DFS in Directed Graphs, Strong Connected Components, and DAGs

Lecture 2 August 28, 2014

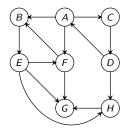
Strong Connected Components (SCCs)

Algorithmic Problem

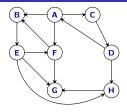
Find all SCCs of a given directed graph.

Previous lecture:

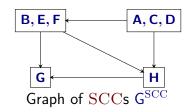
Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: O(n + m) time algorithm.



Graph of SCCs



Graph G



Meta-graph of SCCs

Let $S_1, S_2, \dots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is GSCC

- Vertices are $S_1, S_2, \dots S_k$
- ② There is an edge (S_i, S_i) if there is some $u \in S_i$ and $v \in S_i$ such that (\mathbf{u}, \mathbf{v}) is an edge in G.

CS473 3 Fall 2014 3 / 58

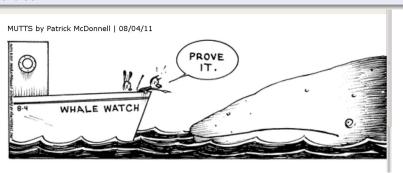
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.



Alexandra (UIUC) CS473 4 Fall 2014 4 / 58

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

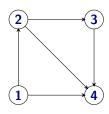
Part I

Directed Acyclic Graphs

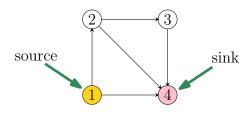
Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.



Sources and Sinks



Definition

- A vertex u is a source if it has no in-coming edges.
- ② A vertex **u** is a **sink** if it has no out-going edges.

Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

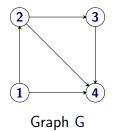
Formal proofs: exercise.

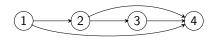
Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting





Topological Ordering of G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

_emma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

 \implies : Suppose G is not a DAG and has a topological ordering \prec . G has a cycle $C = u_1, u_2, \dots, u_k, u_1$.

Then $\mathbf{u}_1 \prec \mathbf{u}_2 \prec \ldots \prec \mathbf{u}_k \prec \mathbf{u}_1!$

That is... $\mathbf{u_1} \prec \mathbf{u_1}$.

A contradiction (to \prec being an order).

Not possible to topologically order the vertices.

DAGs and Topological Sort

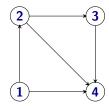
Lemma

A directed graph G can be topologically ordered iff it is a \overline{DAG} .

Continued.

- ←: Consider the following algorithm:
 - Pick a source **u**, output it.
 - Remove u and all edges out of u.
 - Repeat until graph is empty.
 - Exercise: prove this gives an ordering.

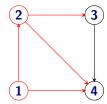
Exercise: show above algorithm can be implemented in O(m + n) time.



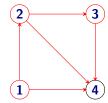
Output: 1 2 3 4



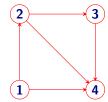
Output: 1 2 3 4



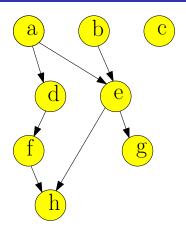
Output: $1\ 2\ 3\ 4$



Output: 1 2 3 4



Output: 1 2 3 4



DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a \overline{DAG} with the most number of distinct topological sorts for a given number \mathbf{n} of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number **n** of vertices?

Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 58

Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Alexandra (UIUC) CS473 16 Fall 2014 16 / 58

Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

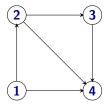
Proof.

Assume post(v) > post(u) and (u, v) is an edge in **G**. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
 Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
 This cannot happen since v would be explored from u.

Alexandra (UIUC) CS473 17 Fall 2014 17 / 58

Example



Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in **DFS(G)**.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendants of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (\mathbf{u}, \mathbf{v}) is a back edge implies there is a cycle \mathbf{C} consisting of the path from \mathbf{v} to \mathbf{u} in \mathbf{DFS} search tree and the edge (\mathbf{u}, \mathbf{v}) .

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendants of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, $(\mathbf{v}_{i-1}, \mathbf{v}_i)$ (or $(\mathbf{v}_k, \mathbf{v}_1)$ if i = 1) is a back edge.

Topological sorting of a DAG

Input: DAG G. With **n** vertices and **m** edges.

O(n + m) algorithms for topological sorting

- (A) Put source s of G as first in the order, remove s, and repeat. (Implementation not trivial.)
- Do **DFS** of G. Compute post numbers. Sort vertices by decreasing post number.

Alexandra (UIUC) CS473 20 Fall 2014 20 / 58

Topological sorting of a DAG

Input: DAG G. With **n** vertices and **m** edges.

O(n + m) algorithms for topological sorting

- (A) Put source **s** of G as first in the order, remove **s**, and repeat. (Implementation not trivial.)
- (B) Do DFS of G. Compute post numbers. Sort vertices by decreasing post number.

Question

How to avoid sorting?

Topological sorting of a DAG

Input: DAG G. With **n** vertices and **m** edges.

O(n + m) algorithms for topological sorting

- (A) Put source **s** of G as first in the order, remove **s**, and repeat. (Implementation not trivial.)
- (B) Do DFS of G. Compute post numbers. Sort vertices by decreasing post number.

Question

How to avoid sorting?

No need to sort - post numbering algorithm can output vertices...

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \not\leq \mathbf{a}$), and
- **3** transitive ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ implies $\mathbf{a} \leq \mathbf{c}$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 58

DAGs and Partial Orders

Definition

A partially ordered set is a set **S** along with a binary relation \leq such that \leq is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \nleq \mathbf{a}$), and
- **1 transitive** $(a \leq b \text{ and } b \leq c \text{ implies } a \leq c)$.

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 58

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \not\leq \mathbf{a}$), and
- **3** transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Alexandra (UIUC) CS473 21 Fall 2014 21 / 58

What's DAG but a sweet old fashioned notion

Who needs a DAG...

Example

- **V**: set of **n** products (say, **n** different types of tablets).
- Want to buy one of them, so you do market research...
- Online reviews compare only pairs of them. ...Not everything compared to everything.
- Given this partial information:
 - Decide what is the best product.
 - Oecide what is the ordering of products from best to worst.
 - **3** ...

What DAGs got to do with it?

Or why we should care about DAGs

- DAGs enable us to represent partial ordering information we have about some set (very common situation in the real world).
- Questions about DAGs:
 - Is a graph G a DAG?

 \iff

Is the partial ordering information we have so far is consistent?

2 Compute a topological ordering of a DAG.

 \iff

Find an a consistent ordering that agrees with our partial information.

Find comparisons to do so DAG has a unique topological sort.

 \iff

Which elements to compare so that we have a consistent ordering of the items.

Part II

Linear time algorithm for finding all strong connected components of a directed graph

Question: Is graph and its reverse together connected?

Let G be a directed graph, and let $G^{\rm rev}$ be its reverse graph. The graph $\mathbf{H}=G\cup G^{\rm rev}$ is

- (A) always connected.
- (B) always disconnected.
- (C) connected, if and only if H^{SCC} is a single vertex.
- (D) disconnected, if and only if G is a DAG.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

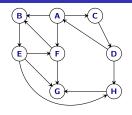
Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

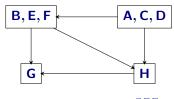
Straightforward algorithm:

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Structure of a Directed Graph



Graph G



Graph of SCCs G^{SCC}

Reminder

 $\mathsf{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a *sink* SCC of G^{SCC}
- O Do DFS(u) to compute SCC(u)
- \odot Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- 2
- 0
- (4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a *sink* SCC of G^{SCC}
- O DFS(u) to compute SCC(u)
- $oldsymbol{\circ}$ Remove $\mathrm{SCC}(\mathbf{u})$ and repeat

Justification

DFS(u) only visits vertices (and edges) in SCC(u)

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a *sink* SCC of G^{SCC}
- O DFS(u) to compute SCC(u)
- \odot Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- 3
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a *sink* SCC of G^{SCC}
- O Do DFS(u) to compute SCC(u)
- $oldsymbol{\circ}$ Remove $\mathrm{SCC}(\mathbf{u})$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- OFS(u) takes time proportional to size of SCC(u)

4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a *sink* SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- OFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

Alexandra (UIUC) CS473 28 Fall 2014 28 / 58

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: **DFS(G)** gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

Answer: **DFS(G)** gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

Answer: **DFS(G)** gives some information!

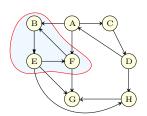
Post-visit times of SCCs

Definition

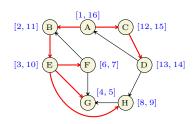
Given G and a SCC S of G, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some DFS(G).

Alexandra (UIUC) CS473 30 Fall 2014 30 / 58

An Example



Graph G



Graph with pre-post times for **DFS(A)**; black edges in tree

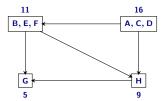


Figure : G^{SCC} with post times

Graph of strong connected components

... and post-visit times

Proposition

If **S** and **S'** are SCCs in G and (**S**, **S'**) is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- ② If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If **S** and **S**' are SCCs in G and (**S**, **S**') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Alexandra (UIUC) CS473 32 Fall 2014 32 / 58

Graph of strong connected components

... and post-visit times

Proposition

If **S** and **S'** are SCCs in G and (**S**, **S'**) is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- ② If $\mathbf{u} \in \mathbf{S}'$ then all of \mathbf{S}' will be explored before any of \mathbf{S} .

A False Statement: If **S** and **S'** are SCCs in G and (**S**, **S'**) is an edge in G^{SCC} then for every $\mathbf{u} \in \mathbf{S}$ and $\mathbf{u'} \in \mathbf{S'}$, $\mathbf{post}(\mathbf{u}) > \mathbf{post}(\mathbf{u'})$.

Alexandra (UIUC) CS473 32 Fall 2014 32 / 58

Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So..

 $\mathsf{DFS}(\mathsf{G})$ gives some information on topological ordering of $\mathsf{G}^{\mathrm{SCC}}$!

Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

DFS(G) gives some information on topological ordering of **G**^{SCC}!

Finding Sources

Proposition

The vertex **u** with the highest post visit time belongs to a source SCC in G^{SCC}

Alexandra (UIUC) CS473 34 Fall 2014 34 / 58

Finding Sources

Proposition

The vertex \mathbf{u} with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

- Thus, post(SCC(u)) is highest and will be output first in topological ordering of G^{SCC}.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- ② Since graph of SCCs of G^{rev} is the reverse of G^{SCC} , SCC(u) is sink SCC of G.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of G.

Proof.

- u belongs to source SCC of G^{rev}
- 2 Since graph of SCCs of G^{rev} is the reverse of G^{SCC} , SCC(u) is sink SCC of G.

Linear Time Algorithm

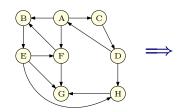
...for computing the strong connected components in ${\bf G}$

Analysis

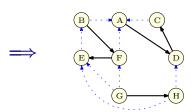
Running time is O(n + m). (Exercise)

Linear Time Algorithm: An Example - Initial steps

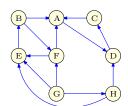
Graph G:



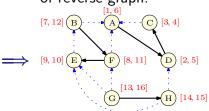
DFS of reverse graph:



Reverse graph Grev:

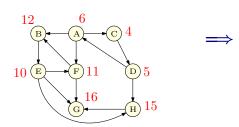


Pre/Post **DFS** numbering of reverse graph:

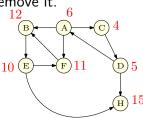


Removing connected components: 1

Original graph G with rev post numbers:



Do **DFS** from vertex G remove it.

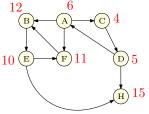


SCC computed:

{**G**}

Removing connected components: 2

Do **DFS** from vertex G remove it.



SCC computed: **{G**}

remove it. $\begin{array}{c}
12 & 6 \\
\hline
10 & E & F \\
\end{array}$

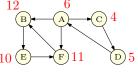
Do **DFS** from vertex **H**,

SCC computed:

$$\{G\}, \{H\}$$

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.



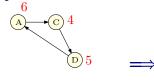
Do **DFS** from vertex **B** Remove visited vertices:

{**F**, **B**, **E**}.

$$\{G\}, \{H\}, \{F, B, E\}$$

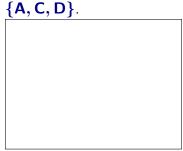
Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices: {**F**, **B**, **E**}.



SCC computed: {**G**}, {**H**}, {**F**, **B**, **E**}

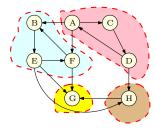
Do **DFS** from vertex **A** Remove visited vertices:



SCC computed:

 $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$

Final result



SCC computed:

$$\{G\}, \{H\}, \{F,B,E\}, \{A,C,D\}$$

Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph $G^{\rm SCC}$ can be obtained in O(m + n) time.

Correctness: more details

- **1** let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- onsider $\mathsf{DFS}(\mathsf{G}^\mathsf{rev})$ and let $\mathsf{u}_1, \mathsf{u}_2, \ldots, \mathsf{u}_k$ be such that $\mathsf{post}(\mathsf{u}_i) = \mathsf{post}(\mathsf{S}_i) = \mathsf{max}_{\mathsf{v} \in \mathsf{S}_i} \, \mathsf{post}(\mathsf{v})$.
- Assume without loss of generality that $\begin{array}{l} \textbf{post}(\textbf{u}_k) > \textbf{post}(\textbf{u}_{k-1}) \geq \ldots \geq \textbf{post}(\textbf{u}_1) \text{ (renumber otherwise)}. \text{ Then } \textbf{S}_k, \textbf{S}_{k-1}, \ldots, \textbf{S}_1 \text{ is a topological sort of meta-graph of } \textbf{G}^{rev} \text{ and hence } \textbf{S}_1, \textbf{S}_2, \ldots, \textbf{S}_k \text{ is a topological sort of the meta-graph of } \textbf{G}. \end{array}$
- ullet u_k has highest post number and $DFS(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and $DFS(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

Part III

An Application to make

Make/Makefile

Clicker question

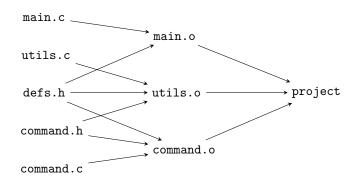
- (A) I know what make/makefile is.
- (B) I do NOT know what make/makefile is.

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

makefile as a Digraph



Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- OAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Alexandra (UIUC) CS473 52 Fall 2014 52 / 58

Alexandra (UIUC) CS473 54 Fall 2014 54 / 58

Alexandra (UIUC) CS473 56 Fall 2014