
CS 473: Fundamental Algorithms, Fall 2014

Reductions, Recursion and
Divide and Conquer
Lecture 5
September 11, 2014
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Part I

Reductions and Recursion
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Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box
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1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

for i = 1 to n− 1 do
for j = i + 1 to n do

if (A[i] = A[j])
return YES

return NO

Running time: O(n2)
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Reduction to Sorting

Sort A
for i = 1 to n− 1 do

if (A[i] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box
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Two sides of Reductions

Suppose problem A reduces to problem B

1 Positive direction: Algorithm for B implies an algorithm for A

2 Negative direction: Suppose there is no “efficient” algorithm for
A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

1 An O(n log n) time algorithm for Sorting implies an O(n log n)
time algorithm for Distinct Elements problem.

2 If there is no o(n log n) time algorithm for Distinct Elements
problem then there is no o(n log n) time algorithm for Sorting.
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If we can reduce from A to B, and from B to A
then...

(A) The fastest running times to solve A or B are the same.

(B) A and B might still require different running times to be solved
efficiently.

(C) Then A and B are the same problem, and this can not happen.
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Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n− 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases
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Recursion

1 Recursion is a very powerful and fundamental technique
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis
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Selection Sort

Sort a given array A[1..n] of integers.

Recursive version of Selection sort.

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A. Let A[i] be smallest number

Swap A[1] and A[i]
SelectSort(A[2..n])

T(n): time for SelectSort on an n element array.

T(n) = T(n− 1) + n for n > 1 and T(1) = 1 for n = 1

T(n) = Θ(n2).
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Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?
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Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3
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Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n− 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n− 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n) = 2T(n− 1) + 1 n > 1 and T(1) = 1
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Analysis

T(n) = 2T(n− 1) + 1

= 22T(n− 2) + 2 + 1

= . . .

= 2iT(n− i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T(1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2− 1) = 2n − 1
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Non-Recursive Algorithms for Tower of Hanoi

Pegs numbered 0, 1, 2

Non-recursive Algorithm 1:
1 Always move smallest disk forward if n is even, backward if n is

odd.
2 Never move the same disk twice in a row.
3 Done when no legal move.

Non-recursive Algorithm 2:
1 Let ρ(n) be the smallest integer k such that n/2k is not an

integer. Example: ρ(40) = 4, ρ(18) = 2.
2 In step i move disk ρ(i) forward if n− i is even and backward if

n− i is odd.

Moves are exactly same as those of recursive algorithm. Prove by
induction.
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Part II

Divide and Conquer
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Divide and Conquer Paradigm

Divide and Conquer is a common and useful type of recursion

Approach
1 Break problem instance into smaller instances - divide step

2 Recursively solve problem on smaller instances

3 Combine solutions to smaller instances to obtain a solution to
the original instance - conquer step

Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion that
it deserves its own treatment.
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Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order
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Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S
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Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T
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Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

3 Merge two arrays using only constantly more extra space
(in-place merge sort): doable but complicated and typically
impractical.
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Running Time

T(n): time for merge sort to sort an n element array

T(n) = T(bn/2c) + T(dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f(n) such that T(n) = Θ(f(n)).

1 T(n) = O(f(n)) - upper bound

2 T(n) = Ω(f(n)) - lower bound
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Solving Recurrences: Some Techniques

1 Know some basic math: geometric series, logarithms,
exponentials, elementary calculus

2 Expand the recurrence and spot a pattern and use simple math

3 Recursion tree method — imagine the computation as a tree

4 Guess and verify — useful for proving upper and lower bounds
even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!
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Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T(n) = 2T(n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4
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Recursion Trees
An illustrated example...

n

n/2 n/2

n/4 n/4 n/4 n/4
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MergeSort Analysis
When n is not a power of 2

1 When n is not a power of 2, the running time of MergeSort is
expressed as

T(n) = T(bn/2c) + T(dn/2e) + cn
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1 When n is not a power of 2, the running time of MergeSort is
expressed as

T(n) = T(bn/2c) + T(dn/2e) + cn

2 n1 = 2k−1 < n ≤ 2k = n2 (n1, n2 powers of 2).

3 T(n1) < T(n) ≤ T(n2) (Why?).

4 T(n) = Θ(n log n) since n/2 ≤ n1 < n ≤ n2 ≤ 2n.
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Recursion Trees

MergeSort: n is not a power of 2
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T(n) = T(bn/2c) + T(dn/2e) + cn

Observation: For any number x, bx/2c+ dx/2e = x.
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MergeSort Analysis
When n is not a power of 2: Guess and Verify

If n is power of 2 we saw that T(n) = Θ(n log n).
Can guess that T(n) = Θ(n log n) for all n.
Verify? proof by induction!

Induction Hypothesis: T(n) ≤ 2cn log n for all n ≥ 1
Base Case: n = 1. T(1) = 0 since no need to do any work and
2cn log n = 0 for n = 1.
Induction Step Assume T(k) ≤ 2ck log k for all k < n and prove
it for k = n.
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Induction Step

We have

T(n) = T(bn/2c) + T(dn/2e) + cn

≤ 2cbn/2c logbn/2c+ 2cdn/2e logdn/2e+ cn (by induction)

≤ 2cbn/2c logdn/2e+ 2cdn/2e logdn/2e+ cn

≤ 2c(bn/2c+ dn/2e) logdn/2e+ cn

≤ 2cn logdn/2e+ cn

≤ 2cn log(2n/3) + cn (since dn/2e ≤ 2n/3 for all n ≥ 2)

≤ 2cn log n + cn(1− 2 log 3/2)

≤ 2cn log n + cn(log 2− log 9/4)

≤ 2cn log n
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Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cn log n?

1 Do not know upfront what constant to choose.

2 Instead assume that T(n) ≤ αcn log n for some constant α.
α will be fixed later.

3 Need to prove that for α large enough the algebra succeeds.

4 In our case... need α such that α log 3/2 > 1.

5 Typically, do the algebra with α and then show that it works...
... if α is chosen to be sufficiently large constant.

How do we know which function to guess?
We don’t so we try several “reasonable” functions. With practice and
experience we get better at guessing the right function.
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Guess and Verify
What happens if the guess is wrong?

1 Guessed that the solution to the MergeSort recurrence is
T(n) = O(n).

2 Try to prove by induction that T(n) ≤ αcn for some const’ α.
Induction Step: attempt

T(n) = T(bn/2c) + T(dn/2e) + cn

≤ αcbn/2c+ αcdn/2e+ cn

≤ αcn + cn

≤ (α + 1)cn

But need to show that T(n) ≤ αcn!

3 So guess does not work for any constant α. Suggests that our
guess is incorrect.
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Selection Sort vs Merge Sort

1 Selection Sort spends O(n) work to reduce problem from n to
n− 1 leading to O(n2) running time.

2 Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(n log n)

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can
we do better by splitting into more than 2 arrays? Say k arrays of
size n/k each?
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Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Example:

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1

2 pivot: 16

3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort

4 put them together with pivot in middle
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)
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1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T(n) = T(k− 1) + T(n− k) + O(n)

2 If k = dn/2e then
T(n) = T(dn/2e−1)+T(bn/2c)+O(n) ≤ 2T(n/2)+O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k− 1) + T(n− k) + O(n))

In the worst case T(n) = T(n− 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.
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Part III

Fast Multiplication
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Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238
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Time Analysis of Grade School Multiplication

1 Each partial product: Θ(n)

2 Number of partial products: Θ(n)

3 Addition of partial products: Θ(n2)

4 Total time: Θ(n2)
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A Trick of Gauss

Carl Fridrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac− bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd, (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d)− ac− bd
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Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

2 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and
xR = xn/2−1 . . . x0

3 y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and
yR = yn/2−1 . . . y0

Therefore

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR
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Example

1234× 5678 = (100× 12 + 34)× (100× 56 + 78)

= 10000× 12× 56

+100× (12× 78 + 34× 56)

+34× 78
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Time Analysis

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T(n) = 4T(n/2) + O(n) T(1) = O(1)

T(n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?
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Improving the Running Time

xy = (10n/2xL + xR)(10n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T(n) = 3T(n/2) + O(n) T(1) = O(1)

which means T(n) = O(nlog2 3) = O(n1.585)
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State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture

There is an O(n log n) time algorithm.
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Analyzing the Recurrences

1 Basic divide and conquer: T(n) = 4T(n/2) + O(n),
T(1) = 1. Claim: T(n) = Θ(n2).

2 Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1.
Claim: T(n) = Θ(n1+log 1.5)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.

2 Work at depth i is 4in/2i and 3in/2i respectively: number of
children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2i and n
∑L

i=0(3/2)i respectively.
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Recursion tree analysis
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Notes
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