
Algorithms Appendix I: Proof by Induction [Fa’13]

Jeder Genießende meint, dem Baume habe es an der Frucht gelegen;
aber ihm lag am Samen.
[Everyone who enjoys thinks that the fundamental thing about trees is the fruit,
but in fact it is the seed.]

— Friedrich Wilhelm Nietzsche,
Vermischte Meinungen und Sprüche [Mixed Opinions and Maxims] (1879)

In view of all the deadly computer viruses that have been spreading lately,
Weekend Update would like to remind you:
When you link up to another computer,
you’re linking up to every computer that that computer has ever linked up to.

— Dennis Miller, “Saturday Night Live”, (c. 1985)

Anything that, in happening, causes itself to happen again, happens again.

— Douglas Adams (2005)

The Curling Stone slides; and, having slid,
Passes me toward thee on this Icy Grid,
If what’s reached is passed for’ll Crystals amid,
Th’Stone Reaches thee in its Eternal Skid.

— Iraj Kalantari (2007)
writing as “Harak A’Myomy (12th century),
translated by Walt Friz De Gradde (1897)”

Proof by Induction
Induction is a method for proving universally quantified propositions—statements about all elements of
a (usually infinite) set. Induction is also the single most useful tool for reasoning about, developing,
and analyzing algorithms. These notes give several examples of inductive proofs, along with a standard
boilerplate and some motivation to justify (and help you remember) why induction works.

1 Prime Divisors: Proof by Smallest Counterexample

A divisor of a positive integer n is a positive integer p such that the ratio n/p is an integer. The integer 1
is a divisor of every positive integer (because n/1= n), and every integer is a divisor of itself (because
n/n = 1). A proper divisor of n is any divisor of n other than n itself. A positive integer is prime if it
has exactly two divisors, which must be 1 and itself; equivalently; a number is prime if and only if 1 is
its only proper divisor. A positive integer is composite if it has more than two divisors (or equivalently,
more than one proper divisor). The integer 1 is neither prime nor composite, because it has exactly one
divisor, namely itself.

Let’s prove our first theorem:

Theorem 1. Every integer greater than 1 has a prime divisor.

The very first thing that you should notice, after reading just one word of the theorem, is that this
theorem is universally quantified—it’s a statement about all the elements of a set, namely, the set of
positive integers larger than 1. If we were forced at gunpoint to write this sentence using fancy logic
notation, the first character would be the universal quantifier ∀, pronounced ‘for all’. Fortunately, that
won’t be necessary.
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There are only two ways to prove a universally quantified statement: directly or by contradiction.
Let’s say that again, louder: There are only two ways to prove a universally quantified statement:
directly or by contradiction. Here are the standard templates for these two methods, applied to
Theorem 1:

Direct proof: Let n be an arbitrary integer greater than 1.

. . . blah blah blah . . .
Thus, n has at least one prime divisor. �

Proof by contradiction: For the sake of argument, assume there is an integer greater
than 1 with no prime divisor.
Let n be an arbitrary integer greater than 1 with no prime divisor.

. . . blah blah blah . . .
But that’s just silly. Our assumption must be incorrect. �

The shaded boxes . . . blah blah blah . . . indicate missing proof details (which you have to fill in).
Most people find proofs by contradiction easier to discover than direct proofs, so let’s try that first.

Proof by contradiction: For the sake of argument, assume there is an integer greater
than 1 with no prime divisor.

Let n be an arbitrary integer greater than 1 with no prime divisor.
Since n is a divisor of n, and n has no prime divisors, n cannot be prime.
Thus, n must have at least one divisor d such that 1< d < n.

Let d be an arbitrary divisor of n such that 1< d < n.
Since n has no prime divisors, d cannot be prime.
Thus, d has at least one divisor d ′ such that 1< d ′ < d.

Let d ′ be an arbitrary divisor of d such that 1< d ′ < d.
Because d/d ′ is an integer, n/d ′ = (n/d) · (d/d ′) is also an integer.
Thus, d ′ is also a divisor of n.
Since n has no prime divisors, d ′ cannot be prime.
Thus, d ′ has at least one divisor d such that 1< d< d ′.

Let d be an arbitrary divisor of d ′ such that 1< d< d ′.
Because d ′/d is an integer, n/d = (n/d ′) · (d ′/d) is also an integer.
Thus, d is also a divisor of n.
Since n has no prime divisors, d cannot be prime.

. . . blah HELP! blah I’M STUCK IN AN INFINITE LOOP! blah . . .
But that’s just silly. Our assumption must be incorrect. �

We seem to be stuck in an infinite loop, looking at smaller and smaller divisors d > d ′ > d > · · · ,
none of which are prime. But this loop can’t really be infinite. There are only n− 1 positive integers
smaller than n, so the proof must end after at most n− 1 iterations. But how do we turn this observation
into a formal proof? We need a single, self-contained proof for all integers n; we’re not allowed to write
longer proofs for bigger integers. The trick is to jump directly to the smallest counterexample.
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Proof by smallest counterexample: For the sake of argument, assume that there is an
integer greater than 1 with no prime divisor.

Let n be the smallest integer greater than 1 with no prime divisor.
Since n is a divisor of n, and n has no prime divisors, n cannot be prime.
Thus, n has a divisor d such that 1< d < n.

Let d be a divisor of n such that 1< d < n.
Because n is the smallest counterexample, d has a prime divisor.

Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is also a divisor of n.
But this contradicts our assumption that n has no prime divisors!

So our assumption must be incorrect. �

Hooray, our first proof! We’re done!
Um. . . well. . . no, we’re definitely not done. That’s a first draft up there, not a final polished proof.

We don’t write proofs just to convince ourselves; proofs are primarily a tool to convince other people. (In
particular, ‘other people’ includes the people grading your homeworks and exams.) And while proofs by
contradiction are usually easier to write, direct proofs are almost always easier to read. So as a service to
our audience (and our grade), let’s transform our minimal-counterexample proof into a direct proof.

Let’s first rewrite the indirect proof slightly, to make the structure more apparent. First, we break the
assumption that n is the smallest counterexample into three simpler assumptions: (1) n is an integer
greater than 1; (2) n has no prime divisors; and (3) there are no smaller counterexamples. Second,
instead of dismissing the possibility than n is prime out of hand, we include an explicit case analysis.

Proof by smallest counterexample: Let n be an arbitrary integer greater than 1.
For the sake of argument, suppose n has no prime divisor.
Assume that every integer k such that 1 < k < n has a prime divisor.
There are two cases to consider: Either n is prime, or n is composite.
• Suppose n is prime.

Then n is a prime divisor of n.
• Suppose n is composite.

Then n has a divisor d such that 1< d < n.
Let d be a divisor of n such that 1< d < n.
Because no counterexample is smaller than n, d has a prime divisor.
Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is a prime divisor of n.

In each case, we conclude that n has a prime divisor.
But this contradicts our assumption that n has no prime divisors!
So our assumption must be incorrect. �

Now let’s look carefully at the structure of this proof. First, we assumed that the statement we want
to prove is false. Second, we proved that the statement we want to prove is true. Finally, we concluded
from the contradiction that our assumption that the statement we want to prove is false is incorrect, so
the statement we want to prove must be true.

But that’s just silly. Why do we need the first and third steps? After all, the second step is a proof all
by itself! Unfortunately, this redundant style of proof by contradiction is extremely common, even in
professional papers. Fortunately, it’s also very easy to avoid; just remove the first and third steps!
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Proof by induction: Let n be an arbitrary integer greater than 1.
Assume that every integer k such that 1 < k < n has a prime divisor.
There are two cases to consider: Either n is prime or n is composite.
• First, suppose n is prime.

Then n is a prime divisor of n.
• Now suppose n is composite.

Then n has a divisor d such that 1< d < n.
Let d be a divisor of n such that 1< d < n.
Because no counterexample is smaller than n, d has a prime divisor.
Let p be a prime divisor of d.
Because d/p is an integer, n/p = (n/d) · (d/p) is also an integer.
Thus, p is a prime divisor of n.

In both cases, we conclude that n has a prime divisor. �

This style of proof is called induction.1 The assumption that there are no counterexamples smaller
than n is called the induction hypothesis. The two cases of the proof have different names. The first
case, which we argue directly, is called the base case. The second case, which actually uses the induction
hypothesis, is called the inductive case. You may find it helpful to actually label the induction hypothesis,
the base case(s), and the inductive case(s) in your proof.

The following point cannot be emphasized enough: The only difference between a proof by induction
and a proof by smallest counterexample is the way we write down the argument. The essential structure
of the proofs are exactly the same. The core of our original indirect argument is a proof of the following
implication for all n:

n has no prime divisor =⇒ some number smaller than n has no prime divisor.

The core of our direct proof is the following logically equivalent implication:

every number smaller than n has a prime divisor =⇒ n has a prime divisor

The left side of this implication is just the induction hypothesis.
The proofs we’ve been playing with have been very careful and explicit; until you’re comfortable

writing your own proofs, you should be equally careful. A more mature proof-writer might express the
same proof more succinctly as follows:

Proof by induction: Let n be an arbitrary integer greater than 1. Assume that every
integer k such that 1 < k < n has a prime divisor. If n is prime, then n is a prime divisor
of n. On the other hand, if n is composite, then n has a proper divisor d. The induction
hypothesis implies that d has a prime divisor p. The integer p is also a divisor of n. �

A proof in this more succinct form is still worth full credit, provided the induction hypothesis is written
explicitly and the case analysis is obviously exhaustive.

A professional mathematician would write the proof even more tersely:

Proof: Induction. �

And you can write that tersely, too, when you’re a professional mathematician.

1Many authors use the high-falutin’ name the principle of mathematical induction, to distinguish it from inductive reasoning,
the informal process by which we conclude that pigs can’t whistle, horses can’t fly, and NP-hard problems cannot be solved
in polynomial time. We already know that every proof is mathematical (and arguably, all mathematics is proof), so as a
description of a proof technique, the adjective ‘mathematical’ is simply redundant.
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2 The Axiom of Induction

Why does this work? Well, let’s step back to the original proof by smallest counterexample. How do we
know that a smallest counterexample exists? This seems rather obvious, but in fact, it’s impossible to
prove without using the following seemingly trivial observation, called the Well-Ordering Principle:

Every non-empty set of positive integers has a smallest element.

Every set X of positive integers is the set of counterexamples to some proposition P(n) (specifically, the
proposition n 6∈ X ). Thus, the Well-Ordering Principle can be rewritten as follows:

If the proposition P(n) is false for some positive integer n,
then

the proposition (P(1)∧ P(2)∧ · · · ∧ P(n− 1)∧¬P(n)) is true for some positive integer n.

Equivalently, in English:

If some statement about positive integers has a counterexample,
then

that statement has a smallest counterexample.

We can write this implication in contrapositive form as follows:

If the proposition (P(1)∧ P(2)∧ · · · ∧ P(n− 1)∧¬P(n)) is false for every positive integer n,
then

the proposition P(n) is true for every positive integer n.

Finally, let’s rewrite the first half of this statement in a logically equivalent form, by replacing ¬(p ∧¬q)
with p→ q.

If the implication (P(1)∧ P(2)∧ · · · ∧ P(n− 1))→ P(n) is true for every positive integer n,
then

the proposition P(n) is true for every positive integer n.

This formulation is usually called the Axiom of Induction. In a proof by induction that P(n) holds for
all n, the conjunction (P(1)∧ P(2)∧ · · · ∧ P(n− 1)) is the inductive hypothesis.

A proof by induction for the proposition “P(n) for every positive integer n” is nothing but a
direct proof of the more complex proposition “(P(1)∧ P(2)∧ · · · ∧ P(n− 1)) → P(n) for every posi-
tive integer n”. Because it’s a direct proof, it must start by considering an arbitrary positive integer,
which we might as well call n. Then, to prove the implication, we explicitly assume the hypothesis
(P(1)∧ P(2)∧ · · · ∧ P(n− 1)) and then prove the conclusion P(n) for that particular value of n. The
proof almost always breaks down into two or more cases, each of which may or may not actually use the
inductive hypothesis.

Here is the boilerplate for every induction proof. Read it. Learn it. Use it.
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Theorem: P(n) for every positive integer n.

Proof by induction: Let n be an arbitrary positive integer.

Assume inductively that P(k) is true for every positive integer k < n.

There are several cases to consider:

• Suppose n is . . . blah blah blah . . .
Then P(n) is true.

• Suppose n is . . . blah blah blah . . .

The inductive hypothesis implies that . . . blah blah blah . . .
Thus, P(n) is true.

In each case, we conclude that P(n) is true. �

Some textbooks distinguish between several different types of induction: ‘regular’ induction versus
‘strong’ induction versus ‘complete’ induction versus ‘structural’ induction versus ‘transfinite’ induction
versus ‘Noetherian’ induction. Distinguishing between these different types of induction is pointless
hairsplitting; I won’t even define them. Every ‘different type’ of induction proof is provably equivalent
to a proof by smallest counterexample. (Later we will consider inductive proofs of statements about
partially ordered sets other than the positive integers, for which ‘smallest’ has a different meaning, but
this difference will prove to be inconsequential.)

3 Stamps and Recursion

Let’s move on to a completely different example.

Theorem 2. Given an unlimited supply of 5-cent stamps and 7-cent stamps, we can make any amount
of postage larger than 23 cents.

We could prove this by contradiction, using a smallest-counterexample argument, but let’s aim for
a direct proof by induction this time. We start by writing down the induction boilerplate, using the
standard induction hypothesis: There is no counterexample smaller than n.

Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23< k < n, we can make k cents in postage.

. . . blah blah blah . . .
Thus, we can make n cents in postage. �

How do we fill in the details? One approach is to think about what you would actually do if you really
had to make n cents in postage. For example, you might start with a 5-cent stamp, and then try to make
n− 5 cents in postage. The inductive hypothesis says you can make any amount of postage bigger than
23 cents and less than n cents. So if n− 5> 23, then you already know that you can make n− 5 cents in
postage! (You don’t know how to make n− 5 cents in postage, but so what?)

Let’s write this observation into our proof as two separate cases: either n> 28 (where our approach
works) or n≤ 28 (where we don’t know what to do yet).
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Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23< k < n, we can make k cents in postage.
There are two cases to consider: Either n> 28 or n≤ 28.
• Suppose n> 28.

Then 23< n− 5< n.
Thus, the induction hypothesis implies that we can make n− 5 cents in postage.
Adding one more 5-cent stamp gives us n cents in postage.

• Now suppose n≤ 28.

. . . blah blah blah . . .
In both cases, we can make n cents in postage. �

What do we do in the second case? Fortunately, this case considers only five integers: 24, 25, 26,
27, and 28. There might be a clever way to solve all five cases at once, but why bother? They’re small
enough that we can find a solution by brute force in less than a minute. To make the proof more
readable, I’ll unfold the nested cases and list them in increasing order.

Proof by induction: Let n be an arbitrary integer greater than 23.
Assume that for any integer k such that 23< k < n, we can make k cents in postage.
There are six cases to consider: n= 24, n= 25, n= 26, n= 27, n= 28, and n> 28.
• 24= 7+ 7+ 5+ 5
• 25= 5+ 5+ 5+ 5+ 5
• 26= 7+ 7+ 7+ 5
• 27= 7+ 5+ 5+ 5+ 5
• 28= 7+ 7+ 7+ 7
• Suppose n> 28.

Then 23< n− 5< n.
Thus, the induction hypothesis implies that we can make n− 5 cents in postage.
Adding one more 5-cent stamp gives us n cents in postage.

In all cases, we can make n cents in postage. �

Voilà! An induction proof! More importantly, we now have a recipe for discovering induction proofs.

1. Write down the boilerplate. Write down the universal invocation (‘Let n be an arbitrary. . . ’),
the induction hypothesis, and the conclusion, with enough blank space for the remaining details.
Don’t be clever. Don’t even think. Just write. This is the easy part. To emphasize the common
structure, the boilerplate will be indicated in green for the rest of this handout.

2. Think big. Don’t think how to solve the problem all the way down to the ground; you’ll only make
yourself dizzy. Don’t think about piddly little numbers like 1 or 5 or 10100. Instead, think about
how to reduce the proof about some absfoluckingutely ginormous value of n to a proof about some
other number(s) smaller than n. This is the hard part.

3. Look for holes. Look for cases where your inductive argument breaks down. Solve those cases
directly. Don’t be clever here; be stupid but thorough.

4. Rewrite everything. Your first proof is a rough draft. Rewrite the proof so that your argument is
easier for your (unknown?) reader to follow.

The cases in an inductive proof always fall into two categories. Any case that uses the inductive
hypothesis is called an inductive case. Any case that does not use the inductive hypothesis is called a
base case. Typically, but not always, base cases consider a few small values of n, and the inductive cases
consider everything else. Induction proofs are usually clearer if we present the base cases first, but I find
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it much easier to discover the inductive cases first. In other words, I recommend writing induction proofs
backwards.

Well-written induction proofs very closely resemble well-written recursive programs. We computer
scientists use induction primarily to reason about recursion, so maintaining this resemblance is extremely
useful—we only have to keep one mental pattern, called ‘induction’ when we’re writing proofs and
‘recursion’ when we’re writing code. Consider the following C and Scheme programs for making n cents
in postage:

void postage(int n)
{

assert(n>23);
switch ($n$)
{

case 24: printf("7+7+5+5"); break;
case 25: printf("5+5+5+5+5"); break;
case 26: printf("7+7+7+5"); break;
case 27: printf("7+5+5+5+5"); break;
case 28: printf("7+7+7+7"); break;
default:

postage(n-5);
printf("+5");

}
}

(define (postage n)
(cond ((= n 24) (5 5 7 7))

((= n 25) (5 5 5 5 5))
((= n 26) (5 7 7 7))
((= n 27) (5 5 5 5 7))
((= n 28) (7 7 7 7))
((> n 28) (cons 5 (postage (- n 5))))))

The C program begins by declaring the input parameter (“Let n be an arbitrary integer. . . ") and
asserting its range (“. . . greater than 23."). (Scheme programs don’t have type declarations.) In both
languages, the code branches into six cases: five that are solved directly, plus one that is handled
by invoking the inductive hypothesis recursively.

4 More on Prime Divisors

Before we move on to different examples, let’s prove another fact about prime numbers:

Theorem 3. Every positive integer is a product of prime numbers.

First, let’s write down the boilerplate. Hey! I saw that! You were thinking, weren’t you? Stop that
this instant! Don’t make me turn the car around. First we write down the boilerplate.

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are some cases to consider:

. . . blah blah blah . . .
Thus, n is a product of prime numbers. �
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Now let’s think about how you would actually factor a positive integer n into primes. There are
a couple of different options here. One possibility is to find a prime divisor p of n, as guaranteed by
Theorem 1, and recursively factor the integer n/p. This argument works as long as n ≥ 2, but what
about n= 1? The answer is simple: 1 is the product of the empty set of primes. What else could it be?

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are two cases to consider: either n= 1 or n≥ 2.

• If n = 1, then n is the product of the elements of the empty set, each of which is
prime, green, sparkly, vanilla, and hemophagic.

• Suppose n > 1. Let p be a prime divisor of n, as guaranteed by Theorem 2. The
inductive hypothesis implies that the positive integer n/p is a product of primes,
and clearly n= (n/p) · p.

In both cases, n is a product of prime numbers. �

But an even simpler method is to factor n into any two proper divisors, and recursively handle them
both. This method works as long as n is composite, since otherwise there is no way to factor n into
smaller integers. Thus, we need to consider prime numbers separately, as well as the special case 1.

Proof by induction: Let n be an arbitrary positive integer.

Assume that any positive integer k < n is a product of prime numbers.

There are three cases to consider: either n= 1, n is prime, or n is composite.

• If n = 1, then n is the product of the elements of the empty set, each of which is
prime, red, broody, chocolate, and lycanthropic.

• If n is prime, then n is the product of one prime number, namely n.

• Suppose n is composite. Let d be any proper divisor of n (guaranteed by the
definition of ‘composite’), and let m = n/d. Since both d and m are positive integers
smaller than n, the inductive hypothesis implies that d and m are both products of
prime numbers. We clearly have n= d ·m.

In both cases, n is a product of prime numbers. �

5 Summations

Here’s an easy one.

Theorem 4.
n
∑

i=0

3i =
3n+1− 1

2
for every non-negative integer n.

First let’s write down the induction boilerplate, which empty space for the details we’ll fill in later.

Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k
∑

i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are some number of cases to consider:

. . . blah blah blah . . .

We conclude that

n
∑

i=0

3i =
3n+1 − 1

2
. �
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Now imagine you are part of an infinitely long assembly line of mathematical provers, each assigned
to a particular non-negative integer. Your task is to prove this theorem for the integer 8675310. The
regulations of the Mathematical Provers Union require you not to think about any other integer but
your own. The assembly line starts with the Senior Master Prover, who proves the theorem for the case
n= 0. Next is the Assistant Senior Master Prover, who proves the theorem for n= 1. After him is the
Assistant Assistant Senior Master Prover, who proves the theorem for n = 2. Then the Assistant Assistant
Assistant Senior Master Prover proves the theorem for n = 3. As the work proceeds, you start to get
more and more bored. You attempt strike up a conversation with Jenny, the prover to your left, but
she ignores you, preferring to focus on the proof. Eventually, you fall into a deep, dreamless sleep. An
undetermined time later, Jenny wakes you up by shouting, “Hey, doofus! It’s your turn!” As you look
around, bleary-eyed, you realize that Jenny and everyone to your left has finished their proofs, and that
everyone is waiting for you to finish yours. What do you do?

What you do, after wiping the drool off your chin, is stop and think for a moment about what you’re
trying to prove. What does that

∑

notation actually mean? Intuitively, we can expand the notation as
follows:

8675310
∑

i=0

3i = 30+ 31+ · · ·+ 38675309+ 38675310.

Notice that this expression also contains the summation that Jenny just finished proving something
about:

8675309
∑

i=0

3i = 30+ 31+ · · ·+ 38675308+ 38675309.

Putting these two expressions together gives us the following identity:

8675310
∑

i=0

3i =
8675309
∑

i=0

3i + 38675310

In fact, this recursive identity is the definition of
∑

. Jenny just proved that the summation on the right
is equal to (38675310− 1)/2, so we can plug that into the right side of our equation:

8675310
∑

i=0

3i =
8675309
∑

i=0

3i + 38675310 =
38675310− 1

2
+ 38675310.

And it’s all downhill from here. After a little bit of algebra, you simplify the right side of this equation to
(38675311− 1)/2, wake up the prover to your right, and start planning your well-earned vacation.

Let’s insert this argument into our boilerplate, only using a generic ‘big’ integer n instead of the
specific integer 8675310:
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Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k
∑

i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are two cases to consider: Either n is big or n is small .

• If n is big , then

n
∑

i=0

3i=
n−1
∑

i=0

3i + 3n [definition of
∑

]

=
3n − 1

2
+ 3n [induction hypothesis, with k = n− 1]

=
3n+1 − 1

2
[algebra]

• On the other hand, if n is small , then . . . blah blah blah . . .

In both cases, we conclude that

n
∑

i=0

3i =
3n+1 − 1

2
. �

Now, how big is ‘big’, and what do we do when n is ‘small’? To answer the first question, let’s look at
where our existing inductive argument breaks down. In order to apply the induction hypothesis when
k = n− 1, the integer n− 1 must be non-negative; equivalently, n must be positive. But that’s the only
assumption we need: The only case we missed is n = 0. Fortunately, this case is easy to handle directly.

Proof by induction: Let n be an arbitrary non-negative integer.

Assume inductively that

k
∑

i=0

3i =
3k+1 − 1

2
for every non-negative integer k < n.

There are two cases to consider: Either n= 0 or n≥ 1.

• If n= 0, then

n
∑

i=0

3i = 30 = 1, and
3n+1 − 1

2
=

31 − 1

2
= 1.

• On the other hand, if n≥ 1, then

n
∑

i=0

3i=
n−1
∑

i=0

3i + 3n [definition of
∑

]

=
3n − 1

2
+ 3n [induction hypothesis, with k = n− 1]

=
3n+1 − 1

2
[algebra]

In both cases, we conclude that

n
∑

i=0

3i =
3n+1 − 1

2
. �

Here is the same proof, written more tersely; the non-standard symbol
IH
== indicates the use of the

induction hypothesis.

11
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Proof by induction: Let n be an arbitrary non-negative integer, and assume inductively

that
∑k

i=0 3i = (3k+1 − 1)/2 for every non-negative integer k < n. The base case n= 0 is
trivial, and for any n≥ 1, we have

n
∑

i=0

3i =
n−1
∑

i=0

3i + 3n IH
==

3n − 1

2
+ 3n =

3n+1 − 1

2
.

�

This is not the only way to prove this theorem by induction; here is another:

Proof by induction: Let n be an arbitrary non-negative integer, and assume inductively

that
∑k

i=0 3i = (3k+1 − 1)/2 for every non-negative integer k < n. The base case n= 0 is
trivial, and for any n≥ 1, we have

n
∑

i=0

3i = 30 +
n
∑

i=1

3i = 30 + 3 ·
n−1
∑

i=0

3i IH
== 30 + 3 ·

3n − 1

2
=

3n+1 − 1

2
.

�

In the remainder of these notes, I’ll give several more examples of induction proofs. In some cases, I
give multiple proofs for the same theorem. Unlike the earlier examples, I will not describe the thought
process that lead to the proof; in each case, I followed the basic outline on page 7.

6 Tiling with Triominos

The next theorem is about tiling a square checkerboard with triominos. A triomino is a shape composed
of three squares meeting in an L-shape. Our goal is to cover as much of a 2n× 2n grid with triominos
as possible, without any two triominos overlapping, and with all triominos inside the square. We can’t
cover every square in the grid—the number of squares is 4n, which is not a multiple of 3—but we can
cover all but one square. In fact, as the next theorem shows, we can choose any square to be the one we
don’t want to cover.

Almost tiling a 16× 16 checkerboard with triominos.

Theorem 5. For any non-negative integer n, the 2n× 2n checkerboard with any square removed can be
tiled using L-shaped triominos.

Here are two different inductive proofs for this theorem, one ‘top down’, the other ‘bottom up’.

12
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Proof by top-down induction: Let n be an arbitrary non-negative integer. Assume that
for any non-negative integer k < n, the 2k × 2k grid with any square removed can be tiled
using triominos. There are two cases to consider: Either n= 0 or n≥ 1.

• The 20 × 20 grid has a single square, so removing one square leaves nothing, which
we can tile with zero triominos.

• Suppose n ≥ 1. In this case, the 2n × 2n grid can be divided into four smaller
2n−1 × 2n−1 grids. Without loss of generality, suppose the deleted square is in the
upper right quarter. With a single L-shaped triomino at the center of the board, we
can cover one square in each of the other three quadrants. The induction hypothesis
implies that we can tile each of the quadrants, minus one square.

In both cases, we conclude that the 2n×2n grid with any square removed can be tiled with
triominos. �

Top-down inductive proof of Theorem 4.

Proof by bottom-up induction: Let n be an arbitrary non-negative integer. Assume
that for any non-negative integer k < n, the 2k × 2k grid with any square removed can be
tiled using triominos. There are two cases to consider: Either n= 0 or n≥ 1.

• The 20 × 20 grid has a single square, so removing one square leaves nothing, which
we can tile with zero triominos.

• Suppose n≥ 1. Then by clustering the squares into 2× 2 blocks, we can transform
any 2n × 2n grid into a 2n−1 × 2n−1 grid. Suppose square (i, j) has been removed
from the 2n×2n grid. The induction hypothesis implies that the 2n−1×2n−1 grid with
block (bi/2c, b j/2c) removed can be tiled with double-size triominos. Each double-
size triomono can be tiled with four smaller triominos, and block (bi/2c, b j/2c) with
square (i, j) removed is another triomino.

In both cases, we conclude that the 2n×2n grid with any square removed can be tiled with
triominos. �

Second proof of Theorem 4.

7 Binary Numbers Exist

Theorem 6. Every non-negative integer can be written as the sum of distinct powers of 2.

13
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Intuitively, this theorem states that every number can be represented in binary. (That’s not a proof,
by the way; it’s just a restatement of the theorem.) I’ll present four distinct inductive proofs for this
theorem. The first two are standard, by-the-book induction proofs.

Proof by top-down induction: Let n be an arbitrary non-negative integer. Assume that
any non-negative integer less than n can be written as the sum of distinct powers of 2.
There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and sum
to zero.

• Suppose n ≥ 1. Let k be the largest integer such that 2k ≤ n, and let m = n− 2k.
Observe that m < 2k+1 − 2k = 2k. Because 0 ≤ m < n, the inductive hypothesis
implies that m can be written as the sum of distinct powers of 2. Moreover, in the
summation for m, each power of 2 is at most m, and therefore less than 2k. Thus,
m+ 2k is the sum of distinct powers of 2.

In either case, we conclude that n can be written as the sum of distinct powers of 2. �

Proof by bottom-up induction: Let n be an arbitrary non-negative integer. Assume
that any non-negative integer less than n can be written as the sum of distinct powers of 2.
There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and sum
to zero.

• Suppose n ≥ 1, and let m = bn/2c. Because 0 ≤ m < n, the inductive hypothesis
implies that m can be written as the sum of distinct powers of 2. Thus, 2m can also
be written as the sum of distinct powers of 2, each of which is greater than 20. If n
is even, then n = 2m and we are done; otherwise, n = 2m+ 20 is the the sum of
distinct powers of 2.

In either case, we conclude that n can be written as the sum of distinct powers of 2. �

The third proof deviates slightly from the induction boilerplate. At the top level, this proof doesn’t
actually use induction at all! However, a key step requires its own (straightforward) inductive proof.

Proof by algorithm: Let n be an arbitrary non-negative integer. Let S be a multiset
containing n copies of 20. Modify S by running the following algorithm:

while S has more than one copy of any element 2i

Remove two copies of 2i from S
Insert one copy of 2i+1 into S

Each iteration of this algorithm reduces the cardinality of S by 1, so the algorithm must
eventually halt. When the algorithm halts, the elements of S are distinct. We claim that
just after each iteration of the while loop, the elements of S sum to n.

Proof by induction: Consider an arbitrary iteration of the loop. Assume induc-
tively that just after each previous iteration, the elements of S sum to n. Before
any iterations of the loop, the elements of S sum to n by definition. The induction
hypothesis implies that just before the current iteration begins, the elements
of S sum to n. The loop replaces two copies of some number 2i with their sum
2i+1, leaving the total sum of S unchanged. Thus, when the iteration ends, the
elements of S sum to n. �

Thus, when the algorithm halts, the elements of S are distinct powers of 2 that sum to n.
We conclude that n can be written as the sum of distinct powers of 2. �
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The fourth proof uses so-called ‘weak’ induction, where the inductive hypothesis can only be applied
at n− 1. Not surprisingly, tying all but one hand behind our backs makes the resulting proof longer,
more complicated, and harder to read. It doesn’t help that the algorithm used in the proof is overly
specific. Nevertheless, this is the first approach that occurs to most students who have not truly accepted
the Recursion Fairy into their hearts.

Proof by baby-step induction: Let n be an arbitrary non-negative integer. Assume that
any non-negative integer less than n can be written as the sum of distinct powers of 2.
There are two cases to consider: Either n= 0 or n≥ 1.

• The base case n= 0 is trivial—the elements of the empty set are distinct and sum
to zero.

• Suppose n ≥ 1. The inductive hypothesis implies that n− 1 can be written as the
sum of distinct powers of 2. Thus, n can be written as the sum of powers of 2, which
are distinct except possibly for two copies of 20. Let S be this multiset of powers
of 2.

Now consider the following algorithm:

i← 0
while S has more than one copy of 2i

Remove two copies of 2i from S
Insert one copy of 2i+1 into S
i← i+ 1

Each iteration of this algorithm reduces the cardinality of S by 1, so the algorithm
must eventually halt. We claim that for every non-negative integer i, the follow-
ing invariants are satisfied after the ith iteration of the while loop (or before the
algorithm starts if i = 0):

– The elements of S sum to n.

Proof by induction: Let i be an arbitrary non-negative integer. Assume that
for any non-negative integer j ≤ i, after the jth iteration of the while loop, the
elements of S sum to n. If i = 0, the elements of S sum to n by definition of S.
Otherwise, the induction hypothesis implies that just before the ith iteration,
the elements of S sum to n; the ith iteration replaces two copies of 2i with 2i+1,
leaving the sum unchanged. �

– The elements in S are distinct, except possibly for two copies of 2i .

Proof by induction: Let i be an arbitrary non-negative integer. Assume that
for any non-negative integer j ≤ i, after the jth iteration of the while loop, the
elements of S are distinct except possibly for two copies of 2 j . If i = 0, the
invariant holds by definition of S. So suppose i > 0. The induction hypothesis
implies that just before the ith iteration, the elements of S are distinct except
possibly for two copies of 2i . If there are two copies of 2i , the algorithm replaces
them both with 2i+1, and the invariant is established; otherwise, the algorithm
halts, and the invariant is again established. �

The second invariant implies that when the algorithm halts, the elements of S are
distinct.

In either case, we conclude that n can be written as the sum of distinct powers of 2. �

Repeat after me: “Doctor! Doctor! It hurts when I do this!”
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8 Irrational Numbers Exist

Theorem 7.
p

2 is irrational.

Proof: I will prove that p2 6= 2q2 (and thus p/q 6=
p

2) for all positive integers p and q.

Let p and q be arbitrary positive integers. Assume that for any positive integers i < p
and j < q, we have i2 6= 2 j2. Let i = bp/2c and j = bq/2c. There are three cases to
consider:

• Suppose p is odd. Then p2 = (2i+ 1)2 = 4i2 + 4i+ 1 is odd, but 2q2 is even.

• Suppose p is even and q is odd. Then p2 = 4i2 is divisible by 4, but 2q2 =
2(2 j+ 1)2 = 4(2 j2 + 2 j) + 2 is not divisible by 4.

• Finally, suppose p and q are both even. The induction hypothesis implies that
i2 6= 2 j2. Thus, p2 = 4i2 6= 8 j2 = 2q2.

In every case, we conclude that p2 6= 2q2. �

This proof is usually presented as a proof by infinite descent, which is just another form of proof by
smallest counterexample. Notice that the induction hypothesis assumed that both p and q were as small
as possible. Notice also that the ‘base cases’ included every pair of integers p and q where at least one of
the integers is odd.

9 Fibonacci Parity

The Fibonacci numbers 0,1, 1,2, 3,5, 8,13, 21,34, 55,89, 144, . . . are recursively defined as follows:

Fn =







0 if n= 0

1 if n= 1

Fn−1+ Fn−2 if n≥ 2

Theorem 8. For all non-negative integers n, Fn is even if and only if n is divisible by 3.

Proof: Let n be an arbitrary non-negative integer. Assume that for all non-negative
integers k < n, Fk is even if and only if n is divisible by 3. There are three cases to consider:
n= 0, n= 1, and n≥ 2.

• If n= 0, then n is divisible by 3, and Fn = 0 is even.

• If n= 1, then n is not divisible by 3, and Fn = 1 is odd.

• If n≥ 2, there are two subcases to consider: Either n is divisible by 3, or it isn’t.

– Suppose n is divisible by 3. Then neither n−1 nor n−2 is divisible by 3. Thus,
the inductive hypothesis implies that both Fn−1 and Fn−2 are odd. So Fn is the
sum of two odd numbers, and is therefore even.

– Suppose n is not divisible by 3. Then exactly one of the numbers n− 1 and
n− 2 is divisible by 3. Thus, the inductive hypothesis implies that exactly one
of the numbers Fn−1 and Fn−2 is even, and the other is odd. So Fn is the sum
of an even number and an odd number, and is therefore odd.

In all cases, Fn is even if and only if n is divisible by 3. �
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10 Recursive Functions

Theorem 9. Suppose the function F : N → N is defined recursively by setting F(0) = 0 and F(n) =
1+ F(bn/2c) for every positive integer n. Then for every positive integer n, we have F(n) = 1+ blog2 nc.

Proof: Let n be an arbitrary positive integer. Assume that F(k) = 1+ blog2 kc for every
positive integer k < n. There are two cases to consider: Either n= 1 or n≥ 2.

• Suppose n = 1. Then F(n) = F(1) = 1+ F(b1/2c) = 1+ F(0) = 1 and 1+ blog2 nc =
1+ blog2 1c= 1+ b0c= 1.

• Suppose n ≥ 2. Because 1 ≤ bn/2c < n, the induction hypothesis implies that
F(bn/2c) = 1+ blog2bn/2cc. The definition of F(n) now implies that F(n) = 1+
F(bn/2c) = 2+ blog2bn/2cc.
Now there are two subcases to consider: n is either even or odd.

– If n is even, then bn/2c= n/2, which implies

F(n) = 2+ blog2bn/2cc
= 2+ blog2(n/2)c
= 2+ b(log2 n)− 1c
= 2+ blog2 nc − 1

= 1+ blog2 nc.

– If n is odd, then bn/2c= (n− 1)/2, which implies

F(n) = 2+ blog2bn/2cc
= 2+ blog2((n− 1)/2)c
= 1+ blog2(n− 1)c
= 1+ blog2 nc

by the algebra in the even case. Because n > 1 and n is odd, n cannot be a
power of 2; thus, blog2 nc= blog2(n− 1)c.

In all cases, we conclude that F(n) = 1+ blog2 nc. �

11 Trees

Recall that a tree is a connected undirected graph with no cycles. A subtree of a tree T is a connected
subgraph of T ; a proper subtree is any tree except T itself.

Theorem 10. In every tree, the number of vertices is one more than the number of edges.

This one is actually pretty easy to prove directly from the definition of ‘tree’: a connected acyclic graph.

Proof: Let T be an arbitrary tree. Choose an arbitrary vertex v of T to be the root, and
direct every edge of T outward from v. Because T is connected, every node except v
has at least one edge directed into it. Because T is acyclic, every node has at most one
edge directed into it, and no edge is directed into v. Thus, for every node x 6= v, there is
exactly one edge directed into x . We conclude that the number of edges is one less than
the number of nodes. �
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But we can prove this theorem by induction as well, in several different ways. Each inductive proof
is structured around a different recursive definition of ‘tree’. First, a tree is either a single node, or two
trees joined by an edge.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the number of
vertices is one more than the number of edges. There are two cases to consider: Either T
has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Suppose T has more than one vertex. Because T is connected, every pair of vertices
is joined by a path. Thus, T must contain at least one edge. Let e be an arbitrary
edge of T , and consider the graph T \ e obtained by deleting e from T .

Because T is acyclic, there is no path in T \ e between the endpoints of e. Thus, T
has at least two connected components. On the other hand, because T is connected,
T \ e has at most two connected components. Thus, T \ e has exactly two connected
components; call them A and B.

Because T is acyclic, subgraphs A and B are also acyclic. Thus, A and B are subtrees
of T , and therefore the induction hypothesis implies that |E(A)| = |V (A)| − 1 and
|E(B)|= |V (B)| − 1.

Because A and B do not share any vertices or edges, we have |V (T)| = |V (A)|+
|V (B)| and |E(T )|= |E(A)|+ |E(B)|+ 1.

Simple algebra now implies that |E(T )|= |V (T )| − 1.

In both cases, we conclude that the number of vertices in T is one more than the number
of edges in T . �

Second, a tree is a single node connected by edges to a finite set of trees.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the number of
vertices is one more than the number of edges. There are two cases to consider: Either T
has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Suppose T has more than one vertex. Let v be an arbitrary vertex of T , and let d be
the degree of v. Delete v and all its incident edges from T to obtain a new graph G.
This graph has exactly d connected components; call them G1, G2, . . . , Gd . Because
T is acyclic, every subgraph of T is acyclic. Thus, every subgraph Gi is a proper
subtree of G. So the induction hypothesis implies that |E(Gi)| = |V (Gi)|−1 for each
i. We conclude that

|E(T )| = d +
d
∑

i=1

|E(Gi)| = d +
d
∑

i=1

(|V (Gi)| − 1) =
d
∑

i=1

|V (Gi)| = |V (T )| − 1.

In both cases, we conclude that the number of vertices in T is one more than the number
of edges in T . �

But you should never attempt to argue like this:

Not a Proof: The theorem is clearly true for the 1-node tree. So let T be an arbitrary tree
with at least two nodes. Assume inductively that the number of vertices in T is one more
than the number of edges in T . Suppose we add one more leaf to T to get a new tree T ′.
This new tree has one more vertex than T and one more edge than T . Thus, the number
of vertices in T ′ is one more than the number of edges in T ′. �
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This is not a proof. Every sentence is true, and the connecting logic is correct, but it does not imply
the theorem, because it doesn’t explicitly consider all possible trees. Why should the reader believe that
their favorite tree can be recursively constructed by adding leaves to a 1-node tree? It’s true, of course,
but that argument doesn’t prove it. Remember: There are only two ways to prove any universally
quantified statement: Directly (“Let T be an arbitrary tree. . . ") or by contradiction (“Suppose some
tree T doesn’t. . . ").

Here is a correct inductive proof using the same underlying idea. In this proof, I don’t have to prove
that the proof considers arbitrary trees; it says so right there on the first line! As usual, the proof very
strongly resembles a recursive algorithm, including a subroutine to find a leaf.

Proof: Let T be an arbitrary tree. Assume that in any proper subtree of T , the number of
vertices is one more than the number of edges. There are two cases to consider: Either T
has one vertex, or T has more than one vertex.

• If T has one vertex, then it has no edges.

• Otherwise, T must have at least one vertex of degree 1, otherwise known as a leaf.

Proof: Consider a walk through the graph T that starts at an arbitrary
vertex and continues as long as possible without repeating any edge.
The walk can never visit the same vertex more than once, because T is
acyclic. Whenever the walk visits a vertex of degree at least 2, it can
continue further, because that vertex has at least one unvisited edge.
But the walk must eventually end, because T is finite. Thus, the walk
must eventually reach a vertex of degree 1. �

Let ` be an arbitrary leaf of T , and let T ′ be the tree obtained by deleting ` from T .
Then we have the identity

|E(T )| = |E(T ′)|+ 1 = |V (T ′)| = |V (T )| − 1,

where the first and third equalities follow from the definition of T ′, and the second
equality follows from the inductive hypothesis.

In both cases, we conclude that the number of vertices in T is one more than the number
of edges in T . �

12 Strings

Recall that a string is any finite sequence of symbols. More formally, a string is either empty (which we
write ε) or a single symbol a followed by a string w (which we write a ·w). By convention, when we
write strings, we suppress the dots between symbols and the final ε; for example, string is shorthand for
the more formal s · t · r · i · n · g · ε (or the even more formal s · (t · (r · (i · (n · (g · ε)))))).

For any strings x and y , let x • y denote the concatenation of x and y , and let reverse(x) denote the
reversal of x . For example, now • here= nowhere and reverse(stop) = pots. Formally, we define

x • y :=

(

y if x = ε
a · (w • y) if x = a ·w

reverse(x) :=

(

ε if x = ε
reverse(w) • a if x = a ·w

Theorem 11. For all strings x , we have x • ε = x .
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Proof: Let x be an arbitrary strings. Assume for any proper substring w of x that w•ε = w.
There are two cases to consider: Either x is empty or not.

• If x = ε, then x • ε = ε • ε = ε (by definition of •).

• If x 6= ε, then x = a ·w for some symbol a and some string w, and therefore

x • ε = (a ·w) • ε
= a · (w • ε) [definition of •]
= a ·w [induction hypothesis]

= x

In both cases, we conclude that x • ε = x . �

Theorem 12. For all strings x , y , and z, we have (x • y) • z = x • (y • z).

Proof: Let x , y, and z be arbitrary strings. Assume for any proper substring w of x that
(w • y) • z = w • (y • z). There are two cases to consider: Either x is empty or not.

• If x = ε, then

(x • y) • z = (ε • y) • z

= y • z [definition of •]
= ε • (y • z). [definition of •]
= x • (y • z)

• If x 6= ε, then x = a ·w for some symbol a and some string w, and therefore

(x • y) • z = ((a ·w) • y) • z

= (a · (w • y)) • z [definition of •]
= a · ((w • y) • z) [definition of •]
= a · (w • (y • z)) [induction hypothesis]

= (a ·w) • (y • z) [definition of •]
= x • (y • z)

In both cases, we conclude that (x • y) • z = x • (y • z). �

Theorem 13. For all strings x and y , we have reverse(x • y) = reverse(y) • reverse(x).
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Proof: Let x and y be arbitrary strings. Assume for any proper substring w of x that
reverse(w · y) = reverse(y) • reverse(w). There are two cases to consider: Either x is
empty or not.

• If x = ε, then reverse(x) = ε by definition, so

reverse(x • y) = reverse(ε • y)
= reverse(y) [definition of •]
= reverse(y) • ε [Theorem 11]

= reverse(y) • reverse(x)

• Suppose x 6= ε. Then x = a ·w, for some symbol a and some string w, and therefore

reverse(x • y) = reverse((a ·w) • y)
= reverse(a · (w • y)) [Theorem 12]

= reverse(w • y) • a [definition of reverse()]
= reverse(y) • (reverse(w) • a) [induction hypothesis]

= reverse(y) • reverse(a ·w). [definition of reverse()]
= reverse(y) • reverse(x).

In both cases, we conclude that reverse(x · y) = reverse(y) · reverse(x). �

Theorem 14. For all strings x , we have reverse(reverse(x)) = x .

Proof: Let x be an arbitrary string. Assume for any proper substring w of x that
reverse(reverse(w)) = w. There are two cases to consider: Either x is empty or not.

• If x = ε, then reverse(reverse(x)) = reverse(reverse(ε)) = reverse(ε) = ε = x .

• Suppose x 6= ε. Then x = a ·w, for some symbol a and some string w, and therefore

reverse(reverse(x)) = reverse(reverse(a ·w))
= reverse(reverse(w) • a) [definition of reverse()]
= a • reverse(reverse(w)) [Theorem 13]

= a •w [induction hypothesis]

= (a · ε) •w [definition of 1-symbol string]

= a · (ε •w) [definition of •]
= a ·w [definition of •]
= x

In both cases, we conclude that reverse(reverse(x)) = x . �

13 Regular Languages

Theorem 15. Every regular language is accepted by a non-deterministic finite automaton.
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Proof: In fact, we will show something stronger: Every regular language is accepted by
an NFA with exactly one accepting state.

Let R be an arbitrary regular expression over the finite alphabet Σ. Assume that for any
sub-expression S of R, the corresponding regular language is accepted by an NFA with one
accepting state, denoted S . There are six cases to consider—three base cases and
three recursive cases—mirroring the recursive definition of a regular expression.

• If R=∅, then L(R) =∅ is accepted by an NFA with no transitions: .

• If R= ε, then L(R) = {ε} is accepted by the NFA ε .

• If R= a for some character a ∈ Σ, then L(R) = {a} is accepted by the NFA a .

• Suppose R= ST for some regular expressions S and T . The inductive hypothesis
implies that S and T are accepted by NFAs S and T , respectively. Then

L(T ) = {uv | u ∈ L(S), v ∈ L(T )} is accepted by the NFA S T
ε

.

• Suppose R = S + T for some regular expressions S and T . The inductive hypothesis
implies that S and T are accepted by NFAs S and T , respectively. Then

L(R) = L(S)∪ L(T ) is accepted by the NFA
S

T

ε

ε

ε

ε
.

• Finally, suppose R = S∗ for some regular expression S. The inductive hypothesis
implies that S is accepted by an NFA S . Then the language L(R) = L(S)∗ is

accepted by the NFA S

ε

ε

ε ε
.

In every case, L(x) is accepted by an NFA with one accepting state. �

Exercises

1. Prove that given an unlimited supply of 6-cent coins, 10-cent coins, and 15-cent coins, one can
make any amount of change larger than 29 cents.

2. Prove that
n
∑

i=0

r i =
1− rn+1

1− r
for every non-negative integer n and every real number r 6= 1.

3. Prove that

 

n
∑

i=0

i

!2

=
n
∑

i=0

i3 for every non-negative integer n.

4. Recall the standard recursive definition of the Fibonacci numbers: F0 = 0, F1 = 1, and Fn =
Fn−1+ Fn−2 for all n≥ 2. Prove the following identities for all non-negative integers n and m.

(a)
n
∑

i=0
Fi = Fn+2− 1

(b) F2
n − Fn+1Fn−1 = (−1)n+1

?(c) If n is an integer multiple of m, then Fn is an integer multiple of Fm.
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5. Prove that every integer (positive, negative, or zero) can be written in the form
∑

i±3i , where the
exponents i are distinct non-negative integers. For example:

42= 34− 33− 32− 31

25= 33− 31+ 30

17= 33− 32− 30

6. Prove that every integer (positive, negative, or zero) can be written in the form
∑

i(−2)i , where
the exponents i are distinct non-negative integers. For example:

42= (−2)6+ (−2)5+ (−2)4+ (−2)0

25= (−2)6+ (−2)5+ (−2)3+ (−2)0

17= (−2)4+ (−2)0

7. (a) Prove that every non-negative integer can be written as the sum of distinct, non-consecutive
Fibonacci numbers. That is, if the Fibonacci number Fi appears in the sum, it appears exactly
once, and its neighbors Fi−1 and Fi+1 do not appear at all. For example:

17= F7+ F4+ F2

42= F9+ F6

54= F9+ F7+ F5+ F3

(b) Prove that every positive integer can be written as the sum of distinct Fibonacci numbers
with no consecutive gaps. That is, for any index i ≥ 1, if the consecutive Fibonacci numbers Fi
or Fi+1 do not appear in the sum, then no larger Fibonacci number F j with j > i appears in
the sum. In particular, the sum must include either F1 or F2. For example:

16= F6+ F5+ F3+ F2

42= F8+ F7+ F5+ F3+ F1

54= F8+ F7+ F6+ F5+ F4+ F3+ F2+ F1

(c) The Fibonacci sequence can be extended backward to negative indices by rearranging the
defining recurrence: Fn = Fn+2 − Fn+1. Here are the first several negative-index Fibonacci
numbers:

n −10 −9 −8 −7 −6 −5 −4 −3 −2 −1
Fn −55 34 −21 13 −8 5 −3 2 −1 1

Prove that F−n = (−1)n+1Fn.
?(d) Prove that every integer—positive, negative, or zero—can be written as the sum of distinct,

non-consecutive Fibonacci numbers with negative indices. For example:

17= F−7+ F−5+ F−2

−42= F−10+ F−7

54= F−9+ F−7+ F−5+ F−3+ F−1.
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8. Consider the following game played with a finite number of a identical coins, which are arranged
into stacks. Each coin belongs to exactly one stack. Let ni denote the number of coins in stack i. In
each turn, you must make one of the following moves:

• For some i and j such that n j ≤ ni − 2, move one coin from stack i to stack j.

• Move one coin from any stack into a new stack.

• Find a stack containing only one coin, and remove that coin from the game.

The game ends when all coins are gone. For example, the following sequence of turns describes a
complete game; each vector lists the number of coins in each non-empty stack:

〈4, 2,1〉 =⇒ 〈4, 1,1, 1〉 =⇒ 〈3, 2,1, 1〉 =⇒ 〈2, 2,2, 1〉 =⇒ 〈2,2, 1,1, 1〉
=⇒ 〈2, 1,1,1, 1,1〉 =⇒ 〈2,1, 1,1, 1〉 =⇒ 〈2, 1,1, 1〉 =⇒ 〈2, 1,1〉
=⇒ 〈2, 1〉 =⇒ 〈2〉 =⇒ 〈1, 1〉 =⇒ 〈1〉 =⇒ 〈〉

(a) Prove that this game ends after a finite number of turns.

(b) What are the minimum and maximum number of turns in a game, if we start with a single
stack of n coins? Prove your answers are correct.

(c) Now suppose each time you remove a coin from a stack, you must place two coins onto
smaller stacks. In each turn, you must make one of the following moves:

• For some indices i, j, and k such that n j ≤ ni − 2 and nk ≤ ni − 2 and j 6= k, remove a
coin from stack i, add a coin to stack j, and add a coin to stack k.

• For some i and j such that n j ≤ ni − 2, remove a coin from stack i, add a coin to stack j,
and create a new stack with one coin.

• Remove one coin from any stack and create two new stacks, each with one coin.
• Find a stack containing only one coin, and remove that coin from the game.

For example, the following sequence of turns describes a complete game:

〈4, 2,1〉 =⇒ 〈3, 3,2〉 =⇒ 〈3, 2,2, 1,1〉 =⇒ 〈3,2, 2,1〉 =⇒ 〈3,2, 2〉 =⇒ 〈3,2, 1,1, 1〉
=⇒ 〈2, 2,2, 2,1〉 =⇒ 〈2,2, 2,2〉 =⇒ 〈2,2, 2,1, 1,1〉 =⇒ 〈2, 2,2, 1,1〉
=⇒ 〈2, 2,2, 1〉 =⇒ 〈2, 2,2〉 =⇒ 〈2, 2,1, 1,1〉 =⇒ 〈2,2, 1,1〉 =⇒ 〈2,2, 1〉
=⇒ 〈2, 2〉 =⇒ 〈2,1, 1,1〉 =⇒ 〈1, 1,1, 1,1,1〉 =⇒ 〈1,1, 1,1, 1〉 =⇒ 〈1, 1,1, 1〉
=⇒ 〈1, 1,1〉 =⇒ 〈1, 1〉 =⇒ 〈1〉 =⇒ 〈〉.

Prove that this modified game still ends after a finite number of turns.

(d) What are the minimum and maximum number of turns in this modified game, starting with
a single stack of n coins? Prove your answers are correct.

9. (a) Prove that |A× B|= |A| × |B| for all finite sets A and B.

(b) Prove that for all non-empty finite sets A and B, there are exactly |B||A| functions from A to B.

10. Recall that a binary tree is full if every node has either two children (an internal node) or no
children (a leaf). Give at least four different proofs of the following fact: In any full binary tree,
the number of leaves is exactly one more than the number of internal nodes.
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11. The nth Fibonacci binary tree Fn is defined recursively as follows:

• F1 is a single root node with no children.

• For all n ≥ 2, Fn is obtained from Fn−1 by adding a right child to every leaf and adding a
left child to every node that has only one child.

(a) Prove that the number of leaves in Fn is precisely the nth Fibonacci number: F0 = 0, F1 = 1,
and Fn = Fn−1+ Fn−2 for all n≥ 2.

(b) How many nodes does Fn have? Give an exact, closed-form answer in terms of Fibonacci
numbers, and prove your answer is correct.

(c) Prove that for all n≥ 2, the right subtree of Fn is a copy of Fn−1.

(d) Prove that for all n≥ 3, the left subtree of Fn is a copy of Fn−2.

The first six Fibonacci binary trees. In each tree Fn, the subtree of gray nodes is Fn−1.

12. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each labeled
with a different string of d bits. Two vertices are joined by an edge if and only if their labels differ
in exactly one bit.

00 10

11

0

1 01

000

100

010

110

001

101

011

111

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.

Recall that a Hamiltonian cycle is a closed walk that visits each vertex in a graph exactly once.
Prove that for every integer d ≥ 2, the d-dimensional hypercube has a Hamiltonian cycle.

13. A tournament is a directed graph with exactly one directed edge between each pair of vertices.
That is, for any vertices v and w, a tournament contains either an edge v�w or an edge w�v, but
not both. A Hamiltonian path in a directed graph G is a directed path that visits every vertex
of G exactly once.

(a) Prove that every tournament contains a Hamiltonian path.

(b) Prove that every tournament contains either exactly one Hamiltonian path or a directed cycle
of length three.
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u

A tournament with two Hamiltonian paths u�v�w�x�z�y and y�u�v�x�z�w
and a directed triangle w�x�z�w.

14. Scientists recently discovered a planet, tentatively named “Ygdrasil”, that is inhabited by a bizarre
species called “nertices” (singular “nertex”). All nertices trace their ancestry back to a particular
nertex named Rudy. Rudy is still quite alive, as is every one of his many descendants. Nertices
reproduce asexually; every nertex has exactly one parent (except Rudy, who sprang forth fully
formed from the planet’s core). There are three types of nertices—red, green, and blue. The color
of each nertex is correlated exactly with the number and color of its children, as follows:

• Each red nertex has two children, exactly one of which is green.

• Each green nertex has exactly one child, which is not green.

• Blue nertices have no children.

In each of the following problems, let R, G, and B respectively denote the number of red, green,
and blue nertices on Ygdrasil.

(a) Prove that B = R+ 1.

(b) Prove that either G = R or G = B.

(c) Prove that G = B if and only if Rudy is green.

15. Consider the language L over the alphabet {«,ª,©,¨} generated by the following context-free
grammar:

S→ ª | «S | S¨ | S©S

(a) Prove that in every string in L, the number of ªs is exactly one more than the number of ©s.

(b) Prove that in every string in L, there is a © between any two ªs.
?(c) Prove that L is actually the regular language («∗ª¨∗©)∗«∗ª¨∗.

16. Consider the following recursively-defined sets of strings of left brackets ¹ and right brackets º :

• A string of brackets x is balanced if it satisfies one of the following conditions:

– x is the empty string, or
– x = ¹ y º z, where y and z are balanced strings.

For example, the following diagram shows that the string ¹ ¹ º ¹ º º ¹ º is balanced. Each
boxed substring is balanced, and ε is the empty string.

¹ ¹ ε º ¹ ε º ε º ¹ ε º ε
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• A string of brackets x is erasable if it satisfies one of two conditions:

– x is the empty string, or
– x = y ¹ º z, where yz is an erasable string.

For example, we can prove that the string ¹ ¹ º ¹ º º ¹ º is erasable as follows:

¹ ¹ º ¹ º º ¹ º → ¹ ¹ º º ¹ º → ¹ º ¹ º → ¹ º → ε

• A string x of brackets is sinister if every prefix of x has at least as many left brackets as right
brackets, dextrous if every suffix of x has at least as many right brackets as left brackets, and
ambidextrous if it is both sinister and dextrous.
For example, the string ¹ ¹ º ¹ º º ¹ º is ambidextrous; the prefix ¹ ¹ º ¹ has more left
brackets, and the suffix º º ¹ º has more right brackets.

Your task is to prove that these three definitions are equivalent.

(a) Prove that every balanced string is erasable.

(b) Prove that every erasable string is balanced.

(c) Prove that every balanced string is ambidextrous.

(d) Prove that every ambidextrous string is balanced.

17. Well-formed formulas (wffs) are defined recursively as follows:

• T is a wff.

• F is a wff.

• Any proposition variable is a wff.

• If X is a wff, then (¬X ) is also a wff.

• If X and Y are wffs, then (X ∧ Y ) is also a wff.

• If X and Y are wffs, then (X ∨ Y ) is also a wff.

We say that a formula is in De Morgan normal form if it satisfies the following conditions. (“De
Morgan normal form” is not standard terminology; I just made it up.)

• Every negation in the formula is applied to a variable, not to a more complicated subformula.

• Either the entire formula is T , or the formula does not contain T .

• Either the entire formula is F , or the formula does not contain F .

Prove that for every wff, there is a logically equivalent wff in De Morgan normal form. For example,
the well-formed formula

(¬((p ∧ q)∨¬r))∧ (¬(p ∨¬r)∧ q)

is logically equivalent to the following wff in De Morgan normal form:

(((¬p ∨¬q)∧ r))∧ ((¬p ∧ r)∧ q)

18. A polynomial is a function f : R → R of the form f (x) =
∑d

i=0 ai x
i for some non-negative

integer d (called the degree) and some real numbers a0, a1, . . . , ad (called the coefficients).
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(a) Prove that the sum of two polynomials is a polynomial.

(b) Prove that the product of two polynomials is a polynomial.

(c) Prove that the composition f (g(x)) of two polynomials f (x) and g(x) is a polynomial.

(d) Prove that the derivative f ′ of a polynomial f is a polynomial, using only the following facts:

• Constant rule: If f is constant, then f ′ is identically zero.
• Sum rule: ( f + g)′ = f ′+ g ′.
• Product rule: ( f · g)′ = f ′ · g + f · g ′.

?19. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every
internal node is labeled with an arithmetic operation, and every internal node has exactly two
children. For this problem, assume that the only allowed operations are + and ×. Different leaves
may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf
variables into an output value for the root, by following two simple rules: (1) The value of any
+-node is the sum of the values of its children. (2) The value of any ×-node is the product of the
values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is,
the same input values for the leaf variables always leads to the same output value at both roots.
An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another
+-node.

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third is in normal form.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree
in normal form. [Hint: This is harder than it looks.]

?20. A Gaussian integer is a complex number of the form x + yi, where x and y are integers. Prove
that any Gaussian integer can be expressed as the sum of distinct powers of the complex number
α=−1+ i. For example:

4 = 16+ (−8− 8i) + 8i+ (−4) = α8+α7+α6+α4

−8 = (−8− 8i) + 8i = α7+α6

15i = (−16+ 16i) + 16+ (−2i) + (−1+ i) + 1 = α9+α8+α2+α1+α0

1+ 6i = (8i) + (−2i) + 1 = α6+α2+α0

2− 3i = (4− 4i) + (−4) + (2+ 2i) + (−2i) + (−1+ i) + 1 = α5+α4+α3+α2+α1+α0

−4+ 2i = (−16+ 16i) + 16+ (−8− 8i) + (4− 4i) + (−2i) = α9+α8+α7+α5+α2
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The following list of values may be helpful:

α0 = 1 α4 =−4 α8 = 16 α12 =−64

α1 =−1+ i α5 = 4− 4i α9 =−16+ 16i α13 = 64− 64i

α2 =−2i α6 = 8i α10 =−32i α14 = 128i

α3 = 2+ 2i α7 =−8− 8i α11 = 32+ 32i α15 =−128− 128i

[Hint: How do you write −2− i?]

?21. Lazy binary is a variant of standard binary notation for representing natural numbers where
we allow each “bit" to take on one of three values: 0, 1, or 2. Lazy binary notation is defined
inductively as follows.

• The lazy binary representation of zero is 0.

• Given the lazy binary representation of any non-negative integer n, we can construct the lazy
binary representation of n+ 1 as follows:

(a) increment the rightmost digit;
(b) if any digit is equal to 2, replace the rightmost 2 with 0 and increment the digit

immediately to its left.

Here are the first several natural numbers in lazy binary notation:

0, 1, 10, 11, 20, 101, 110, 111, 120, 201, 210, 1011, 1020, 1101, 1110, 1111, 1120, 1201,
1210, 2011, 2020, 2101, 2110, 10111, 10120, 10201, 10210, 11011, 11020, 11101, 11110,
11111, 11120, 11201, 11210, 12011, 12020, 12101, 12110, 20111, 20120, 20201, 20210,
21011, 21020, 21101, 21110, 101111, 101120, 101201, 101210, 102011, 102020, . . .

(a) Prove that in any lazy binary number, between any two 2s there is at least one 0, and between
two 0s there is at least one 2.

(b) Prove that for any natural number N , the sum of the digits of the lazy binary representation
of N is exactly blg(N + 1)c.

Æ22. Consider the following recursively defined sequence of rational numbers:

R0 = 0

Rn =
1

2bRn−1c − Rn−1+ 1
for all n≥ 1

The first several elements of this sequence are

0,1,
1

2
, 2,

1

3
,
3

2
,
2

3
, 3,

1

4
,
4

3
,
3

5
,
5

2
,
2

5
,
5

3
,
3

4
,4,

1

5
, . . .

Prove that every non-negative rational number appears in this sequence exactly once.

23. Let f : R+→ R+ be an arbitrary (not necessarily continuous) function such that

• f (x)> 0 for all x > 0, and
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• f (x) = π f (x/
p

2) for all x > 1.

Prove by induction that f (x) = Θ(x) (as x →∞). Yes, this is induction over the real numbers.

?24. There is a natural generalization of induction to the real numbers that is familiar to analysts but
relatively unknown in computer science. The precise formulation given below is was proposed
independently by Hathaway2 and Clark3 fairly recently, but the idea dates back to at least to the
1920s. Recall that there are four types of intervals for any real numbers a and z:

• The open interval (a, z) := {t ∈ R | a ≤ t < z},
• The half-open intervals [a, z) := {t ∈ R | a ≤ t < z} and (a, z] := {t ∈ R | a < t ≤ z}
• The closed interval [a, z] := {t ∈ R | a ≤ t ≤ z}.

Theorem 16 (Continuous Induction). Fix a closed interval [a, z] ⊂ R. Suppose some subset
S ⊆ [a, z] has following properties:

(a) a ∈ S.

(b) If a ≤ s < z and s ∈ S, then [s, u]⊆ S for some u> s.

(c) If a ≤ s ≤ z and [a, s)⊆ S, then s ∈ S.

Then S = [a, z].

Proof: For the sake of argument, let S be a proper subset of [a, b]. Let T = [a, z] \ S.
Because S̄ is bounded but non-empty, it has a greatest lower bound ` ∈ [a, z]. More
explicitly, ` be the largest real number such that `≤ t for all t ∈ T . There are three cases
to consider:

• Suppose `= a. Condition (a) and (b) imply that [a, u] ∈ S for some u> a. But then
we have ` = a < u ≤ t for all t ∈ T , contradicting the fact that ` is the greatest
lower bound of T .

• Suppose ` > a and ` ∈ S. If ` = z, then S = [a, z], contradicting our initial
assumption. Otherwise, by condition (b), we have [`, u]⊆ S for some u> `, again
contradicting the fact that ` is the greatest lower bound of T .

• Finally, suppose ` > a and ` ∈ S. Because no element of T is smaller than `, we have
[a,`)⊆ S. But then condition (c) implies that ` ∈ S, and we have a contradiction.

In all cases, we have a contradiction. �

Continuous induction hinges on the axiom of completeness—every non-empty set of positive
real numbers has a greatest lower bound—just as standard induction requires the well-ordering
principle—every non-empty set of positive integers has a smallest element. Thus, continuous
induction cannot be used to prove properties of rational numbers, because the greatest lower
bound of a set of rational numbers need not be rational.

Fix real numbers a ≤ z. Recall that a function f : [a, z] → R is continuous if it satisfies
the following condition: for any t ∈ [a, z] and any ε > 0, there is some δ > 0 such that for
all u ∈ [a, z] with |t − u| ≤ δ, we have | f (t)− f (u)| ≤ ε. Prove the following theorems using
continuous induction.

2Dan Hathaway. Using continuity induction. College Math. J. 42:229–231, 2011.
3Pete L. Clark. The instructor’s guide to real induction. arXiv:1208.0973.
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(a) Connectedness: There is no continuous function from [a, z] to the set {0,1}.
(b) Intermediate Value Theorem: For any continuous function f : [a, z]→ R \ {0}, if f (a)> 0,

then f (t)> 0 for all a ≤ t ≤ z.

(c) Extreme Value Theorem: Any continuous function f : [a, z]→ R attains its maximum value;
that is, there is some t ∈ [a, z] such that f (t)≥ f (u) for all u ∈ [a, z].

?(d) The Heine-Borel Theorem: The interval [a, z] is compact.
This one requires some expansion.

• A set X ⊆ R is open if every point in X lies inside an open interval contained in X .
• An open cover of [a, z] is a (possibly uncountably infinite) family U = {Ui | i ∈ I} of

open sets Ui such that [a, z]⊆
⋃

i∈I Ui .
• A subcover of U is a subset V ⊆U that is also a cover of [a, z].
• A cover U is finite if it contains a finite number of open sets.
• Finally, a set X ⊆ R is compact if every open cover of X has a finite subcover.

The Heine-Borel theorem is one of the most fundamental results in real analysis, and the
proof usually requires several pages. But the continuous-induction proof is shorter than the
list of definitions!

c© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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