
CS 473: Fundamental Algorithms, Fall 2014
HW 2 (due Tuesday, at noon, September 16, 2014)
Version: 1.01.

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this homework, Problems 1–3 can be worked in groups of up to three
students.

Each student individually have to also do quiz 2 online.

1. (30 pts.) I Want (One) More!
Suppose you are given a directed graph G = (V,E) with non-negative edge lengths; `(e) is
the length of e ∈ E. You are interested in the shortest path distance between two given
locations/nodes s and t. It has been noticed that the existing shortest path distance between
s and t in G is not satisfactory and there is a proposal to add exactly one edge to the graph
to improve the situation. The candidate edges from which one has to be chosen is given by
E′ = {e1, e2, . . . , ek} and you can assume that E∩E′ = ∅. The length of the ei is αi ≥ 0. Your
goal is figure out which of these k edges will result in the most reduction in the shortest path
distance from s to t. Describe an algorithm for this problem that runs in time O(n log n+m+k)
where m = |E| and n = |V |.
(Note that one can easily solve this problem in O(k(m+ n) log n) by running Dijkstra’s algo-
rithm k times, one for each Gi where Gi is the graph obtained by adding ei to G.)

2. (35 pts.) Walks with at least k distinct nodes.
Given a directed graph G = (V,E) and two nodes s, t, an s-t walk is a sequence of nodes
s = v0, v1, . . . , vk = t where (vi, vi+1) is an edge of G for 0 ≤ i < k. Note that a node may
be visited multiple times in a walk — this is how it differs from a path. Given G, s, t and an
integer k ≤ n, design a linear time algorithm to check if there is an s-t walk in G that visits
at least k distinct nodes including s and t.

(A) (15 pts.) Solve the problem when G is a DAG.
(B) (20 pts.) Solve the problem when G is a an arbitrary directed graph. Hint: If G is

strongly connected then there is always such a walk even for k = n (do you see why?).

3. (35 pts.) Decreasing/Increasing Weights
Let G = (V,E) be a directed graph with edge lengths that can be negative. Let `(e) denote
the length of edge e ∈ E and assume it is an integer. Assume you have a shortest path tree T
rooted at a source node s that contains all the nodes in V . You also have the distance values
d(s, u) for each u ∈ V in an array (thus, you can access the distance from s to u in O(1) time).
Note that the existence of T implies that G does not have a negative length cycle.
(A) (18 pts.) Let e = (p, q) be an edge of G that is not in T . Show how to compute in O(1)

time the smallest integer amount by which we can decrease `(e) before T is not a valid
shortest path tree in G.

1

(B) (17 pts.) Let e = (p, q) be an edge in the tree T . Show how to compute in O(m + n)
time the smallest integer amount by which we can increase `(e) such that T is no longer
a valid shortest path tree. Your algorithm should output ∞ if no amount of increase will
change the shortest path tree.

2

