
HW 5 (due Tuesday, at noon, October 14, 2014)
CS 473: Fundamental Algorithms, Fall 2014 Version: 1.1

Make sure that you write the solutions for the problems on separate sheets of paper. Write your
name and netid on each sheet.

Collaboration Policy: The homework can be worked in groups of up to 3 students each.

1. (40 pts.) Simultaneous Climbs.
One day, Kris (whom you all know and love from past climbing competitions that took place
during your first midterm) got tired of climbing in a gym and decided to take a very large
group of climber friends (after, all he is a popular guy) outside to climb. The climbing area
where they went, had a huge wide boulder, not very tall, with various marked hand and foot
holds. Kris took a look and quickly figured out an ”allowed” set of moves that his group of
friends would do so that they get from one hold to another. He also figured out the difficulty
of each individual move and assigned a grade (weight) to it. The higher the weight, the harder
the move. Let G = (V,E) be the (undirected) graph with a vertex for each hold and an edge
between two holds (u, v) if v can be reached from u (and vice versa) by one of the moves
that Kris decided. For an edge (u, v) ∈ E, we have a weight w(uv) associated with (u, v)
which represents the difficulty that he assigned to that particular move (it is always positive,
negative weights would mean that climbers can defy gravity).
A k-climb is a sequence where a climber performs k moves in sequence. In graph G it is
represented by a simple path with exactly k edges in it. Two k-climbs are disjoint if they do
not share any vertex. A collection M of k-climbs is a k-climb packing if all pairs of climbs
of M are disjoint (for k = 1 the set M is a matching in the graph). The total weight of a
k-climb packing is the total weight of the edges used by the climbers.
Kris and his friends decided to play a game (they are all very good climbers), where as many
climbers as possible are simultaneously on the wall and each climber needs to perform a set
of k moves in sequence. In other words, they are interested in the problem of computing the
maximum weight k-climb packing in G. In general, this problem seems hard.
Describe an efficient algorithm (i.e., provide pseudo-code, etc), as fast as possible, for com-
puting the maximum weight k-climb packing when G is a rooted tree (fortunately for the tree
case this is much easier) or a forest (collection of rooted trees).
Your algorithm should be recursive and use memoization to achieve efficiency. (You can not
assume G is a binary tree - a node might have arbitrary number of children.) What is the
running time of your algorithm as function of n = |V (G)| and k?

1

2. (30 pts.) Process these words.
In a word processor the goal of “pretty-printing” is to take text with a ragged right margin,
like this

I guess it takes two

to progress

from an apprentice to a

legitimate surfer. Two digits

in front of the

size in feet of the

wave one needs to take, two double overhead waves that holds

one under after

the wipeout, and two equally sized pieces that

one’s previously intact board comes up

on the surface as.

and turn it into text whose right margin is as “even” as possible, like this

I guess it takes two to progress

from an apprentice to a legitimate

surfer. Two digits in front of

the size in feet of the wave one

needs to take, two double overhead

waves that holds one under after

the wipeout, and two equally sized

pieces that one’s previously intact

board comes up on the surface as.

To make this precise enough for us to start thinking about how to write a pretty-printer for
text, we need to figure out what it means for the right margins to be “even”. So suppose our
text consists of a sequence of words, W = {w1, w2, . . . , wn}, where wi consists of ci characters.
We have a maximum line length of L. We will assume we have a fixed-width font and ignore
issues of punctuation or hyphenation.
A formatting of W consists of an ordered partition of the words in W into lines. In the words
assigned to a single line, there should be a space after each word except the last; and so if
wj , wj+1, . . . , wk are assigned to one line, then we should have

[
k−1∑
i=j

(ci + 1)] + ck ≤ L.

We will call an assignment of words to a line valid if it satisfies this inequality. The difference
between the left-hand side and the right-hand side will be called the slack of the line-that is,
the number of spaces left at the right margin.
Given a partition of a set of words W , the penalty of the formatting is the sum of the squares
of the slacks of all lines (including the last line). Give an efficient algorithm to find a partition
of a set of words W into valid lines, so that the penalty of the formatting becomes minimized.

2

3. (30 pts.) Spanglish
The wildly popular Spanish-language search engine El Goog needs to do a serious amount of
computation every time it recompiles its index. Fortunately, the company has at its disposal
a single large supercomputer, together with an essentially unlimited supply of high-end PCs.
They have broken the overall computation into n distinct jobs, labeled J1, J2, . . . Jn, which can
be performed completely independently of one another. Each job consists of two stages: first
it needs to be preprocessed on the supercomputer, and then it needs to be finished on one of
the PCs. Let us say that job Ji needs pi seconds of time on the supercomputer, followed by
fi seconds of time on a PC.
Since there are at least n PCs available on the premises, the finishing of the jobs can be
performed fully in parallel - all the jobs can be processed at the same time. However, the
supercomputer can only work on a single job at a time, so the system managers need to work
out an order in which to feed the jobs to the supercomputer. As soon as the first job in
order is done on the supercomputer, it can be handed off to a PC for finishing; at that point
in time a second job can be fed to the supercomputer; when the second job is done on the
supercomputer, it can proceed to a PC regardless of whether or not the first job is done (since
the PCs work in parallel); an so on.
Let us say that a schedule is an ordering of the jobs for the supercomputer, and the completion
time of the schedule is the earliest time at which all jobs will have finished processing on the
PCs. This is an important quantity to minimize, since it determines how rapidly El Goog can
generate a new index.
Give a polynomial-time algorithm that finds a schedule which as small a completion time as
possible.

3

