CS 473: Fundamental Algorithms, Fall 2014

Breadth First Search, Dijkstra's Algorithm for Shortest Paths

Lecture 3 September 2, 2014

Part I

Breadth First Search

Breadth First Search (BFS)

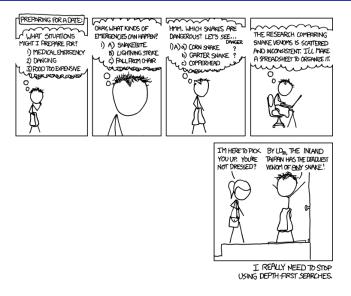
Overview

- (A) **BFS** is obtained from **BasicSearch** by processing edges using a data structure called a **queue**.
- (B) It processes the vertices in the graph in the order of their shortest distance from the vertex **s** (the start vertex).

As such...

- DFS good for exploring graph structure
- **2 BFS** good for exploring *distances*

xkcd take on DFS



Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

• enqueue: Adds an element to the end of the list

2 dequeue: Removes an element from the front of the list Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are picked in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node $s \in V$

BFS(s)

```
Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)

while Q is nonempty do

u = deq(Q)

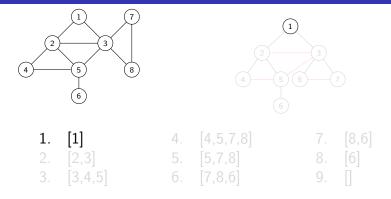
for each vertex v \in Adj(u)

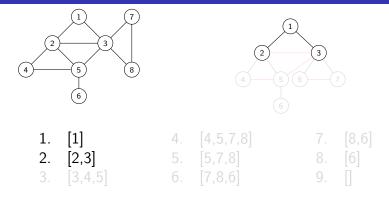
if v is not visited then

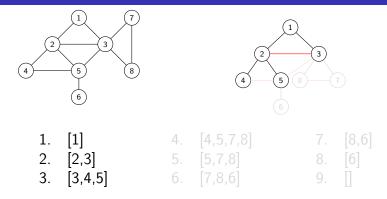
add edge (u, v) to T

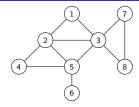
Mark v as visited and enq(v)
```

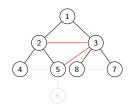
Proposition BFS(s) runs in O(n + m) time. Alexandra (UIUC) CS473 6 Fall 2014 6 / 57



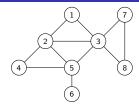


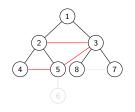




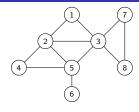


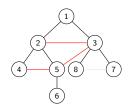
1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	[]



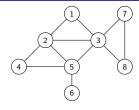


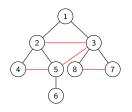
1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	



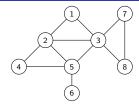


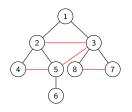
1.	[1]	4.	[4,5,7,8]	7	. [8,6]
2.	[2,3]	5.	[5,7,8]	8	. [6]
3.	[3,4,5]	6.	[7,8,6]	9	. []



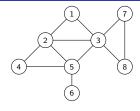


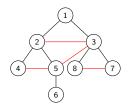
1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	



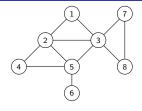


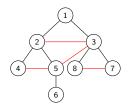
1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	



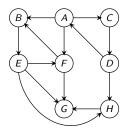


1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	[]





1.	[1]	4.	[4,5,7,8]	7.	[8,6]
2.	[2,3]	5.	[5,7,8]	8.	[6]
3.	[3,4,5]	6.	[7,8,6]	9.	[]



BFS with Distance

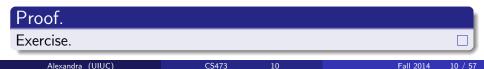
```
BFS(s)
         Mark all vertices as unvisited
and for each v set dist(v) = \infty
         Initialize search tree T to be empty
         Mark vertex s as visited and set dist(s) = 0
         set Q to be the empty queue
         enq(s)
         while Q is nonempty do
             u = deq(Q)
             for each vertex \mathbf{v} \in \mathrm{Adj}(\mathbf{u}) do
                  if v is not visited do
                      add edge (u, v) to T
                      Mark v as visited, enq(v)
                      and set dist(v) = dist(u) + 1
```

Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

- (A) The search tree contains exactly the set of vertices in the connected component of **s**.
- (B) If dist(u) < dist(v) then u is visited before v.
- (C) For every vertex \mathbf{u} , $dist(\mathbf{u})$ is indeed the length of shortest path from \mathbf{s} to \mathbf{u} .
- (D) If u, v are in connected component of s and e = {u, v} is an edge of G, then either e is an edge in the search tree, or |dist(u) dist(v)| ≤ 1.



Question: For directed graphs...

If the edge (u, v) is in the graph G. Do **BFS** (s), such that both u and v are reachable from s. Then, we must have that

- (A) dist(u) < dist(v)
- (B) dist(u) > dist(v)
- (C) $\operatorname{dist}(u) \leq 1 + \operatorname{dist}(v)$
- (D) dist(v) $\leq 1 + dist(u)$
- (E) None of the above.
- (F) All of the above.

Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of **BFS**(s):

- (A) The search tree contains exactly the set of vertices reachable from **s**
- (B) If dist(u) < dist(v) then u is visited before v
- (C) For every vertex $u, \, {\rm dist}(u)$ is indeed the length of shortest path from s to u
- (D) If **u** is reachable from **s** and $\mathbf{e} = (\mathbf{u}, \mathbf{v})$ is an edge of **G**, then either **e** is an edge in the search tree, or $\operatorname{dist}(\mathbf{v}) - \operatorname{dist}(\mathbf{u}) \leq 1$. Not necessarily the case that $\operatorname{dist}(\mathbf{u}) - \operatorname{dist}(\mathbf{v}) \leq 1$.

Proof.				
Exercise.				
	CS 472	10	Epil 2014	12 / 57

BFS with Layers

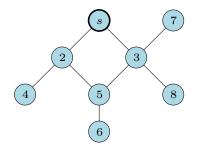
```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    \mathbf{i} = \mathbf{0}
    while L<sub>i</sub> is not empty do
              initialize L_{i+1} to be an empty list
              for each \mathbf{u} in \mathbf{L}_i do
                   for each edge (u, v) \in Adj(u) do
                   if v is not visited
                             mark v as visited
                             add (u, v) to tree T
                             add v to L_{i+1}
              i = i + 1
```

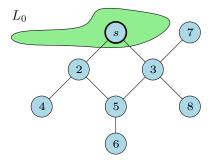
Running time: O(n + m)

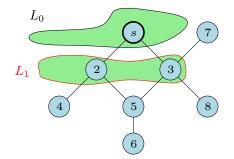
BFS with Layers

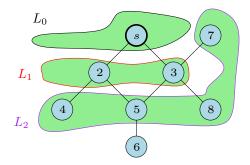
```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    \mathbf{i} = \mathbf{0}
    while L<sub>i</sub> is not empty do
              initialize L_{i+1} to be an empty list
              for each \mathbf{u} in \mathbf{L}_i do
                   for each edge (u, v) \in Adj(u) do
                   if v is not visited
                             mark v as visited
                             add (u, v) to tree T
                             add v to L_{i+1}
              i = i + 1
```

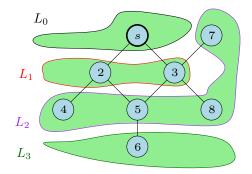
Running time: O(n + m)









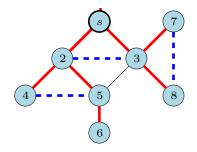


BFS with Layers: Properties

Proposition

The following properties hold on termination of **BFSLayers**(s).

- BFSLayers(s) outputs a BFS tree
- 2 L_i is the set of vertices at distance exactly i from s
- § If **G** is undirected, each edge $\mathbf{e} = {\mathbf{u}, \mathbf{v}}$ is one of three types:
 - **1** tree edge between two consecutive layers
 - onn-tree forward/backward edge between two consecutive layers
 - **③** non-tree **cross-edge** with both **u**, **v** in same layer
 - Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.



Proposition

The following properties hold on termination of **BFSLayers**(**s**), if **G** is directed.

For each edge $\mathbf{e} = (\mathbf{u}, \mathbf{v})$ is one of four types:

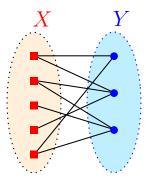
- 0 a tree edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u, v in same layer

Part II

Bipartite Graphs and an application of BFS

Definition (Bipartite Graph)

Undirected graph G = (V, E) is a **bipartite graph** if V can be partitioned into X and Y s.t. all edges in E are between X and Y.



Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree **T** at some node **r**. Let L_i be all nodes at level **i**, that is, L_i is all nodes at distance **i** from root **r**. Now define **X** to be all nodes at even levels and **Y** to be all nodes at odd level. Only edges in **T** are between levels.

Proposition

An odd length cycle is not bipartite.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree **T** at some node **r**. Let L_i be all nodes at level **i**, that is, L_i is all nodes at distance **i** from root **r**. Now define **X** to be all nodes at even levels and **Y** to be all nodes at odd level. Only edges in **T** are between levels.

Proposition

An odd length cycle is not bipartite.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree **T** at some node **r**. Let L_i be all nodes at level **i**, that is, L_i is all nodes at distance **i** from root **r**. Now define **X** to be all nodes at even levels and **Y** to be all nodes at odd level. Only edges in **T** are between levels.

Proposition

An odd length cycle is not bipartite.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree **T** at some node **r**. Let L_i be all nodes at level **i**, that is, L_i is all nodes at distance **i** from root **r**. Now define **X** to be all nodes at even levels and **Y** to be all nodes at odd level. Only edges in **T** are between levels.

Proposition

An odd length cycle is not bipartite.

Odd Cycles are not Bipartite

Proposition

An odd length cycle is not bipartite.

Proof.

Let $C = u_1, u_2, \ldots, u_{2k+1}, u_1$ be an odd cycle. Suppose C is a bipartite graph and let X, Y be the partition. Without loss of generality $u_1 \in X$. Implies $u_2 \in Y$. Implies $u_3 \in X$. Inductively, $u_i \in X$ if i is odd $u_i \in Y$ if i is even. But $\{u_1, u_{2k+1}\}$ is an edge and both belong to X!

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If **G** is bipartite then any subgraph **H** of **G** is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

If ${\bf G}$ is bipartite then since ${\bf C}$ is a subgraph, ${\bf C}$ is also bipartite (by above proposition). However, ${\bf C}$ is not bipartite!

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If ${\bf G}$ is bipartite then any subgraph ${\bf H}$ of ${\bf G}$ is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

If ${\bf G}$ is bipartite then since ${\bf C}$ is a subgraph, ${\bf C}$ is also bipartite (by above proposition). However, ${\bf C}$ is not bipartite!

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If G is bipartite then any subgraph H of G is also bipartite.

Proposition

A graph **G** is not bipartite if **G** has an odd cycle **C** as a subgraph.

Proof.

If ${\bf G}$ is bipartite then since ${\bf C}$ is a subgraph, ${\bf C}$ is also bipartite (by above proposition). However, ${\bf C}$ is not bipartite!

Definition

Given a graph G = (V, E) a subgraph of G is another graph H = (V', E') where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If ${\bf G}$ is bipartite then any subgraph ${\bf H}$ of ${\bf G}$ is also bipartite.

Proposition

A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.

If **G** is bipartite then since **C** is a subgraph, **C** is also bipartite (by above proposition). However, **C** is not bipartite!

Alexandra (UIUC)

Bipartite Graph Characterization

Theorem

A graph **G** is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: **G** has an odd cycle implies **G** is not bipartite. If: **G** has no odd length cycle. Assume without loss of generality that **G** is connected.

- Pick u arbitrarily and do BFS(u)
- $\textcircled{O} X = \cup_{i \text{ is even}} L_i \text{ and } Y = \cup_{i \text{ is odd}} L_i$

Olaim: X and Y is a valid partition if G has no odd length cycle.

Bipartite Graph Characterization

Theorem

A graph **G** is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: **G** has an odd cycle implies **G** is not bipartite. If: **G** has no odd length cycle. Assume without loss of generality that **G** is connected.

- Pick u arbitrarily and do BFS(u)
- ${\small \textcircled{\ }} X=\cup_{i \text{ is even}} L_i \text{ and } Y=\cup_{i \text{ is odd}} L_i$
- Solution: X and Y is a valid partition if G has no odd length cycle.

Proof of Claim

Claim

In BFS(u) if $a, b \in L_i$ and (a, b) is an edge then there is an odd length cycle containing (a, b).

Proof.

Let **v** be least common ancestor of **a**, **b** in **BFS** tree **T**. **v** is in some level **j** < **i** (could be **u** itself). Path from **v** \rightsquigarrow **a** in **T** is of length **j** - **i**. Path from **v** \rightsquigarrow **b** in **T** is of length **j** - **i**. These two paths plus (**a**, **b**) forms an odd cycle of length **2**(**j** - **i**) + **1**.

Proof of Claim

Claim

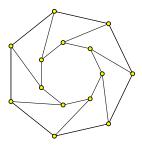
In BFS(u) if $a, b \in L_i$ and (a, b) is an edge then there is an odd length cycle containing (a, b).

Proof.

Let **v** be least common ancestor of **a**, **b** in **BFS** tree **T**. **v** is in some level $\mathbf{j} < \mathbf{i}$ (could be **u** itself). Path from $\mathbf{v} \rightsquigarrow \mathbf{a}$ in **T** is of length $\mathbf{j} - \mathbf{i}$. Path from $\mathbf{v} \rightsquigarrow \mathbf{b}$ in **T** is of length $\mathbf{j} - \mathbf{i}$. These two paths plus (\mathbf{a}, \mathbf{b}) forms an odd cycle of length $2(\mathbf{j} - \mathbf{i}) + 1$.

Proof of Claim: Figure

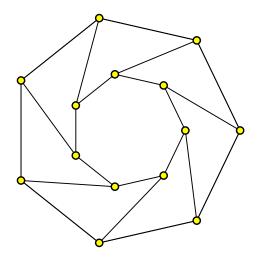
Question: Is the following graph bipartite?

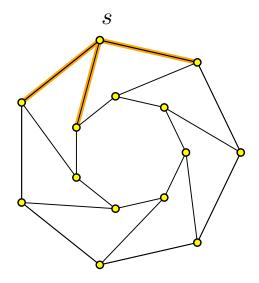


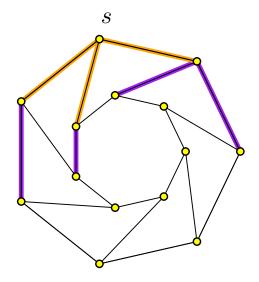
(A) Yes.

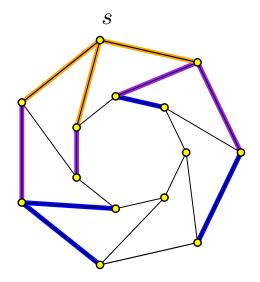
(B) No.

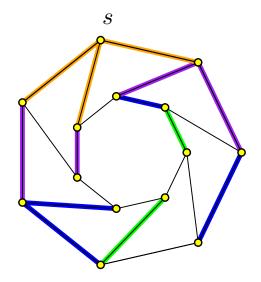
(C) IDK.

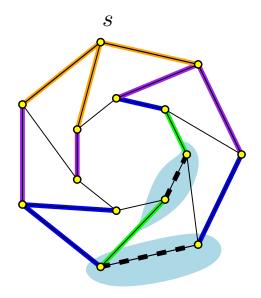


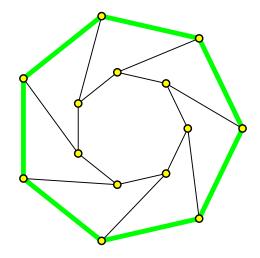


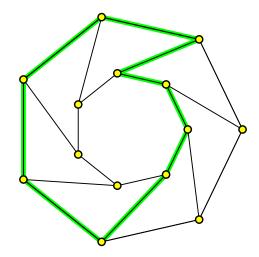












Another tidbit

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and output an odd cycle if it is not.

Part III

Shortest Paths and Dijkstra's Algorithm

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- **1** Given nodes **s**, **t** find shortest path from **s** to **t**.
- **②** Given node **s** find shortest path from **s** to all other nodes.
- Sind shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- **②** Given node **s** find shortest path from **s** to all other nodes.
- Sind shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), l(e) = l(u, v) is its length.
- Q Given nodes s, t find shortest path from s to t.
- **③** Given node **s** find shortest path from **s** to all other nodes.
- Restrict attention to directed graphs
- Output of the second second
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - $e set \ell(u,v) = \ell(v,u) = \ell(\{u,v\})$
 - Service States State

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), l(e) = l(u, v) is its length.
- Q Given nodes s, t find shortest path from s to t.
- **③** Given node **s** find shortest path from **s** to all other nodes.
- Restrict attention to directed graphs

Output of the second second

- Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
- $e set \ell(u,v) = \ell(v,u) = \ell(\{u,v\})$
- In Exercise: show reduction works

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

- Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), l(e) = l(u, v) is its length.
- Q Given nodes s, t find shortest path from s to t.
- **③** Given node **s** find shortest path from **s** to all other nodes.
- Restrict attention to directed graphs
- Output of the second second
 - Given undirected graph G, create a new directed graph G' by replacing each edge {u, v} in G by (u, v) and (v, u) in G'.
 - set $\ell(\mathbf{u},\mathbf{v}) = \ell(\mathbf{v},\mathbf{u}) = \ell(\{\mathbf{u},\mathbf{v}\})$
 - Service Structure Struc

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- **O**(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- **2** O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- **2** O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- **2** O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- **2** O(m + n) time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e

Towards an algorithm

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let dist(s, v) denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

s = v₀ → v₁ → v₂ → ... → v_i is a shortest path from s to v_i
dist(s, v_i) ≤ dist(s, v_k).

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Towards an algorithm

Why does **BFS** work? **BFS**(s) explores nodes in increasing distance from **s**

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let dist(s, v) denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

s = v₀ → v₁ → v₂ → ... → v_i is a shortest path from s to v_i
dist(s, v_i) ≤ dist(s, v_k).

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Towards an algorithm

Why does **BFS** work? **BFS**(s) explores nodes in increasing distance from **s**

Lemma

Let **G** be a directed graph with non-negative edge lengths. Let dist(s, v) denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

s = v₀ → v₁ → v₂ → ... → v_i is a shortest path from s to v_i
dist(s, v_i) < dist(s, v_k).

Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter

Lemma

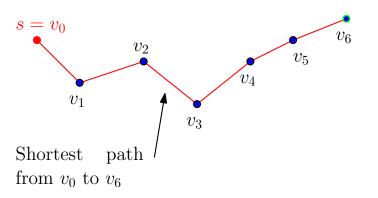
Let **G** be a directed graph with non-negative edge lengths. Let dist(s, v) denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

s = v₀ → v₁ → v₂ → ... → v_i is a shortest path from s to v_i
dist(s, v_i) ≤ dist(s, v_k).

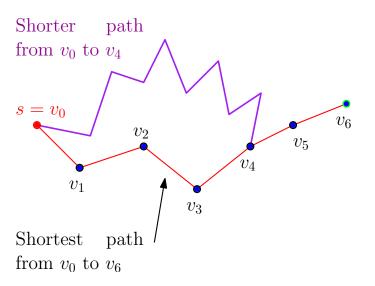
Proof.

Suppose not. Then for some i < k there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then P' concatenated with $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k$ contains a strictly shorter path to v_k than $s = v_0 \rightarrow v_1 \ldots \rightarrow v_k$.

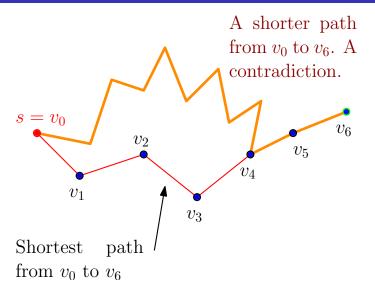
A proof by picture



A proof by picture



A proof by picture



A Basic Strategy

Explore vertices in increasing order of distance from **s**: (For simplicity assume that nodes are at different distances from **s** and that no edge has zero length)

```
Initialize for each node v, dist(s, v) = \infty
Initialize S = Ø,
for i = 1 to |V| do
   (* Invariant: S contains the i - 1 closest nodes to s *)
   Among nodes in V \ S, find the node v that is the
        ith closest to s
   Update dist(s, v)
   S = S \cup {v}
```

How can we implement the step in the for loop?

A Basic Strategy

Explore vertices in increasing order of distance from **s**: (For simplicity assume that nodes are at different distances from **s** and that no edge has zero length)

```
Initialize for each node v, dist(s, v) = \infty
Initialize S = Ø,
for i = 1 to |V| do
   (* Invariant: S contains the i - 1 closest nodes to s *)
   Among nodes in V \ S, find the node v that is the
        ith closest to s
   Update dist(s, v)
   S = S \cup {v}
```

How can we implement the step in the for loop?

- ${\small \bigcirc \hspace{0.1cm} {\sf S} \hspace{0.1cm}} {\scriptsize {\sf contains the } {\sf i}-1 \hspace{0.1cm}} {\scriptsize {\sf closest nodes to } {\sf s} }$
- **2** Want to find the **i**th closest node from V S.

What do we know about the ith closest node?

Claim

Let **P** be a shortest path from **s** to **v** where **v** is the **i**th closest node. Then, all intermediate nodes in **P** belong to **S**.

Proof.

If **P** had an intermediate node **u** not in **S** then **u** will be closer to **s** than **v**. Implies **v** is not the **i**th closest node to **s** - recall that **S** already has the **i** -1 closest nodes.

- ${\small \bigcirc \hspace{0.1cm} {\sf S} \hspace{0.1cm}} {\scriptsize {\sf contains the } {\sf i}-1 \hspace{0.1cm}} {\scriptsize {\sf closest nodes to } {\sf s} }$
- Want to find the ith closest node from V S.

What do we know about the ith closest node?

Claim

Let **P** be a shortest path from **s** to **v** where **v** is the **i**th closest node. Then, all intermediate nodes in **P** belong to **S**.

Proof.

If **P** had an intermediate node **u** not in **S** then **u** will be closer to **s** than **v**. Implies **v** is not the **i**th closest node to **s** - recall that **S** already has the **i** -1 closest nodes.

- ${\small \bigcirc \hspace{0.1cm} {\sf S} \hspace{0.1cm}} {\scriptsize {\sf contains the } {\sf i}-1 \hspace{0.1cm}} {\scriptsize {\sf closest nodes to } {\sf s} }$
- Want to find the ith closest node from V S.

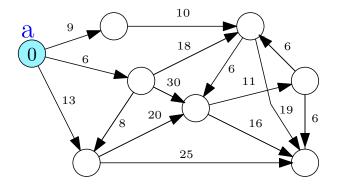
What do we know about the ith closest node?

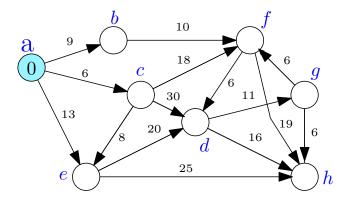
Claim

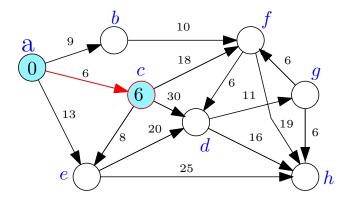
Let **P** be a shortest path from **s** to **v** where **v** is the **i**th closest node. Then, all intermediate nodes in **P** belong to **S**.

Proof.

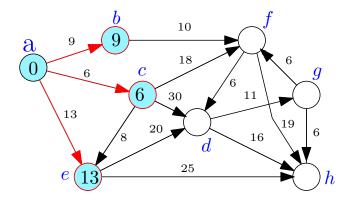
If **P** had an intermediate node **u** not in **S** then **u** will be closer to **s** than **v**. Implies **v** is not the **i**th closest node to **s** - recall that **S** already has the **i** -1 closest nodes.

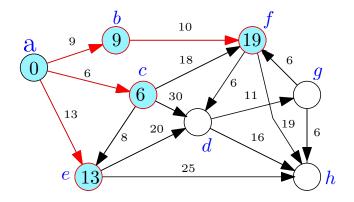


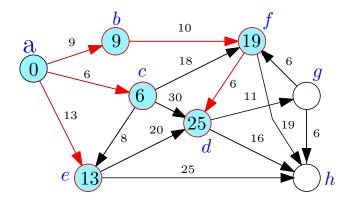


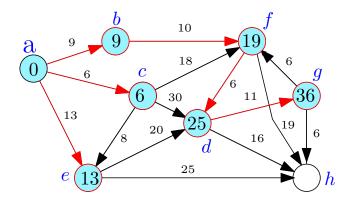


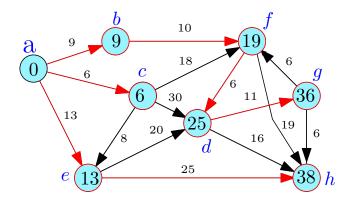


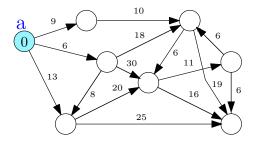












Corollary

The ith closest node is adjacent to S.

- ${f 0}\,{f S}$ contains the ${f i}-1$ closest nodes to ${f s}$
- Want to find the ith closest node from V S.
- For each u ∈ V − S let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)

Observations: for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$,

- () $dist(s, u) \le d'(s, u)$ since we are constraining the paths
- $d'(s, u) = \min_{a \in S}(\operatorname{dist}(s, a) + \ell(a, u)) Why?$

Lemma

If v is the ith closest node to s, then d'(s, v) = dist(s, v).

- ${f 0}\,{f S}$ contains the ${f i}-1$ closest nodes to ${f s}$
- Want to find the ith closest node from V S.
- For each u ∈ V − S let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)
- Observations: for each $\mathbf{u} \in \mathbf{V} \mathbf{S}$,
 - $dist(s, u) \le d'(s, u)$ since we are constraining the paths
 - $\texttt{0} \ \mathsf{d}'(\mathsf{s},\mathsf{u}) = \min_{\mathsf{a}\in\mathsf{S}}(\operatorname{dist}(\mathsf{s},\mathsf{a}) + \ell(\mathsf{a},\mathsf{u})) \text{ Why}?$

Lemma

If v is the ith closest node to s, then d'(s, v) = dist(s, v).

- ${f 0}\,{f S}$ contains the ${f i}-1$ closest nodes to ${f s}$
- Want to find the ith closest node from V S.
- For each u ∈ V − S let P(s, u, S) be a shortest path from s to u using only nodes in S as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, S)

Observations: for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$,

- $dist(s, u) \le d'(s, u)$ since we are constraining the paths
- $\ \textbf{0} \ \ \textbf{d}'(s,u) = \min_{a \in S}(\operatorname{dist}(s,a) + \ell(a,u)) \text{ Why}?$

Lemma

If \mathbf{v} is the *i*th closest node to \mathbf{s} , then $\mathbf{d}'(\mathbf{s}, \mathbf{v}) = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Lemma

Given:

9 S: Set of i - 1 closest nodes to s.

 $d'(s, u) = \min_{x \in S} (\operatorname{dist}(s, x) + \ell(x, u))$

If v is an ith closest node to s, then d'(s, v) = dist(s, v).

Proof.

Let **v** be the ith closest node to **s**. Then there is a shortest path **P** from **s** to **v** that contains only nodes in **S** as intermediate nodes (see previous claim). Therefore d'(s, v) = dist(s, v).

Lemma

If v is an ith closest node to s, then d'(s, v) = dist(s, v).

Corollary

The ith closest node to s is the node $v \in V - S$ such that $d'(s, v) = \min_{u \in V-S} d'(s, u)$.

Proof.

For every node $\mathbf{u} \in \mathbf{V} - \mathbf{S}$, dist $(\mathbf{s}, \mathbf{u}) \leq \mathbf{d}'(\mathbf{s}, \mathbf{u})$ and for the ith closest node \mathbf{v} , dist $(\mathbf{s}, \mathbf{v}) = \mathbf{d}'(\mathbf{s}, \mathbf{v})$. Moreover, dist $(\mathbf{s}, \mathbf{u}) \geq \text{dist}(\mathbf{s}, \mathbf{v})$ for each $\mathbf{u} \in \mathbf{V} - \mathbf{S}$.

Correctness: By induction on **i** using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

1 n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

Correctness: By induction on i using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

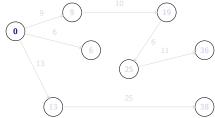
Correctness: By induction on i using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

• n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

Correctness: By induction on **i** using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

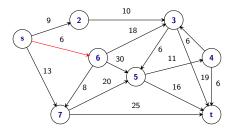
n outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in S; O(m + n) time/iteration.

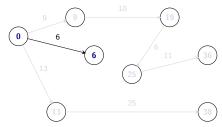


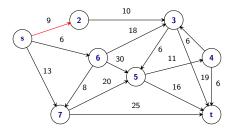


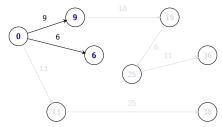
Alexandra (UIUC)

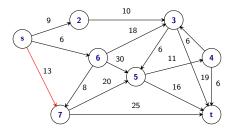
Fall 2014 43 / 57

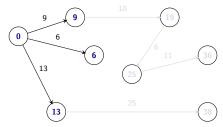


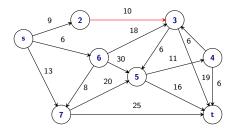


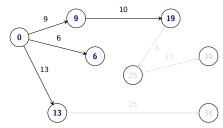


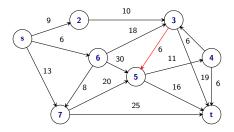


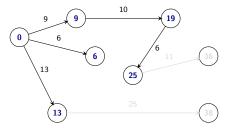


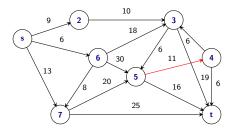


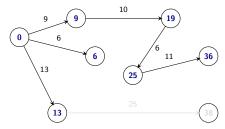


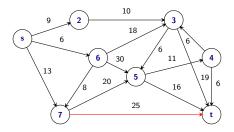


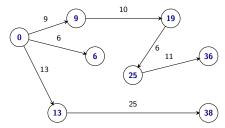












Improved Algorithm

Main work is to compute the d'(s, u) values in each iteration
d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to S in iteration i.

Running time: $O(m + n^2)$ time.

n outer iterations and in each iteration following steps
 updating d'(s, u) after v added takes O(deg(v)) time so total Alexandra (UIUC)

44 / 57

Improved Algorithm

Main work is to compute the d'(s, u) values in each iteration
d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to S in iteration i.

Running time: $O(m + n^2)$ time.

n outer iterations and in each iteration following steps
 updating d'(s, u) after v added takes O(deg(v)) time so total

Alexandra (UIUC)

44

Improved Algorithm

Running time: $O(m + n^2)$ time.

In outer iterations and in each iteration following steps

- updating d'(s, u) after v added takes O(deg(v)) time so total work is O(m) since a node enters S only once
- Solution Finding v from d'(s, u) values is O(n) time

44

Dijkstra's Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Priority Queues to maintain dist values for faster running time

Using heaps and standard priority queues: O((m + n) log n)
Using Fibonacci heaps: O(m + n log n).

Dijkstra's Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Priority Queues to maintain dist values for faster running time

- Using heaps and standard priority queues: $O((m + n) \log n)$
- Oliver State St

Priority Queues

Data structure to store a set **S** of **n** elements where each element $\mathbf{v} \in \mathbf{S}$ has an associated real/integer key $\mathbf{k}(\mathbf{v})$ such that the following operations:

- makePQ: create an empty queue.
- **IndMin**: find the minimum key in **S**.
- **§** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **()** insert(v, k(v)): Add new element v with key k(v) to **S**.
- o delete(v): Remove element v from S.
- O decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: k'(v) ≤ k(v).
- **meld**: merge two separate priority queues into one.

All operations can be performed in **O(log n)** time. **decreaseKey** is implemented via **delete** and **insert**

Priority Queues

Data structure to store a set **S** of **n** elements where each element $\mathbf{v} \in \mathbf{S}$ has an associated real/integer key $\mathbf{k}(\mathbf{v})$ such that the following operations:

- makePQ: create an empty queue.
- **IndMin**: find the minimum key in **S**.
- **§** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **insert**(v, k(v)): Add new element v with key k(v) to S.
- o delete(v): Remove element v from S.
- O decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: k'(v) ≤ k(v).
- **o meld**: merge two separate priority queues into one.

All operations can be performed in **O(log n)** time. **decreaseKey** is implemented via **delete** and **insert**.

Priority Queues

Data structure to store a set **S** of **n** elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- IndMin: find the minimum key in S.
- **§** extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it.
- **()** insert(v, k(v)): Add new element v with key k(v) to **S**.
- **o** delete(v): Remove element v from **S**.
- O decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: k'(v) ≤ k(v).
- **o** meld: merge two separate priority queues into one.

All operations can be performed in **O(log n)** time. **decreaseKey** is implemented via **delete** and **insert**.

Dijkstra's Algorithm using Priority Queues

```
\begin{split} & Q \Leftarrow makePQ() \\ & \text{insert}(Q, (s, 0)) \\ & \text{for each node } u \neq s \text{ do} \\ & \text{insert}(Q, (u, \infty)) \\ & S \Leftarrow \emptyset \\ & \text{for } i = 1 \text{ to } |V| \text{ do} \\ & (v, \operatorname{dist}(s, v)) = extractMin(Q) \\ & S = S \cup \{v\} \\ & \text{for each } u \text{ in } \operatorname{Adj}(v) \text{ do} \\ & \quad \operatorname{decreaseKey}\Big(Q, (u, \min(\operatorname{dist}(s, u), \operatorname{dist}(s, v) + \ell(v, u)))\Big). \end{split}
```

Priority Queue operations:

- O(n) insert operations
- O(n) extractMin operations
- O(m) decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

All operations can be done in O(log n) time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time.

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

All operations can be done in O(log n) time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time.

- extractMin, insert, delete, meld in O(log n) time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together O(ℓ) time
- ③ Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **e** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \ge n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **e** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \ge n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- 2 Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

- extractMin, insert, delete, meld in O(log n) time
- **e** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \ge n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to V. **Question:** How do we find the paths themselves?

```
for each node \mathbf{u} \neq \mathbf{s} do
```

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to V. **Question:** How do we find the paths themselves?

```
\mathbf{Q} = \mathbf{makePQ}()
insert(Q, (s, 0))
prev(s) \leftarrow null
for each node \mathbf{u} \neq \mathbf{s} do
     insert(\mathbf{Q}, (\mathbf{u}, \infty))
      prev(u) \Leftarrow null
S = \emptyset
for i = 1 to |V| do
      (v, dist(s, v)) = extractMin(Q)
     S = S \cup \{v\}
      for each u in Adj(v) do
           if (dist(s, v) + \ell(v, u) < dist(s, u)) then
                 decreaseKey(Q, (u, dist(s, v) + \ell(v, u)))
                 prev(u) = v
```

Shortest Path Tree

Lemma

The edge set (u, prev(u)) is the reverse of a shortest path tree rooted at s. For each u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.

- The edge set {(u, prev(u)) | u ∈ V} induces a directed in-tree rooted at s (Why?)
- Ose induction on |S| to argue that the tree is a shortest path tree for nodes in V.

Shortest paths to s

Dijkstra's algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in G^{rev}!

Shortest paths to s

Dijkstra's algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in G^{rev}!