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Shortest Path Algorithms
Lecture 4
September 4, 2014
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Part I

Shortest Paths with Negative Length
Edges
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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find
shortest path from s to t.

2 Given node s find shortest
path from s to all other
nodes.
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What are the distances computed by Dijkstra’s

algorithm?

1

1
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The distance as computed
by Dijkstra algorithm start-
ing from s:

(A) s = 0, x = 5, y = 1,
z = 0.

(B) s = 0, x = 1, y = 2,
z = 5.

(C) s = 0, x = 5, y = 1,
z = 2.

(D) IDK.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.
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Shortest Paths and Negative Cycles

Given G = (V,E) with edge lengths and s, t. Suppose
1 G has a negative length cycle C, and
2 s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
Possible answers: Define shortest distance to be:

1 undefined, that is −∞, OR
2 the length of a shortest simple path from s to t.

Lemma
If there is an efficient algorithm to find a shortest simple s→ t path
in a graph with negative edge lengths, then there is an efficient
algorithm to find the longest simple s→ t path in a graph with
positive edge lengths.

Finding the s→ t longest path is difficult. NP-Hard!
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Alterantively: Finding Shortest Walks

Given a graph G = (V,E):

1 A path is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1.

2 A walk is a sequence of vertices v1, v2, . . . , vk such that
(vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

1 If there is a walk from u to v that contains negative length cycle
then dist(u, v) = −∞

2 Else there is a path whose length is equal to the length of a
shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V,E) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s can
reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs.
Beyond the scope of this class. If interested, ask instructor for
references.
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Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lenths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

1 Is there an arbitrage opportunity?

2 Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro

2 1 Euro = 1.3617 US dollar

3 1 US Dollar = 7.1 Chinese Yuan.

Thus, if exchanging 1 $ →
Yuan→ Euro→ $, we get:
0.1116 ∗ 1.3617 ∗ 7.1 =
1.07896$.

Alexandra (UIUC) CS473 11 Fall 2014 11 / 52



Reducing Currency Trading to Shortest Paths

Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i, k1)× exch(k1, k2) . . .× exch(kh, j) units of j.

Create currency trading directed graph G = (V,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V: an edge for each pair of currencies
3 edge length `(vi, vj) = − log(exch(i, j)) can be negative

Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a shortest

path in G from i to j. If d is the distance from i to j then one
unit of i can be converted into 2−d units of j.
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Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk.

2 log x > 0 if and only if x > 1 .
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V,E) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s can
reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k. Holds true only for
non-negative edge lengths.

Alexandra (UIUC) CS473 15 Fall 2014 15 / 52



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only

for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other
strategies.
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A Generic Shortest Path Algorithm

1 Start with distance estimate for each node d(s, u) set to∞
2 Maintain the invariant that there is an s→ u path of length

d(s, u). Hence d(s, u) ≥ dist(s, u).

3 Iteratively refine d(s, ·) values until they reach the correct value
dist(s, ·) values at termination

Must hold that...
d(s, v) ≤ d(s, u) + `(u, v)

vs

d(s, u)

u
`(s, u)
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A Generic Shortest Path Algorithm

Question: How do we make progress?

Definition
Given distance estimates d(s, u) for each u ∈ V, an edge e = (u, v)
is tense if d(s, v) > d(s, u) + `(u, v).

Relax(e = (u, v))
if (d(s, v) > d(s, u) + `(u, v)) then

d(s, v) = d(s, u) + `(u, v)
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A Generic Shortest Path Algorithm

Invariant
If a vertex u has value d(s, u) associated with it, then there is a
s  u walk of length d(s, u).

Proposition

Relax maintains the invariant on d(s, u) values.

Proof.
Indeed, if Relax((u, v)) changed the value of d(s, v), then there is a
walk to u of length d(s, u) (by invariant), and there is a walk of
length d(s, u) + `(u, v) to v through u, which is the new value of
d(s, v).
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A Generic Shortest Path Algorithm

d(s, s) = 0
for each node u 6= s do

d(s, u) =∞

while there is a tense edge do
Pick a tense edge e
Relax(e)

Output d(s, u) values

Technical assumption: If e = (u, v) is an edge and
d(s, u) = d(s, v) =∞ then edge is not tense.
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Key property of generic algorithm
If estimate distance from source too large, then ∃ tense edge...

Lemma
If ∃ walk π ≡ s = v1 → v2 → · · · → vk = u such that

`(π) =
∑k−1

i=1 `(vi, vj) < d(s, u)

Then, there exists a tense edge in G.

Proof.
Assume π: shortest in number of edges (with property).
=⇒ `(v1 → · · · vk−1) ≥ d(s, vk−1).
=⇒ d(s, vk−1) + `(vk−1, vk)

≤ `(v1 → · · · vk−1) + `(vk−1, vk)
= `(π) < d(s, vk).

=⇒ d(s, vk−1) + `(vk−1, vk) < d(s, vk)
=⇒ edge (vk−1, vk) is tense.

=⇒ If for any vertex u: d(s, u) > dist(s, u) then the algorithm
will continue working!
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Properties of the generic algorithm

Proposition

If u is reachable from s and algorithm terminates then d(s, u) 6=∞.

Proof.
Corollary of key property.

Proposition

If u is not reachable from s then d(s, u) remains at∞ throughout
the algorithm.
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Properties of the generic algorithm

Proposition
If a negative length cycle C is reachable by s then there is always a
tense edge and hence the algorithm never terminates.
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Properties of the generic algorithm

Proposition
If a negative length cycle C is reachable by s then there is always a
tense edge and hence the algorithm never terminates.

Proof.
Also corollary of key property. If algorithm terminates then for each
node u ∈ C, d(s, u) is a finite value, however there is a walk of
length < d(s, u) — in fact for any finite value.
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Properties of the generic algorithm

Proposition
If a negative length cycle C is reachable by s then there is always a
tense edge and hence the algorithm never terminates.

A more direct proof.
Let C = v0, v1, . . . , vk be a negative length cycle reachable from s.
Suppose algorithm terminates. By previous proposition,
d(s, vi) <∞ for all i. Since no edge of C was tense, for
i = 1, 2, . . . , k we have d(s, vi) ≤ d(s, vi−1) + `(vi−1, vi) and
d(s, v0) ≤ d(s, vk) + `(vk, v0). Adding up all the inequalities we
obtain that length of C is non-negative!

Corollary
Alg. terminates implies no negative length cycle C reachable from s.

Alexandra (UIUC) CS473 23 Fall 2014 23 / 52



Properties of the generic algorithm

Lemma
If the algorithm terminates then d(s, u) = dist(s, u) for each node u
(and s cannot reach a negative cycle).

Proof follows from key property.

Question: How do we ensure termination?
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Generic Algorithm: Ordering Relax operations

d(s,s) = 0

for each node u 6= s do

d(s,u) = ∞

While there is a tense edge do

Pick a tense edge e
Relax(e)

Output d(s, u) values for u ∈ V(G)

Question: How do we pick edges to relax?

Observation: Suppose s→ v1 → . . .→ vk is a shortest path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in order
then d(s, vk) = dist(s, vk)!
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Ordering Relax operations

1 Observation: Suppose s→ v1 → . . .→ vk is a shortest path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in
order then d(s, vk) = dist(s, vk)! (Why?)

2 We don’t know the shortest paths so how do we know the order
to do the Relax operations?
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Ordering Relax operations

1 We don’t know the shortest paths so how do we know the order
to do the Relax operations?

2 We don’t!

1 Relax all edges (even those not tense) in some arbitrary order
2 Iterate |V| − 1 times
3 First iteration will do Relax(s, v1) (and other edges), second

round Relax(v1, v2) and in iteration k we do Relax(vk−1, vk).
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Bellman-Ford Algorithm

for each u ∈ V do
d(s, u)←∞

d(s, s)← 0

for i = 1 to |V| − 1 do
for each edge e = (u, v) do

Relax(e)

for each u ∈ V do
dist(s, u)← d(s, u)
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Bellman-Ford Algorithm: Scanning Edges

One possible way to scan edges in each iteration.

Q is an empty queue

for each u ∈ V do
d(s, u) =∞
enq(Q, u)

d(s, s) = 0

for i = 1 to |V| − 1 do
for j = 1 to |V| do

u = deq(Q)

for each edge e in Adj(u) do
Relax(e)

enq(Q, u)

for each u ∈ V do
dist(s, u) = d(s, u)
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Example
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Example
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We are done! No edge is tense.
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Figure : One iteration of Bellman-Ford that Relaxes all edges by
processing nodes in the order s, a, b, c, d, e, f. Red edges indicate the
prev pointers (in reverse)
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Figure : 6 iterations of Bellman-Ford starting with the first one from
previous slide. No changes in 5th iteration and 6th iteration.
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Correctness of the Bellman-Ford Algorithm
Lemma
After i iterations of the Bellman-Ford algorithm, for each v ∈ V,
d(s, v) is length of shortest walk from s to v with at most i hops.

Proof.
By induction on i.

1 Base case: i = 0. d(s, s) = 0 and d(s, v) =∞ for all v 6= s.
2 Induction Step: Let s→ v1 . . .→ vj → v be a shortest walk

from s to v with at most i hops. Let α be its length.
1 If j < i− 1, then by induction, after i− 1 iterations

d(s, v) ≤ α (Why?)
2 If j = i− 1, then by induction, after i− 1 iterations d(s, vi−1)

is equal to length of walk s→ v1 . . .→ vi−1. (Why?)
3 In iteration i, Relax(vi−1, vi) will ensure that d(s, vi) ≤ α.
4 Note: Relax does not increase d(s, u) value.
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Correctness of Bellman-Ford Algorithm

Corollary

After |V| − 1 iterations of Bellman-Ford, d(s, u) = dist(s, u) for
any node u such that dist(s, u) > −∞.

Proof.
If dist(s, u) > −∞ then there exists a shortest walk from s to u
with finite number of hops. In particular it will be a path (since any
cycle on the walk cannot be negative, otherwise dist(s, u) = −∞)
and hence has at most n− 1 hops.

Note: If there is a negative cycle C such that s can reach C then we
do not know whether d(s, u) = dist(s, u) or whether
dist(s, u) =∞!
Question: How do we know whether there is a negative cycle C
reachable from s?
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Bellman-Ford to detect Negative Cycles

for each u ∈ V do
d(s, u) =∞

d(s, s) = 0

for i = 1 to |V| − 1 do
for each edge e = (u, v) do

Relax(e)

for each edge e = (u, v) do
if e = (u, v) is tense then

Stop and output that s can reach

a negative length cycle

Output for each u ∈ V: d(s, u)
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Correctness

Lemma
G has a negative cycle reachable from s if and only if there is a tense
edge e after |V| − 1 iterations of Bellman-Ford.

Proof Sketch.
G has no negative length cycle reachable from s implies that all
nodes u reachable from s have dist(s, u) > −∞. Therefore
d(s, u) = dist(s, u) after the |V| − 1 iterations. Therefore, there
cannot be any tense edges left.

If there is a negative cycle C then there is a tense edge after |V| − 1
(in fact any number of) iterations. Recall key property of the generic
shortest path algorithm.
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Finding the Paths and a Shortest Path Tree

for each u ∈ V do
d(s, u) =∞
prev(u) = null

d(s, s) = 0
for i = 1 to |V| − 1 do

for each edge e = (u, v) do
Relax(e)

if there is a tense edge e then
Output that s can reach a negative cycle C

else
for each u ∈ V do

output d(s, u)

Relax(e = (u, v))
if (d(s, v) > d(s, u) + `(u, v)) then

d(s, v) = d(s, u) + `(u, v)
prev(v) = u

Note: prev pointers induce a shortest path tree.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run Bellman-Ford |V| times, once from each node u?
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Negative Cycle Detection

1 Add a new node s′ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s′ will fill find a negative
length cycle if there is one. Exercise: why does this work?

2 Negative cycle detection can be done with one Bellman-Ford
invocation.
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Running time for Bellman-Ford

1 Input graph G = (V,E) with m = |E| and n = |V|.
2 n outer iterations and m Relax() operations in each iteration.

Each Relax() operation is O(1) time.

3 Total running time: O(mn).

Note: Algorithm can be safely stopped if no tense edge in some
iteration. Why?
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Dijkstra as an instantiation of the generic algorithm

The Dijkstra algorithm can be stated as the generic algorithm as:

(A) Relax all tense edges.

(B) Always relax the edge (u, v), such that d(s, u) is minimal.

(C) Pick u minimizing d(s, u) such that u was not visited yet. Mark
as visited, and relax all its outgoing edges.

(D) Pick an unvisited u. Mark as visited, and relax all its outgoing
edges.
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Dijkstra’s Algorithm with Relax()

for each node u 6= s do
d(s, u) =∞

d(s, s) = 0
S = ∅
while (S 6= V) do

Let v be node in V − S with min d value

S = S ∪ {v}
for each edge e in Adj(v) do

Relax(e)
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Part II

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.

2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative length edges

2 Can order nodes using topological sort
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Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.
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Algorithm for DAGs

for i = 1 to n do
d(s, vi) =∞

d(s, s) = 0

for i = 1 to n− 1 do
for each edge e in Adj(vi) do

Relax(e)

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.
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Takeaway Points

1 Shortest paths with potentially negative length edges arise in a
variety of applications. Longest simple path problem is difficult
(no known efficient algorithm and NP-Hard). We restrict
attention to shortest walks and they are well defined only if there
are no negative length cycles reachable from the source.

2 A generic shortest path algorithm starts with distance estimates
to the source and iteratively refines them by considering edges
one at a time. The algorithm is guaranteed to terminate with
correct distances if there are no negative length cycle. If a
negative length cycle is reachable from the source it is
guaranteed not to terminate.

3 Dijkstra’s algorithm can also be thought of as an instantiation of
the generic algorithm.
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Points continued

1 Bellman-Ford algorithm is an instantiation of the generic
algorithm that in each iteration relaxes all the edges. It
recognizes negative length cycles if there is a tense edges in the
nth iteration. For a vertex u with a shortest path to the source
with i edges the algorithm has the correct distance after i
iterations. Running time of Bellman-Ford algorithm is O(nm).

2 Bellman-Ford can be adapted to find a negative length cycle in
the graph by adding a new vertex.

3 If we have a DAG then it has no negative length cycle and
hence shortest paths exists even with negative lengths. One can
compute single-source shortest paths in a DAG in linear time.
This implies that one can also compute longest paths in a DAG
in linear time.
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