Reductions, Recursion and Divide and Conquer

Lecture 5
September 11, 2014

Part I

Reductions and Recursion

Reducing problem **A** to problem **B**:

Algorithm for A uses algorithm for B as a black box

Alexandra (UIUC) CS473 3 Fall 2014 3 / 48

Reducing problem **A** to problem **B**:

Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 48

Reducing problem **A** to problem **B**:

Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold his trunk shut until he turns blue, and then shoot him with the blue elephant gun.

Alexandra (UIUC) CS473 Fall 2014

Reducing problem **A** to problem **B**:

Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?

A: With a blue elephant gun.

Q: How do you hunt a red elephant?

A: Hold his trunk shut until he turns blue, and then shoot him with the blue elephant gun.

Q: How do you shoot a white elephant?

A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

Alexandra (UIUC) CS473 3 Fall 2014 3 / 4

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

```
\begin{array}{c} \text{for } i=1 \text{ to } n-1 \text{ do} \\ \text{ for } j=i+1 \text{ to } n \text{ do} \\ \text{ if } (A[i]=A[j]) \\ \text{ return YES} \\ \text{return NO} \end{array}
```

Running time: O(n²)

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

```
for i = 1 to n - 1 do

for j = i + 1 to n do

if (A[i] = A[j])

return YES

return NO
```

Running time: O(n²)

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

```
for i = 1 to n - 1 do

for j = i + 1 to n do

if (A[i] = A[j])

return YES

return NO
```

Running time: $O(n^2)$

Problem Given an array **A** of **n** integers, are there any *duplicates* in **A**?

Naive algorithm:

```
for i = 1 to n - 1 do

for j = i + 1 to n do

if (A[i] = A[j])

return YES

return NO
```

Running time: $O(n^2)$

Reduction to Sorting

```
Sort A for i = 1 to n - 1 do if (A[i] = A[i + 1]) then return YES return NO
```

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Reduction to Sorting

```
Sort A for i = 1 to n - 1 do if (A[i] = A[i + 1]) then return YES return NO
```

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Two sides of Reductions

Suppose problem **A** reduces to problem **B**

- Positive direction: Algorithm for B implies an algorithm for A
- Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

- An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm for Distinct Elements problem.
- ② If there is no o(n log n) time algorithm for Distinct Elements problem then there is no o(n log n) time algorithm for Sorting

Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A
- Negative direction: Suppose there is no "efficient" algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in **O(n)** time

- An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm for Distinct Elements problem.
- ② If there is no o(n log n) time algorithm for Distinct Elements problem then there is $no o(n \log n)$ time algorithm for Sorting.

Alexandra (UIUC) CS473 6 Fall 2014 If we can reduce from A to B, and from B to A then...

- (A) The fastest running times to solve A or B are the same.
- (B) A and B might still require different running times to be solved efficiently.
- (C) Then A and B are the same problem, and this can not happen.

Alexandra (UIUC) CS473 7 Fall 2014 7 / 48

Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

Alexandra (UIUC) CS473 8 Fall 2014

Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a *smaller* instance of *itself*
- self-reduction
- Problem instance of size \mathbf{n} is reduced to *one or more* instances of size $\mathbf{n} \mathbf{1}$ or less.
- For termination, problem instances of small size are solved by some other method as base cases

Alexandra (UIUC) CS473 8 Fall 2014 8 / 4

Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods
 - Divide and conquer
 - Oynamic programming
 - § Enumeration and branch and bound etc
 - Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)
- Recurrences arise in analysis

Selection Sort

Sort a given array A[1..n] of integers.

Recursive version of Selection sort.

```
SelectSort(A[1..n]):
    if n = 1 return
    Find smallest number in A. Let A[i] be smallest number
    Swap A[1] and A[i]
    SelectSort(A[2..n])
```

T(n): time for **SelectSort** on an **n** element array

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\mathsf{n}-1) + \mathsf{n} \text{ for } \mathsf{n} > 1 \text{ and } \mathsf{T}(1) = 1 \text{ for } \mathsf{n} = 1$$
 $\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^2).$

Alexandra (UIUC) CS473 10 Fall 2014 10 / 48

Selection Sort

Sort a given array **A[1..n]** of integers.

Recursive version of Selection sort.

```
SelectSort(A[1..n]):
    if n = 1 return
    Find smallest number in A. Let A[i] be smallest number
    Swap A[1] and A[i]
    SelectSort(A[2..n])
```

T(n): time for **SelectSort** on an n element array.

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\mathsf{n}-1) + \mathsf{n} \text{ for } \mathsf{n} > 1 \text{ and } \mathsf{T}(1) = 1 \text{ for } \mathsf{n} = 1$$

$$T(n) = \Theta(n^2).$$

Alexandra (UIUC) CS473 10 Fall 2014 10 / 48

Selection Sort

Sort a given array **A[1..n]** of integers.

Recursive version of Selection sort.

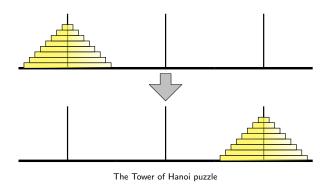
```
SelectSort(A[1..n]):
    if n = 1 return
    Find smallest number in A. Let A[i] be smallest number
    Swap A[1] and A[i]
    SelectSort(A[2..n])
```

T(n): time for **SelectSort** on an **n** element array.

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\mathsf{n}-1) + \mathsf{n}$$
 for $\mathsf{n}>1$ and $\mathsf{T}(1)=1$ for $\mathsf{n}=1$
$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^2).$$

Alexandra (UIUC) CS473 Fall 2014 10 / 48

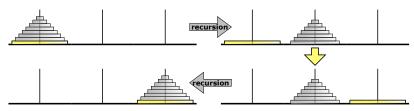
Tower of Hanoi



Move stack of n disks from peg 0 to peg 2, one disk at a time. Rule: cannot put a larger disk on a smaller disk.

Question: what is a strategy and how many moves does it take?

Tower of Hanoi via Recursion



The Tower of Hanoi algorithm; ignore everything but the bottom disk

Recursive Algorithm

 $\mathsf{T}(\mathsf{n})$: time to move n disks via recursive strategy

$$\mathsf{T}(\mathsf{n}) = 2\mathsf{T}(\mathsf{n}-1) + 1 \qquad \mathsf{n} > 1 \qquad \mathsf{and} \; \mathsf{T}(1) = 1$$

Recursive Algorithm

T(n): time to move n disks via recursive strategy

$$\mathsf{T}(\mathsf{n}) = 2\mathsf{T}(\mathsf{n}-1) + 1 \qquad \mathsf{n} > 1 \qquad \mathsf{and} \; \mathsf{T}(1) = 1$$

Recursive Algorithm

T(n): time to move n disks via recursive strategy

$$T(n) = 2T(n-1) + 1$$
 $n > 1$ and $T(1) = 1$

$$T(n) = 2T(n-1) + 1$$

$$= 2^{2}T(n-2) + 2 + 1$$

$$= ...$$

$$= 2^{i}T(n-i) + 2^{i-1} + 2^{i-2} + ... + 1$$

$$= ...$$

$$= 2^{n-1}T(1) + 2^{n-2} + ... + 1$$

$$= 2^{n-1} + 2^{n-2} + ... + 1$$

$$= (2^{n} - 1)/(2 - 1) = 2^{n} - 1$$

Alexandra (UIUC) CS473 14 Fall 2014 14 / 48

Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0, 1, 2

Non-recursive Algorithm 1:

- Always move smallest disk forward if n is even, backward if n is odd.
- Never move the same disk twice in a row.
- One when no legal move.

Non-recursive Algorithm 2:

- Let $\rho(n)$ be the smallest integer k such that $n/2^k$ is not an integer. Example: $\rho(40)=4$, $\rho(18)=2$.
- 2 In step i move disk $\rho(i)$ forward if n i is even and backward if n i is odd.

Moves are exactly same as those of recursive algorithm. Prove by induction.

Alexandra (UIUC) CS473 15 Fall 2014 15 / 48

Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0, 1, 2

Non-recursive Algorithm 1:

- Always move smallest disk forward if n is even, backward if n is odd.
- Never move the same disk twice in a row.
- One when no legal move.

Non-recursive Algorithm 2:

- Let $\rho(n)$ be the smallest integer k such that $n/2^k$ is not an integer. Example: $\rho(40) = 4$, $\rho(18) = 2$.
- ② In step i move disk $\rho(i)$ forward if n i is even and backward if n i is odd.

Moves are exactly same as those of recursive algorithm. Prove by induction.

Alexandra (UIUC) CS473 15 Fall 2014 15 / 48

Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0, 1, 2

Non-recursive Algorithm 1:

- Always move smallest disk forward if n is even, backward if n is odd.
- Never move the same disk twice in a row.
- One when no legal move.

Non-recursive Algorithm 2:

- Let $\rho(n)$ be the smallest integer **k** such that $n/2^k$ is *not* an integer. Example: $\rho(40) = 4$, $\rho(18) = 2$.
- ② In step i move disk $\rho(i)$ forward if n i is even and backward if n i is odd.

Moves are exactly same as those of recursive algorithm. Prove by induction.

Part II

Divide and Conquer

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach

- Break problem instance into smaller instances divide step
- Recursively solve problem on smaller instances
- Combine solutions to smaller instances to obtain a solution to the original instance - conquer step

Question: Why is this not plain recursion?

- In divide and conquer, each smaller instance is typically at least a constant factor smaller than the original instance which leads to efficient running times.
- There are many examples of this particular type of recursion that it deserves its own treatment.

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach

- Break problem instance into smaller instances divide step
- Recursively solve problem on smaller instances
- Combine solutions to smaller instances to obtain a solution to the original instance - conquer step

Question: Why is this not plain recursion?

- In divide and conquer, each smaller instance is typically at least a constant factor smaller than the original instance which leads to efficient running times.
- There are many examples of this particular type of recursion that it deserves its own treatment.

Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach

- Break problem instance into smaller instances divide step
- Recursively solve problem on smaller instances
- Ombine solutions to smaller instances to obtain a solution to the original instance - conquer step

Question: Why is this not plain recursion?

- In divide and conquer, each smaller instance is typically at least a constant factor smaller than the original instance which leads to efficient running times.
- There are many examples of this particular type of recursion that it deserves its own treatment.

Sorting

Input Given an array of **n** elements

Goal Rearrange them in ascending order

Merge Sort [von Neumann] MergeSort

Input: Array A[1...n]

ALGORITHMS

1 Input: Array A[1...n]

ALGORITHMS

② Divide into subarrays A[1...m] and A[m+1...n], where $m=\lfloor n/2 \rfloor$

ALGOR ITHMS

1 Input: Array A[1...n]

ALGORITHMS

② Divide into subarrays $A[1 \dots m]$ and $A[m+1 \dots n]$, where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

3 Recursively MergeSort A[1...m] and A[m + 1...n]

AGLOR HIMST

Input: Array A[1...n]

ALGORITHMS

② Divide into subarrays A[1...m] and A[m+1...n], where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

- Recursively MergeSort A[1...m] and A[m + 1...n]
 A G L O R H I M S T
- Merge the sorted arrays

AGHILMORST

● Input: Array A[1...n]

ALGORITHMS

② Divide into subarrays A[1...m] and A[m+1...n], where $m = \lfloor n/2 \rfloor$

ALGOR ITHMS

- Recursively MergeSort A[1...m] and A[m + 1...n]
 A G L O R H I M S T
- Merge the sorted arrays

AGHILMORST

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST AGHILMORST

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST AGHILMORST

- $lue{0}$ Use a new array $lue{C}$ to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST AGHILMORST

Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.

Running Time

T(n): time for merge sort to sort an n element array

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f(n) such that $T(n) = \Theta(f(n))$.

- $\mathbf{O} \mathbf{T}(\mathbf{n}) = \mathbf{O}(\mathbf{f}(\mathbf{n}))$ upper bound
- ② $T(n) = \Omega(f(n))$ lower bound

Running Time

T(n): time for merge sort to sort an n element array

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f(n) such that $T(n) = \Theta(f(n))$.

- ② $T(n) = \Omega(f(n))$ lower bound

Running Time

T(n): time for merge sort to sort an n element array

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f(n) such that $T(n) = \Theta(f(n))$.

- \bullet T(n) = O(f(n)) upper bound
- **2** $T(n) = \Omega(f(n))$ lower bound

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method imagine the computation as a tree
- Guess and verify useful for proving upper and lower bounds even if not tight bounds

Albert Einstein: "Everything should be made as simple as possible, but not simpler."

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!

Solving Recurrences: Some Techniques

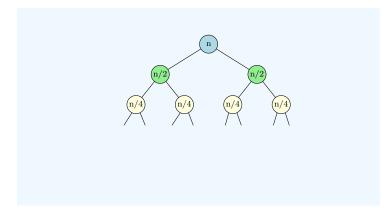
- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method imagine the computation as a tree
- Guess and verify useful for proving upper and lower bounds even if not tight bounds

Albert Einstein: "Everything should be made as simple as possible, but not simpler."

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!

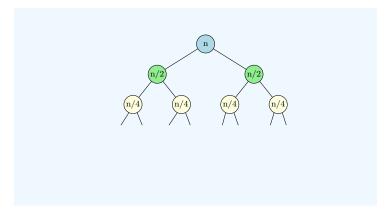
MergeSort: n is a power of 2

① Unroll the recurrence. T(n) = 2T(n/2) + cn



MergeSort: n is a power of 2

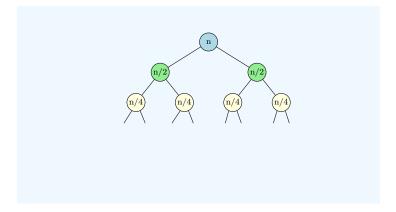
• Unroll the recurrence. T(n) = 2T(n/2) + cn



2 Identify a pattern. At the ith level total work is cn.

MergeSort: n is a power of 2

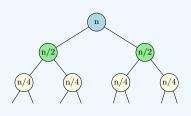
① Unroll the recurrence. T(n) = 2T(n/2) + cn



Identify a pattern. At the ith level total work is cn.

MergeSort: n is a power of 2

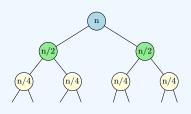
• Unroll the recurrence. T(n) = 2T(n/2) + cn



- Identify a pattern. At the ith level total work is cn.
- Sum over all levels. The number of levels is $\log n$. So total is $\log n = O(n \log n)$

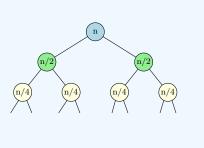
MergeSort: n is a power of 2

• Unroll the recurrence. T(n) = 2T(n/2) + cn

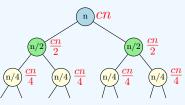


- Identify a pattern. At the ith level total work is cn.
- § Sum over all levels. The number of levels is $\log n$. So total is $\operatorname{cn} \log n = \operatorname{O}(n \log n)$.

An illustrated example...

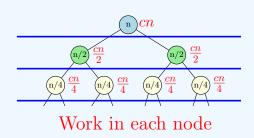


An illustrated example...

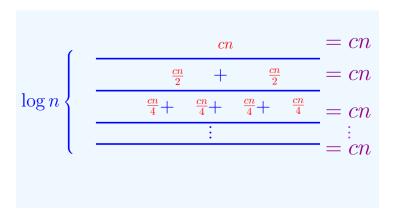


Work in each node

An illustrated example...



An illustrated example...



An illustrated example...

$$\log n \left\{ \begin{array}{c|c} cn & = cn \\ \frac{\frac{cn}{2} + \frac{cn}{2}}{2} & = cn \\ \frac{\frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4}}{2} & = cn \\ \vdots & = cn \\ \end{array} \right.$$

$$= cn \log n = O(n \log n)$$

When **n** is not a power of **2**

• When **n** is not a power of **2**, the running time of **MergeSort** is expressed as

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

When n is not a power of 2

When n is not a power of 2, the running time of MergeSort is expressed as

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$$

② $n_1 = 2^{k-1} < n \le 2^k = n_2 (n_1, n_2 \text{ powers of 2}).$

When n is not a power of 2

When n is not a power of 2, the running time of MergeSort is expressed as

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

- ② $n_1 = 2^{k-1} < n \le 2^k = n_2 (n_1, n_2 \text{ powers of } 2)$.
- **3** $T(n_1) < T(n) \le T(n_2)$ (Why?).

When n is not a power of 2

• When **n** is not a power of **2**, the running time of **MergeSort** is expressed as

$$\mathsf{T}(\mathsf{n}) = \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn}$$

- **3** $T(n_1) < T(n) \le T(n_2)$ (Why?).
- $\bullet \ \mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n} \log \mathsf{n}) \text{ since } \mathsf{n}/2 \leq \mathsf{n}_1 < \mathsf{n} \leq \mathsf{n}_2 \leq 2\mathsf{n}.$

MergeSort: n is not a power of 2

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$$

Observation: For any number x, $\lfloor x/2 \rfloor + \lceil x/2 \rceil = x$.

it for k = n.

When \mathbf{n} is not a power of $\mathbf{2}$: Guess and Verify

If **n** is power of **2** we saw that $T(n) = \Theta(n \log n)$.

Can guess that $T(n) = \Theta(n \log n)$ for all n.

```
Verify? proof by induction! Induction Hypothesis: T(n) \le 2cn \log n for all n \ge 1 Base Case: n = 1. T(1) = 0 since no need to do any work and 2cn \log n = 0 for n = 1.
```

Induction Step Assume $T(k) \le 2ck \log k$ for all k < n and prove

When **n** is not a power of **2**: Guess and Verify

If **n** is power of **2** we saw that $T(n) = \Theta(n \log n)$.

Can guess that $T(n) = \Theta(n \log n)$ for all n.

Induction Step

We have

$$\begin{array}{lll} \mathsf{T}(\mathsf{n}) &=& \mathsf{T}(\lfloor \mathsf{n}/2 \rfloor) + \mathsf{T}(\lceil \mathsf{n}/2 \rceil) + \mathsf{cn} \\ &\leq & 2\mathsf{c}\lfloor \mathsf{n}/2 \rfloor \log \lfloor \mathsf{n}/2 \rfloor + 2\mathsf{c}\lceil \mathsf{n}/2 \rceil \log \lceil \mathsf{n}/2 \rceil + \mathsf{cn} \quad \text{(by induct} \\ &\leq & 2\mathsf{c}\lfloor \mathsf{n}/2 \rfloor \log \lceil \mathsf{n}/2 \rceil + 2\mathsf{c}\lceil \mathsf{n}/2 \rceil \log \lceil \mathsf{n}/2 \rceil + \mathsf{cn} \\ &\leq & 2\mathsf{c}(\lfloor \mathsf{n}/2 \rfloor + \lceil \mathsf{n}/2 \rceil) \log \lceil \mathsf{n}/2 \rceil + \mathsf{cn} \\ &\leq & 2\mathsf{cn} \log \lceil \mathsf{n}/2 \rceil + \mathsf{cn} \\ &\leq & 2\mathsf{cn} \log \lceil \mathsf{n}/2 \rceil + \mathsf{cn} \\ &\leq & 2\mathsf{cn} \log (2\mathsf{n}/3) + \mathsf{cn} \quad \text{(since } \lceil \mathsf{n}/2 \rceil \leq 2\mathsf{n}/3 \text{ for all } \mathsf{n} \geq 2 \rceil \\ &\leq & 2\mathsf{cn} \log \mathsf{n} + \mathsf{cn}(1 - 2\log 3/2) \\ &\leq & 2\mathsf{cn} \log \mathsf{n} + \mathsf{cn}(\log 2 - \log 9/4) \\ &\leq & 2\mathsf{cn} \log \mathsf{n} \end{array}$$

Guess and Verify

The math worked out like magic!

Why was **2cn log n** chosen instead of say **4cn log n**?

- On not know upfront what constant to choose.
- ② Instead assume that $T(n) \le \alpha \operatorname{cn} \log n$ for some constant α . α will be fixed later.
- **③** Need to prove that for lpha large enough the algebra succeeds.
- In our case... need α such that $\alpha \log 3/2 > 1$.
- Typically, do the algebra with α and then show that it works... ... if α is chosen to be sufficiently large constant.

How do we know which function to guess?
We don't so we try several "reasonable" functions. With practice and experience we get better at guessing the right function.

Guess and Verify

The math worked out like magic!

Why was **2cn log n** chosen instead of say **4cn log n**?

- Do not know upfront what constant to choose.
- ② Instead assume that $T(n) \le \alpha \operatorname{cn} \log n$ for some constant α . α will be fixed later.
- **③** Need to prove that for lpha large enough the algebra succeeds.
- In our case... need α such that $\alpha \log 3/2 > 1$.
- Typically, do the algebra with α and then show that it works... ... if α is chosen to be sufficiently large constant.

How do we know which function to guess?

We don't so we try several "reasonable" functions. With practice and experience we get better at guessing the right function.

Guess and Verify

What happens if the guess is wrong?

- Guessed that the solution to the MergeSort recurrence is T(n) = O(n).
- ② Try to prove by induction that $T(n) \le \alpha cn$ for some const' α . Induction Step: attempt

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$$

$$\leq \alpha c \lfloor n/2 \rfloor + \alpha c \lceil n/2 \rceil + cn$$

$$\leq \alpha cn + cn$$

$$\leq (\alpha + 1)cn$$

But need to show that $T(n) \leq \alpha c n!$

ullet So guess does not work for any constant lpha. Suggests that our guess is incorrect.

Selection Sort vs Merge Sort

- Selection Sort spends O(n) work to reduce problem from n to n-1 leading to $O(n^2)$ running time.
- Merge Sort spends O(n) time after reducing problem to two instances of size n/2 each. Running time is $O(n \log n)$

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say **k** arrays of size **n/k** each?

Selection Sort vs Merge Sort

- Selection Sort spends O(n) work to reduce problem from n to n-1 leading to $O(n^2)$ running time.
- Merge Sort spends O(n) time after reducing problem to two instances of size n/2 each. Running time is O(n log n)

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say \mathbf{k} arrays of size \mathbf{n}/\mathbf{k} each?

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Recursively sort the subarrays, and concatenate them.

Example:

- ① array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- 3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- 9 put them together with pivot in middle

Alexandra (UIUC) CS473 32 Fall 2014 32 / 48

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Recursively sort the subarrays, and concatenate them.

Example:

- **1** array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- oput them together with pivot in middle

Alexandra (UIUC) CS473 32 Fall 2014 32 / 48

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Recursively sort the subarrays, and concatenate them.

Example:

- **1** array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- oput them together with pivot in middle

Alexandra (UIUC) CS473 32 Fall 2014 32 / 48

Quick Sort [Hoare]

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is O(n)
- Recursively sort the subarrays, and concatenate them.

Example:

- **1** array: 16, 12, 14, 20, 5, 3, 18, 19, 1
- pivot: 16
- split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
- put them together with pivot in middle

CS473 Fall 2014 32 / 48

• Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)

Alexandra (UIUC) CS473 33 Fall 2014 33 / 48

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- ② If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil - 1) + T(\lceil n/2 \rceil) + O(n) \le 2T(n/2) + O(n)$ Then, $T(n) = O(n \log n)$.

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- ② If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.
 - 1 Theoretically, median can be found in linear time.

Alexandra (UIUC) CS473 33 Fall 2014 33 / 48

- Let k be the rank of the chosen pivot. Then, T(n) = T(k-1) + T(n-k) + O(n)
- ② If $k = \lceil n/2 \rceil$ then $T(n) = T(\lceil n/2 \rceil 1) + T(\lfloor n/2 \rfloor) + O(n) \le 2T(n/2) + O(n)$. Then, $T(n) = O(n \log n)$.
 - Theoretically, median can be found in linear time.
- Typically, pivot is the first or last element of array. Then,

$$\mathsf{T}(\mathsf{n}) = \max_{1 \leq \mathsf{k} \leq \mathsf{n}} (\mathsf{T}(\mathsf{k}-1) + \mathsf{T}(\mathsf{n}-\mathsf{k}) + \mathsf{O}(\mathsf{n}))$$

In the worst case T(n) = T(n-1) + O(n), which means $T(n) = O(n^2)$. Happens if array is already sorted and pivot is always first element.

Part III

Fast Multiplication

Multiplying Numbers

Problem Given two **n**-digit numbers **x** and **y**, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of ${\bf y}$ with ${\bf x}$ and adding the partial products.

 $3141 \\ \times 2718 \\ \hline 25128 \\ 3141 \\ 21987 \\ \underline{6282} \\ 8537238$

Time Analysis of Grade School Multiplication

- **1** Each partial product: $\Theta(n)$
- 2 Number of partial products: $\Theta(n)$
- **3** Addition of partial products: $\Theta(n^2)$
- Total time: $\Theta(n^2)$

A Trick of Gauss

Carl Fridrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Fridrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then (ad + bc) = (a + b)(c + d) - ac - bd

A Trick of Gauss

Carl Fridrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a + bi)(c + di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.

Compute
$$ac, bd, (a + b)(c + d)$$
. Then

$$(ad + bc) = (a + b)(c + d) - ac - bd$$

Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

- **1** $x = x_{n-1}x_{n-2}...x_0$ and $y = y_{n-1}y_{n-2}...y_0$
- ② $\mathbf{x}=\mathbf{10}^{n/2}\mathbf{x}_L+\mathbf{x}_R$ where $\mathbf{x}_L=\mathbf{x}_{n-1}\dots\mathbf{x}_{n/2}$ and $\mathbf{x}_R=\mathbf{x}_{n/2-1}\dots\mathbf{x}_0$

Therefore

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

Example

$$1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$$

$$= 10000 \times 12 \times 56$$

$$+100 \times (12 \times 78 + 34 \times 56)$$

$$+34 \times 78$$

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^2)$. No better than grade school multiplication!

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

$$\begin{split} xy &= (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R) \\ &= 10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R \end{split}$$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = Θ(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Use recursion tree method:

- ① In both cases, depth of recursion L = log n.
- ② Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- ① Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1 + \log 1.5})$

Use recursion tree method:

- In both cases, depth of recursion L = log n.
- Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- **3** Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

Recursion tree analysis

Alexandra (UIUC) CS473 44 Fall 2014 44 / 48

