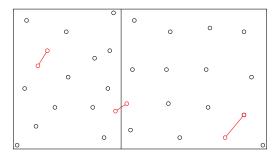
- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- § Find closest pair with one point in each half
- Return the best pair among the above 3 solutions



- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- § Find closest pair with one point in each half
- Return the best pair among the above 3 solutions



- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- § Find closest pair with one point in each half
- Return the best pair among the above 3 solutions



- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- Sind closest pair with one point in each half
- Return the best pair among the above 3 solutions
- Sort points based on x-coordinate and pick the median. Time
 = O(n log n)
- e How to find closest pair with points in different halves? O(n²) is trivial. Better?

- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- Sind closest pair with one point in each half
- Return the best pair among the above 3 solutions
- Sort points based on x-coordinate and pick the median. Time
 = O(n log n)
- e How to find closest pair with points in different halves? O(n²) is trivial. Better?

Divide and Conquer II

- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- Sind closest pair with one point in each half
- Return the best pair among the above 3 solutions

Sort points based on x-coordinate and pick the median. Time
 = O(n log n)

e How to find closest pair with points in different halves? O(n²) is trivial. Better?

Divide and Conquer II

- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- Sind closest pair with one point in each half
- eturn the best pair among the above 3 solutions

Sort points based on x-coordinate and pick the median. Time
 = O(n log n)

e How to find closest pair with points in different halves? O(n²) is trivial. Better?

- Divide the set of points into two equal parts via vertical line
- Ind closest pair in each half recursively
- Sind closest pair with one point in each half
- Seturn the best pair among the above 3 solutions
- Sort points based on x-coordinate and pick the median. Time
 = O(n log n)
- O(n²) is trivial. Better?

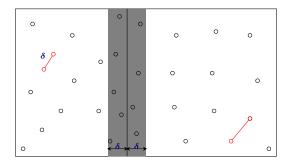
Combining Partial Solutions

- Does it take O(n²) to combine solutions?
- 2 Let δ be the distance between closest pairs, where both points belong to the same half.

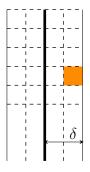


Combining Partial Solutions

- Let δ be the distance between closest pairs, where both points belong to the same half.
- ② Need to consider points within δ of dividing line



Sparsity of Band



Divide the band into square boxes of size $\delta/2$

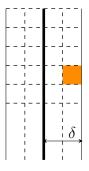
Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!

Sparsity of Band



Divide the band into square boxes of size $\delta/2$

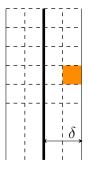
Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!

Sparsity of Band



Divide the band into square boxes of size $\delta/2$

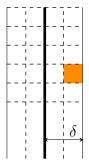
Lemma

Each box has at most one point

Proof.

If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!

Searching within the Band



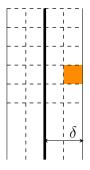
Lemma

Suppose \mathbf{a}, \mathbf{b} are both in the band $\mathbf{d}(\mathbf{a}, \mathbf{b}) < \delta$ then \mathbf{a}, \mathbf{b} have at most two rows of boxes between them.

Proof

Each row of boxes has height $\delta/2$. If more than two rows then $\mathbf{d}(\mathbf{a}, \mathbf{b}) > 2 \cdot \delta/2!$

Searching within the Band



Lemma

Suppose \mathbf{a}, \mathbf{b} are both in the band $\mathbf{d}(\mathbf{a}, \mathbf{b}) < \delta$ then \mathbf{a}, \mathbf{b} have at most two rows of boxes between them.

Proof.

Each row of boxes has height $\delta/2$. If more than two rows then $d(a, b) > 2 \cdot \delta/2!$

Searching within the Band

Corollary

Order points according to their y-coordinate. If \mathbf{p}, \mathbf{q} are such that $\mathbf{d}(\mathbf{p}, \mathbf{q}) < \delta$ then \mathbf{p} and \mathbf{q} are within 11 positions in the sorted list.

Proof.

- $\bigcirc \leq 2$ points between them if **p** and **q** in same row.
- Solution of a set of a set
- $\odot \leq 10$ points between if **p** and **q** one row apart.
- More than ten points between them in the sorted y order than p and q are more than two rows apart.

- 1. Find vertical line ${\sf L}$ splits ${\sf P}$ into equal halves: ${\sf P}_1$ and ${\sf P}$
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort P based on y-coordinate into an array A
- 7. for i = 1 to |A| 1 do for j = i + 1 to min $\{i + 11, |A|\}$ do if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair
- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line ${\sf L}$ splits ${\sf P}$ into equal halves: ${\sf P}_1$ and ${\sf P}$
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort P based on y-coordinate into an array A

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line ${\sf L}$ splits ${\sf P}$ into equal halves: ${\sf P}_1$ and ${\sf P}$
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort P based on y-coordinate into an array A

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if (dist(A[i], A[j]) < δ) update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line ${\sf L}$ splits ${\sf P}$ into equal halves: ${\sf P}_1$ and ${\sf P}$
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\sf P}$ further than δ from ${\sf L}$
- 6. Sort P based on y-coordinate into an array A

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line ${\sf L}$ splits ${\sf P}$ into equal halves: ${\sf P}_1$ and ${\sf P}$
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\sf P}$ further than δ from ${\sf L}$
- 6. Sort P based on y-coordinate into an array A

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line L splits P into equal halves: P_1 and P
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort ${\bf P}$ based on y-coordinate into an array ${\bf A}$

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line L splits P into equal halves: P_1 and P
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort ${\bf P}$ based on y-coordinate into an array ${\bf A}$

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line L splits P into equal halves: P_1 and P
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\bf P}$ further than δ from ${\bf L}$
- 6. Sort P based on y-coordinate into an array A

```
7. for i = 1 to |A| - 1 do
for j = i + 1 to min\{i + 11, |A|\} do
if (dist(A[i], A[j]) < \delta) update \delta and closest pair
```

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time

- 1. Find vertical line L splits P into equal halves: P_1 and P
- 2. $\delta_1 \leftarrow \text{ClosestPair}(\mathsf{P}_1)$.
- 3. $\delta_2 \leftarrow \text{ClosestPair}(\mathsf{P}_2)$.
- 4. $\delta = \min(\delta_1, \delta_2)$
- 5. Delete points from ${\sf P}$ further than δ from ${\sf L}$
- 6. Sort ${\bf P}$ based on y-coordinate into an array ${\bf A}$

7. for
$$i = 1$$
 to $|A| - 1$ do
for $j = i + 1$ to min $\{i + 11, |A|\}$ do
if $(dist(A[i], A[j]) < \delta)$ update δ and closest pair

- Step 1, involves sorting and scanning. Takes O(n log n) time.
- Step 5 takes O(n) time.
- Step 6 takes O(n log n) time
- Step 7 takes O(n) time.

Running Time

The running time of the algorithm is given by

$\mathsf{T}(n) \leq 2\mathsf{T}(n/2) + \mathsf{O}(n\log n)$

Thus, $T(n) = O(n \log^2 n)$.

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by y-coordinate and store the list. In conquer step use this to avoid sorting
- Each recursive call returns a list of points sorted by their y-coordinates. Merge in conquer step in linear time.

Analysis: $T(n) \leq 2T(n/2) + O(n) = O(n \log n)$

Running Time

The running time of the algorithm is given by

$\mathsf{T}(n) \leq 2\mathsf{T}(n/2) + \mathsf{O}(n\log n)$

Thus, $T(n) = O(n \log^2 n)$.

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by y-coordinate and store the list. In conquer step use this to avoid sorting
- Each recursive call returns a list of points sorted by their y-coordinates. Merge in conquer step in linear time.

Analysis: $T(n) \leq 2T(n/2) + O(n) = O(n \log n)$

Running Time

The running time of the algorithm is given by

 $\mathsf{T}(n) \leq 2\mathsf{T}(n/2) + \mathsf{O}(n\log n)$

Thus, $T(n) = O(n \log^2 n)$.

Improved Algorithm

Avoid repeated sorting of points in band: two options

- Sort all points by y-coordinate and store the list. In conquer step use this to avoid sorting
- Each recursive call returns a list of points sorted by their y-coordinates. Merge in conquer step in linear time.

Analysis: $T(n) \leq 2T(n/2) + O(n) = O(n \log n)$

Part III

Selecting in Unsorted Lists

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- In the subarrays, and concatenate them.

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- 2 pivot: 16
- 3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- oput them together with pivot in middle

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- In the subarrays, and concatenate them.

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- 2 pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- 9 put them together with pivot in middle

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Secursively sort the subarrays, and concatenate them.

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- 2 pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- 9 put them together with pivot in middle

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- In the subarrays, and concatenate them.

- array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- 2 pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- 9 put them together with pivot in middle

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- $T(n) = T([n/2]-1)+T([n/2])+O(n) \le 2T(n/2)+O(n).$ Then, $T(n) = O(n \log n).$
 - Theoretically, median can be found in linear time.
- Typically, pivot is the first or last element of array. Then,

 $T(n) = \max_{1 \leq k \leq n} (T(k-1) + T(n-k) + O(n))$

- Let k be the rank of the chosen pivot. Then, T(n) = T(k - 1) + T(n - k) + O(n)
- ② If $\mathbf{k} = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.

• Theoretically, median can be found in linear time.

Typically, pivot is the first or last element of array. Then,

 $T(n) = \max_{1 \leq k \leq n} (T(k-1) + T(n-k) + O(n))$

- Let k be the rank of the chosen pivot. Then, T(n) = T(k - 1) + T(n - k) + O(n)
- **2** If $\mathbf{k} = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.

• Theoretically, median can be found in linear time.

Typically, pivot is the first or last element of array. Then,

$T(n) = \max_{1 \leq k \leq n} (T(k-1) + T(n-k) + O(n))$

- Let k be the rank of the chosen pivot. Then, T(n) = T(k - 1) + T(n - k) + O(n)
- ② If $\mathbf{k} = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.

• Theoretically, median can be found in linear time.

Sypically, pivot is the first or last element of array. Then,

$\mathsf{T}(\mathsf{n}) = \max_{1 \leq k \leq \mathsf{n}} (\mathsf{T}(\mathsf{k}-1) + \mathsf{T}(\mathsf{n}-\mathsf{k}) + \mathsf{O}(\mathsf{n}))$

Prune and search

Consider an algorithm **alg** that is given an input of size **n**. In **O(n)** time, it either solves the problem, or solve it by calling recursively on an input of size, say, $\leq (15/16)n$. The running time of **alg** is

- (A) $O(n^2)$
- (B) $O(n \log n)$
- (C) O(n)
- (D) Undefined there are not enough details.
- (E) I know the answer but unfortunately I was sworn to secrecy and can not share it with you.

Problem - Selection

Input Unsorted array **A** of **n** integers Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Example $A = \{4, 6, 2, 1, 5, 8, 7\}$ and j = 4. The jth smallest element is 5.

Median: $j = \lfloor (n + 1)/2 \rfloor$

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order
- Time taken = $O(n \log n)$

Do we need to sort? Is there an **O(n)** time algorithm?

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order
- Time taken = $O(n \log n)$
- Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

- If \mathbf{j} is small or $\mathbf{n} \mathbf{j}$ is small then
 - Find j smallest/largest elements in A in O(jn) time. (How?)
 - Time to find median is O(n²).

Divide and Conquer Approach

- Pick a pivot element a from A
 Partition A based on a. A_{less} = {x ∈ A | x ≤ a} and A_{greater} = {x ∈ A | x > a}
 |A_{less}| = j: return a
 |A_{less}| > j: recursively find jth smallest element in A_{less}
 |A_{less}| < j: recursively find kth smallest element in A_{greater}
 - where $\mathbf{k} = \mathbf{j} |\mathbf{A}_{\text{less}}|$.

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be **A[1]**.

Say **A** is sorted in increasing order and $\mathbf{j} = \mathbf{n}$. Exercise: show that algorithm takes $\Omega(\mathbf{n}^2)$ time

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say **A** is sorted in increasing order and $\mathbf{j} = \mathbf{n}$. Exercise: show that algorithm takes $\Omega(\mathbf{n}^2)$ time

Time Analysis

- Partitioning step: O(n) time to scan A
- I How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say **A** is sorted in increasing order and $\mathbf{j} = \mathbf{n}$. Exercise: show that algorithm takes $\Omega(\mathbf{n}^2)$ time

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

$$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(3\mathsf{n}/4) + \mathsf{O}(\mathsf{n})$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Divide and Conquer Approach A game of medians

Idea

- Break input A into many subarrays: L₁,... L_k.
- Pind median m_i in each subarray L_i.
- Find the median x of the medians m₁,..., m_k.
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

But we have to be ...

More specific...

- Size of each group?
- I How to find median of medians?

Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of 5 items each. $L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, L_i = \{A[5i + 1], \dots, A[5i - 4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \dots, A[n]\}.$
- For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|\mathbf{A}_{less}| \leq 7n/10 + 6$ and $|\mathbf{A}_{greater}| \leq 7n/10 + 6$.

Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of 5 items each. $L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, L_i = \{A[5i + 1], \dots, A[5i - 4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \dots, A[n]\}.$
- For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Lemma

Median of **B** is an approximate median of **A**. That is, if **b** is used a pivot to partition **A**, then $|\mathbf{A}_{less}| \leq 7n/10 + 6$ and $|\mathbf{A}_{greater}| \leq 7n/10 + 6$.

How do we find median of **B**?

How do we find median of **B**? Recursively!

How do we find median of **B**? Recursively!

Running time of deterministic median selection A dance with recurrences

$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$

From Lemma,

$\mathsf{T}(\mathsf{n}) \leq \mathsf{T}(\lceil \mathsf{n}/5 \rceil) + \mathsf{T}(\lfloor 7\mathsf{n}/10 + 6 floor) + \mathsf{O}(\mathsf{n})$ $\mathsf{T}(1) = 1$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection A dance with recurrences

$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$

From Lemma,

 $\mathsf{T}(n) \leq \mathsf{T}(\lceil n/5 \rceil) + \mathsf{T}(\lfloor 7n/10 + 6 \rfloor) + \mathsf{O}(n)$ and $\mathsf{T}(1) = 1$

Exercise: show that T(n) = O(n)

Running time of deterministic median selection A dance with recurrences

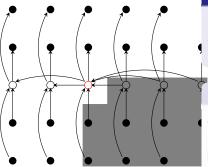
$T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}})|\} + O(n)$

From Lemma,

 $\mathsf{T}(n) \leq \mathsf{T}(\lceil n/5 \rceil) + \mathsf{T}(\lfloor 7n/10 + 6 \rfloor) + \mathsf{O}(n)$ and $\mathsf{T}(1) = 1$

Exercise: show that T(n) = O(n)

Median of Medians: Proof of Lemma



Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

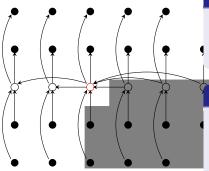
Proof.

At least half of the **[n/5]** groups have at least 3 elements larger than **b**, except for last group and the group containing **b**. So **b** is less than

Figure : Shaded elements are al greater than **b**

 $3(\lceil (1/2) \lceil n/5 \rceil \rceil - 2) \ge 3n/10 - 6$

Median of Medians: Proof of Lemma



Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

Proof.

At least half of the $\lceil n/5 \rceil$ groups have at least 3 elements larger than **b**, except for last group and the group containing **b**. So **b** is less than

Figure : Shaded elements are al greater than **b**

$3(\lceil (1/2)\lceil n/5\rceil\rceil-2)\geq 3n/10-6$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements greater than the median of medians **b**.

Corollary

 $|\mathbf{A}_{less}| \leq \mathbf{7n}/\mathbf{10} + \mathbf{6}.$

Via symmetric argument,

Questions to ponder

- Why did we choose lists of size **5**? Will lists of size **3** work?
- Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt! Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt! Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- 2 Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.