
Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Le mieux est l’ennemi du bien. [The best is the enemy of the good.]

— Voltaire, La Bégueule (1772)

Who shall forbid a wise skepticism, seeing that there is no practical question
on which any thing more than an approximate solution can be had?

— Ralph Waldo Emerson, Representative Men (1850)

Now, distrust of corporations threatens our still-tentative economic recovery;
it turns out greed is bad, after all.

— Paul Krugman, “Greed is Bad”, The New York Times, June 4, 2002.

30 Approximation Algorithms?

30.1 Load Balancing

On the future smash hit reality-TV game show Grunt Work, scheduled to air Thursday nights at 3am
(2am Central) on ESPNπ, the contestants are given a series of utterly pointless tasks to perform. Each
task has a predetermined time limit; for example, “Sharpen this pencil for 17 seconds”, or “Pour pig’s
blood on your head and sing The Star-Spangled Banner for two minutes”, or “Listen to this 75-minute
algorithms lecture”. The directors of the show want you to assign each task to one of the contestants,
so that the last task is completed as early as possible. When your predecessor correctly informed the
directors that their problem is NP-hard, he was immediately fired. “Time is money!” they screamed at
him. “We don’t need perfection. Wake up, dude, this is television!”

Less facetiously, suppose we have a set of n jobs, which we want to assign to m machines. We are
given an array T[1 .. n] of non-negative numbers, where T[j] is the running time of job j. We can
describe an assignment by an array A[1 .. n], where A[j] = i means that job j is assigned to machine i.
The makespan of an assignment is the maximum time that any machine is busy:

makespan(A) =max
i

∑

A[j]=i

T[j]

The load balancing problem is to compute the assignment with the smallest possible makespan.
It’s not hard to prove that the load balancing problem is NP-hard by reduction from PARTITION: The

array T[1 .. n] can be evenly partitioned if and only if there is an assignment to two machines with
makespan exactly

∑

i T[i]/2. A slightly more complicated reduction from 3PARTITION implies that the
load balancing problem is strongly NP-hard. If we really need the optimal solution, there is a dynamic
programming algorithm that runs in time O(nM m), where M is the minimum makespan, but that’s just
horrible.

There is a fairly natural and efficient greedy heuristic for load balancing: consider the jobs one at a
time, and assign each job to the machine i with the earliest finishing time Total[i].

GREEDYLOADBALANCE(T[1 .. n], m):
for i← 1 to m

Total[i]← 0

for j← 1 to n
mini← argmini Total[i]
A[j]←mini
Total[mini]← Total[mini] + T[j]

return A[1 .. m]

© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥
1

m

n
∑

j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j]≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤
1

m

m
∑

i=1

Total[i] =
1

m

n
∑

j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ≤ OPT

≤ OPT

i

m
a

ke
sp

a
n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Proof: Let i be the busiest machine in the schedule computed by SORTEDGREEDYLOADBALANCE. If only
one job is assigned to machine i, then the greedy schedule is actually optimal, and the theorem is trivially
true. Otherwise, let j be the last job assigned to machine i. Since each of the first m jobs is assigned to a
unique machine, we must have j ≥ m+1. As in the previous proof, we know that Total[i]− T[j]≤ OPT.

In any schedule, at least two of the first m+ 1 jobs, say jobs k and `, must be assigned to the same
machine. Thus, T[k] + T[`]≤ OPT. Since max{k,`} ≤ m+ 1≤ j, and the jobs are sorted in decreasing
order by duration, we have

T[j]≤ T[m+ 1]≤ T[max{k,`}] =min {T[k], T[`]} ≤ OPT/2.

We conclude that the makespan Total[i] is at most 3 ·OPT/2, as claimed. �

30.2 Generalities

Consider an arbitrary optimization problem. Let OPT(X) denote the value of the optimal solution for a
given input X , and let A(X) denote the value of the solution computed by algorithm A given the same
input X . We say that A is an α(n)-approximation algorithm if and only if

OPT(X)
A(X)

≤ α(n) and
A(X)

OPT(X)
≤ α(n)

for all inputs X of size n. The function α(n) is called the approximation factor for algorithm A. For
any given algorithm, only one of these two inequalities will be important. For maximization problems,
where we want to compute a solution whose cost is as small as possible, the first inequality is trivial.
For maximization problems, where we want a solution whose value is as large as possible, the second
inequality is trivial. A 1-approximation algorithm always returns the exact optimal solution.

Especially for problems where exact optimization is NP-hard, we have little hope of completely
characterizing the optimal solution. The secret to proving that an algorithm satisfies some approximation
ratio is to find a useful function of the input that provides both lower bounds on the cost of the optimal
solution and upper bounds on the cost of the approximate solution. For example, if OPT(X)≥ f (X)/2
and A(X) ≤ 5 f (X) for any function f , then A is a 10-approximation algorithm. Finding the right
intermediate function can be a delicate balancing act.

30.3 Greedy Vertex Cover

Recall that the vertex color problem asks, given a graph G, for the smallest set of vertices of G that cover
every edge. This is one of the first NP-hard problems introduced in the first week of class. There is a
natural and efficient greedy heuristic1 for computing a small vertex cover: mark the vertex with the
largest degree, remove all the edges incident to that vertex, and recurse.

GREEDYVERTEXCOVER(G):
C ←∅
while G has at least one edge

v← vertex in G with maximum degree
G← G \ v
C ← C ∪ v

return C

Obviously this algorithm doesn’t compute the optimal vertex cover—that would imply P=NP!—but
it does compute a reasonably close approximation.

1A heuristic is an algorithm that doesn’t work.

3

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Theorem 3. GREEDYVERTEXCOVER is an O(log n)-approximation algorithm.

Proof: For all i, let Gi denote the graph G after i iterations of the main loop, and let di denote the
maximum degree of any node in Gi−1. We can define these variables more directly by adding a few extra
lines to our algorithm:

GREEDYVERTEXCOVER(G):
C ←∅
G0← G
i← 0
while Gi has at least one edge

i← i+ 1
vi ← vertex in Gi−1 with maximum degree
di ← degGi−1

(vi)
Gi ← Gi−1 \ vi
C ← C ∪ vi

return C

Let |Gi−1| denote the number of edges in the graph Gi−1. Let C∗ denote the optimal vertex cover
of G, which consists of OPT vertices. Since C∗ is also a vertex cover for Gi−1, we have

∑

v∈C∗
degGi−1

(v)≥ |Gi−1|.

In other words, the average degree in Gi of any node in C∗ is at least |Gi−1|/OPT. It follows that Gi−1
has at least one node with degree at least |Gi−1|/OPT. Since di is the maximum degree of any node
in Gi−1, we have

di ≥
|Gi−1|
OPT

Moreover, for any j ≥ i − 1, the subgraph G j has no more edges than Gi−1, so di ≥ |G j|/OPT. This
observation implies that

OPT
∑

i=1

di ≥
OPT
∑

i=1

|Gi−1|
OPT

≥
OPT
∑

i=1

|GOPT|
OPT

= |GOPT| = |G| −
OPT
∑

i=1

di .

In other words, the first OPT iterations of GREEDYVERTEXCOVER remove at least half the edges of G. Thus,
after at most OPT lg|G| ≤ 2 OPT lg n iterations, all the edges of G have been removed, and the algorithm
terminates. We conclude that GREEDYVERTEXCOVER computes a vertex cover of size O(OPT log n). �

So far we’ve only proved an upper bound on the approximation factor of GREEDYVERTEXCOVER;
perhaps a more careful analysis would imply that the approximation factor is only O(log log n), or even
O(1). Alas, no such improvement is possible. For any integer n, a simple recursive construction gives us
an n-vertex graph for which the greedy algorithm returns a vertex cover of size Ω(OPT · log n). Details
are left as an exercise for the reader.

30.4 Set Cover and Hitting Set

The greedy algorithm for vertex cover can be applied almost immediately to two more general problems:
set cover and hitting set. The input for both of these problems is a set system (X ,F), where X is a finite
ground set, and F is a family of subsets of X .2 A set cover of a set system (X ,F) is a subfamily of sets in

2A matroid (see the lecture note on greedy algorithms) is a special type of set system.

4

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

F whose union is the entire ground set X . A hitting set for (X ,F) is a subset of the ground set X that
intersects every set in F.

An undirected graph can be cast as a set system in two different ways. In one formulation, the
ground set X contains the vertices, and each edge defines a set of two vertices in F. In this formulation,
a vertex cover is a hitting set. In the other formulation, the edges are the ground set, the vertices define
the family of subsets, and a vertex cover is a set cover.

Here are the natural greedy algorithms for finding a small set cover and finding a small hitting set.
GREEDYSETCOVER finds a set cover whose size is at most O(log |F|) times the size of smallest set cover.
GREEDYHITTINGSET finds a hitting set whose size is at most O(log |X |) times the size of the smallest
hitting set.

GREEDYSETCOVER(X ,F):
C←∅
while X 6=∅

S← argmax
S∈F

|S ∩ X |

X ← X \ S
C← C∪ {S}

return C

GREEDYHITTINGSET(X ,F):
H ←∅
while F 6=∅

x ← argmax
x∈X

|{S ∈ F | x ∈ S}|

F← F \ {S ∈ F | x ∈ S}
H ← H ∪ {x}

return H

The similarity between these two algorithms is no coincidence. For any set system (X ,F), there is a
dual set system (F, X ∗) defined as follows. For any element x ∈ X in the ground set, let x∗ denote the
subfamily of sets in F that contain x:

x∗ = {S ∈ F | x ∈ S} .

Finally, let X ∗ denote the collection of all subsets of the form x∗:

X ∗ =
¦

x∗
�

� x ∈ S
©

.

As an example, suppose X is the set of letters of alphabet and F is the set of last names of student taking
CS 573 this semester. Then X ∗ has 26 elements, each containing the subset of CS 573 students whose
last name contains a particular letter of the alphabet. For example, m∗ is the set of students whose last
names contain the letter m.

There is a direct one-to-one correspondence between the ground set X and the dual set family X ∗. It
is a tedious but instructive exercise to prove that the dual of the dual of any set system is isomorphic to
the original set system—(X ∗,F∗) is essentially the same as (X ,F). It is also easy to prove that a set cover
for any set system (X ,F) is also a hitting set for the dual set system (F, X ∗), and therefore a hitting set
for any set system (X ,F) is isomorphic to a set cover for the dual set system (F, X ∗).

30.5 Vertex Cover, Again

The greedy approach doesn’t always lead to the best approximation algorithms. Consider the following
alternate heuristic for vertex cover:

DUMBVERTEXCOVER(G):
C ←∅
while G has at least one edge
(u, v)← any edge in G
G← G \ {u, v}
C ← C ∪ {u, v}

return C

5

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

The minimum vertex cover—in fact, every vertex cover—contains at least one of the two vertices u
and v chosen inside the while loop. It follows immediately that DUMBVERTEXCOVER is a 2-approximation
algorithm!

The same idea can be extended to approximate the minimum hitting set for any set system (X ,F),
where the approximation factor is the size of the largest set in F.

30.6 Traveling Salesman: The Bad News

The traveling salesman problem3 problem asks for the shortest Hamiltonian cycle in a weighted undirected
graph. To keep the problem simple, we can assume without loss of generality that the underlying graph
is always the complete graph Kn for some integer n; thus, the input to the traveling salesman problem is
just a list of the

�n
2

�

edge lengths.
Not surprisingly, given its similarity to the Hamiltonian cycle problem, it’s quite easy to prove that

the traveling salesman problem is NP-hard. Let G be an arbitrary undirected graph with n vertices. We
can construct a length function for Kn as follows:

`(e) =

(

1 if e is an edge in G,

2 otherwise.

Now it should be obvious that if G has a Hamiltonian cycle, then there is a Hamiltonian cycle in Kn whose
length is exactly n; otherwise every Hamiltonian cycle in Kn has length at least n+ 1. We can clearly
compute the lengths in polynomial time, so we have a polynomial time reduction from Hamiltonian
cycle to traveling salesman. Thus, the traveling salesman problem is NP-hard, even if all the edge lengths
are 1 and 2.

There’s nothing special about the values 1 and 2 in this reduction; we can replace them with any
values we like. By choosing values that are sufficiently far apart, we can show that even approximating
the shortest traveling salesman tour is NP-hard. For example, suppose we set the length of the ‘absent’
edges to n+ 1 instead of 2. Then the shortest traveling salesman tour in the resulting weighted graph
either has length exactly n (if G has a Hamiltonian cycle) or has length at least 2n (if G does not have a
Hamiltonian cycle). Thus, if we could approximate the shortest traveling salesman tour within a factor
of 2 in polynomial time, we would have a polynomial-time algorithm for the Hamiltonian cycle problem.

Pushing this idea to its limits us the following negative result.

Theorem 4. For any function f (n) that can be computed in time polynomial in n, there is no polynomial-
time f (n)-approximation algorithm for the traveling salesman problem on general weighted graphs,
unless P=NP.

30.7 Traveling Salesman: The Good News

Even though the general traveling salesman problem can’t be approximated, a common special case can
be approximated fairly easily. The special case requires the edge lengths to satisfy the so-called triangle
inequality:

`(u, w)≤ `(u, v) + `(v, w) for any vertices u, v, w.

This inequality is satisfied for geometric graphs, where the vertices are points in the plane (or some
higher-dimensional space), edges are straight line segments, and lengths are measured in the usual

3This is sometimes bowdlerized into the traveling salesperson problem. That’s just silly. Who ever heard of a traveling
salesperson sleeping with the farmer’s child?

6

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Euclidean metric. Notice that the length functions we used above to show that the general TSP is hard
to approximate do not (always) satisfy the triangle inequality.

With the triangle inequality in place, we can quickly compute a 2-approximation for the traveling
salesman tour as follows. First, we compute the minimum spanning tree T of the weighted input graph;
this can be done in O(n2 log n) time (where n is the number of vertices of the graph) using any of several
classical algorithms. Second, we perform a depth-first traversal of T , numbering the vertices in the order
that we first encounter them. Because T is a spanning tree, every vertex is numbered. Finally, we return
the cycle obtained by visiting the vertices according to this numbering.

6

7 5

32

4

1

6

7 5

42

3

1

A minimum spanning tree T , a depth-first traversal of T , and the resulting approximate traveling salesman tour.

Theorem 5. A depth-first ordering of the minimum spanning tree gives a 2-approximation of the shortest
traveling salesman tour.

Proof: Let OPT denote the cost of the optimal TSP tour, let MST denote the total length of the minimum
spanning tree, and let A be the length of the tour computed by our approximation algorithm. Consider
the ‘tour’ obtained by walking through the minimum spanning tree in depth-first order. Since this tour
traverses every edge in the tree exactly twice, its length is 2 ·MST. The final tour can be obtained from
this one by removing duplicate vertices, moving directly from each node to the next unvisited node.; the
triangle inequality implies that taking these shortcuts cannot make the tour longer. Thus, A≤ 2 ·MST.
On the other hand, if we remove any edge from the optimal tour, we obtain a spanning tree (in fact a
spanning path) of the graph; thus, MST≥ OPT. We conclude that A≤ 2 ·OPT; our algorithm computes a
2-approximation of the optimal tour. �

We can improve this approximation factor using the following algorithm discovered by Nicos
Christofides in 1976. As in the previous algorithm, we start by constructing the minimum spanning
tree T . Then let O be the set of vertices with odd degree in T ; it is an easy exercise (hint, hint) to show
that the number of vertices in O is even.

In the next stage of the algorithm, we compute a minimum-cost perfect matching M of these odd-
degree vertices. A prefect matching is a collection of edges, where each edge has both endpoints in O
and each vertex in O is adjacent to exactly one edge; we want the perfect matching of minimum total
length. Later in the semester, we will see an algorithm to compute M in polynomial time.

Now consider the multigraph T ∪M ; any edge in both T and M appears twice in this multigraph.
This graph is connected, and every vertex has even degree. Thus, it contains an Eulerian circuit: a
closed walk that uses every edge exactly once. We can compute such a walk in O(n) time with a simple
modification of depth-first search. To obtain the final approximate TSP tour, we number the vertices in
the order they first appear in some Eulerian circuit of T ∪M , and return the cycle obtained by visiting
the vertices according to that numbering.

Theorem 6. Given a weighted graph that obeys the triangle inequality, the Christofides heuristic
computes a (3/2)-approximation of the shortest traveling salesman tour.

7

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

7

6 5

42

3

1

7

6 5

42

3

1

A minimum spanning tree T , a minimum-cost perfect matching M of the odd vertices in T ,
an Eulerian circuit of T ∪M , and the resulting approximate traveling salesman tour.

Proof: Let A denote the length of the tour computed by the Christofides heuristic; let OPT denote the
length of the optimal tour; let MST denote the total length of the minimum spanning tree; let MOM
denote the total length of the minimum odd-vertex matching.

The graph T ∪ M , and therefore any Euler tour of T ∪ M , has total length MST+MOM. By the
triangle inequality, taking a shortcut past a previously visited vertex can only shorten the tour. Thus,
A≤MST+MOM.

By the triangle inequality, the optimal tour of the odd-degree vertices of T cannot be longer than
OPT. Any cycle passing through of the odd vertices can be partitioned into two perfect matchings, by
alternately coloring the edges of the cycle red and green. One of these two matchings has length at most
OPT/2. On the other hand, both matchings have length at least MOM. Thus, MOM≤ OPT/2.

Finally, recall our earlier observation that MST≤ OPT.
Putting these three inequalities together, we conclude that A≤ 3 ·OPT/2, as claimed. �

30.8 k-center Clustering

The k-center clustering problem is defined as follows. We are given a set P = {p1, p2, . . . , pn} of n points
in the plane4 and an integer k. Our goal to find a collection of k circles that collectively enclose all the
input points, such that the radius of the largest circle is as large as possible. More formally, we want to
compute a set C = {c1, c2, . . . , ck} of k center points, such that the following cost function is minimized:

cost(C) :=max
i

min
j
|pi c j|.

Here, |pi c j| denotes the Euclidean distance between input point pi and center point c j . Intuitively, each
input point is assigned to its closest center point; the points assigned to a given center c j comprise a
cluster. The distance from c j to the farthest point in its cluster is the radius of that cluster; the cluster is
contained in a circle of this radius centered at c j. The k-center clustering cost cost(C) is precisely the
maximum cluster radius.

This problem turns out to be NP-hard, even to approximate within a factor of roughly 1.8. However,
there is a natural greedy strategy, first analyzed in 1985 by Teofilo Gonzalez5, that is guaranteed to
produce a clustering whose cost is at most twice optimal. Choose the k center points one at a time,
starting with an arbitrary input point as the first center. In each iteration, choose the input point that is
farthest from any earlier center point to be the next center point.

In the pseudocode below, di denotes the current distance from point pi to its nearest center, and
r j denotes the maximum of all di (or in other words, the cluster radius) after the first j centers have

4The k-center problem can be defined over any metric space, and the approximation analysis in this section holds in any
metric space as well. The analysis in the next section, however, does require that the points come from the Euclidean plane.

5Teofilo F. Gonzalez. Clustering to minimize the maximum inter-cluster distance. Theoretical Computer Science 38:293-306,
1985.

8

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

The first five iterations of Gonzalez’s k-center clustering algorithm.

been chosen. The algorithm includes an extra iteration to compute the final clustering radius rk (and
the next center ck+1).

GONZALEZKCENTER(P, k):
for i← 1 to n

di ←∞
c1← p1

for j← 1 to k
r j ← 0
for i← 1 to n

di ←min{di , |pi c j |}
if r j < di

r j ← di; c j+1← pi

return {c1, c2, . . . , ck}

GONZALEZKCENTER clearly runs in O(nk) time. Using more advanced data structures, Tomas Feder
and Daniel Greene6 described an algorithm to compute exactly the same clustering in only O(n log k)
time.

Theorem 7. GONZALEZKCENTER computes a 2-approximation to the optimal k-center clustering.

Proof: Let OPT denote the optimal k-center clustering radius for P. For any index i, let ci and ri denote
the ith center point and ith clustering radius computed by GONZALEZKCENTER.

By construction, each center point c j has distance at least r j−1 from any center point ci with i < j.
Moreover, for any i < j, we have ri ≥ r j . Thus, |cic j| ≥ rk for all indices i and j.

On the other hand, at least one cluster in the optimal clustering contains at least two of the points
c1, c2, . . . , ck+1. Thus, by the triangle inequality, we must have |cic j| ≤ 2 ·OPT for some indices i and j.
We conclude that rk ≤ 2 ·OPT, as claimed. �

30.9 Approximation Schemes?

With just a little more work, we can compute an arbitrarily close approximation of the optimal k-
clustering, using a so-called approximation scheme. An approximation scheme accepts both an instance
of the problem and a value ε > 0 as input, and it computes a (1+ ε)-approximation of the optimal
output for that instance. As I mentioned earlier, computing even a 1.8-approximation is NP-hard, so
we cannot expect our approximation scheme to run in polynomial time; nevertheless, at least for small
values of k, the approximation scheme will be considerably more efficient than any exact algorithm.

Our approximation scheme works in three phases:

6Tomas Feder* and Daniel H. Greene. Optimal algorithms for approximate clustering. Proc. 20th STOC, 1988. Unlike
Gonzalez’s algorithm, Feder and Greene’s faster algorithm does not work over arbitrary metric spaces; it requires that the
input points come from some Rd and that distances are measured in some Lp metric. The time analysis also assumes that the
distance between any two points can be computed in O(1) time.

9

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

1. Compute a 2-approximate clustering of the input set P using GONZALEZKCENTER. Let r be the cost
of this clustering.

2. Create a regular grid of squares of width δ = εr/2
p

2. Let Q be a subset of P containing one point
from each non-empty cell of this grid.

3. Compute an optimal set of k centers for Q. Return these k centers as the approximate k-center
clustering for P.

The first phase requires O(nk) time. By our earlier analysis, we have r∗ ≤ r ≤ 2r∗, where r∗ is the
optimal k-center clustering cost for P.

The second phase can be implemented in O(n) time using a hash table, or in O(n log n) time by
standard sorting, by associating approximate coordinates (bx/δc, by/δc) to each point (x , y) ∈ P and
removing duplicates. The key observation is that the resulting point set Q is significantly smaller than P.
We know P can be covered by k balls of radius r∗, each of which touches O(r∗/δ2) = O(1/ε2) grid cells.
It follows that |Q|= O(k/ε2).

Let T(n, k) be the running time of an exact k-center clustering algorithm, given n points as input.
If this were a computational geometry class, we might see a “brute force” algorithm that runs in time
T (n, k) = O(nk+2); the fastest algorithm currently known7 runs in time T (n, k) = nO(

p
k). If we use this

algorithm, our third phase requires (k/ε2)O(
p

k) time.
It remains to show that the optimal clustering for Q implies a (1+ ε)-approximation of the optimal

clustering for P. Suppose the optimal clustering of Q consists of k balls B1, B2, . . . , Bk, each of radius
r̃. Clearly r̃ ≤ r∗, since any set of k balls that cover P also cover any subset of P. Each point in P \Q
shares a grid cell with some point in Q, and therefore is within distance δ

p
2 of some point in Q.

Thus, if we increase the radius of each ball Bi by δ
p

2, the expanded balls must contain every point
in P. We conclude that the optimal centers for Q gives us a k-center clustering for P of cost at most
r∗+δ

p
2≤ r∗+ εr/2≤ r∗+ εr∗ = (1+ ε)r∗.

The total running time of the approximation scheme is O(nk+ (k/ε2)O(
p

k)). This is still exponential
in the input size if k is large (say

p
n or n/100), but if k and ε are fixed constants, the running time is

linear in the number of input points.

30.10 An FPTAS for Subset Sum?

An approximation scheme whose running time, for any fixed ε, is polynomial in n is called a polynomial-
time approximation scheme or PTAS (usually pronounced “pee taz"). If in addition the running time
depends only polynomially on ε, the algorithm is called a fully polynomial-time approximation scheme
or FPTAS (usually pronounced “eff pee taz"). For example, an approximation scheme with running time
O(n2/ε2) is an FPTAS; an approximation scheme with running time O(n1/ε6

) is a PTAS but not an FPTAS;
and our approximation scheme for k-center clustering is not a PTAS.

The last problem we’ll consider is the SUBSETSUM problem: Given a set X containing n positive
integers and a target integer t, determine whether X has a subset whose elements sum to t. The lecture
notes on NP-completeness include a proof that SUBSETSUM is NP-hard. As stated, this problem doesn’t
allow any sort of approximation—the answer is either TRUE or FALSE.8 So we will consider a related
optimization problem instead: Given set X and integer t, find the subset of X whose sum is as large as
possible but no larger than t.

7R. Z. Hwang, R. C. T. Lee, and R. C. Chan. The slab dividing approach to solve the Euclidean p-center problem. Algorithmica
9(1):1–22, 1993.

8Do, or do not. There is no ‘try’. (Are old one thousand when years you, alphabetical also in order talk will you.)

10

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

We have already seen a dynamic programming algorithm to solve the decision version SUBSETSUM

in time O(nt); a similar algorithm solves the optimization version in the same time bound. Here is a
different algorithm, whose running time does not depend on t:

SUBSETSUM(X [1 .. n], t):
S0← {0}
for i← 1 to n

Si ← Si−1 ∪ (Si−1 + X [i])
remove all elements of Si bigger than t

return max Sn

Here Si−1+ X [i] denotes the set {s+ X [i] | s ∈ Si−1}. If we store each Si in a sorted array, the ith
iteration of the for-loop requires time O(|Si−1|). Each set Si contains all possible subset sums for the
first i elements of X ; thus, Si has at most 2i elements. On the other hand, since every element of Si
is an integer between 0 and t, we also have |Si| ≤ t + 1. It follows that the total running time of this
algorithm is

∑n
i=1 O(|Si−1|) = O(min{2n, nt}).

Of course, this is only an estimate of worst-case behavior. If several subsets of X have the same
sum, the sets Si will have fewer elements, and the algorithm will be faster. The key idea for finding an
approximate solution quickly is to ‘merge’ nearby elements of Si—if two subset sums are nearly equal,
ignore one of them. On the one hand, merging similar subset sums will introduce some error into the
output, but hopefully not too much. On the other hand, by reducing the size of the set of sums we need
to maintain, we will make the algorithm faster, hopefully significantly so.

Here is our approximation algorithm. We make only two changes to the exact algorithm: an initial
sorting phase and an extra FILTERing step inside the main loop.

FILTER(Z[1 .. k],δ):
SORT(Z)
j← 1
Y [j]← Z[i]
for i← 2 to k

if Z[i]> (1+δ) · Y [j]
j← j+ 1
Y [j]← Z[i]

return Y [1 .. j]

APPROXSUBSETSUM(X [1 .. n], k,ε):
SORT(X)
R0← {0}
for i← 1 to n

Ri ← Ri−1 ∪ (Ri−1 + X [i])
Ri ← FILTER(Ri ,ε/2n)
remove all elements of Ri bigger than t

return max Rn

Theorem 8. APPROXSUBSETSUM returns a (1+ ε)-approximation of the optimal subset sum, given any ε
such that 0< ε ≤ 1.

Proof: The theorem follows from the following claim, which we prove by induction:

For any element s ∈ Si , there is an element r ∈ Ri such that r ≤ s ≤ r · (1+ εn/2)i .

The claim is trivial for i = 0. Let s be an arbitrary element of Si , for some i > 0. There are two cases to
consider: either x ∈ Si−1, or x ∈ Si−1+ x i .

(1) Suppose s ∈ Si−1. By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that r ′ ≤ s ≤
r ′ · (1+ εn/2)i−1. If r ′ ∈ Ri, the claim obviously holds. On the other hand, if r ′ 6∈ Ri, there must
be an element r ∈ Ri such that r < r ′ ≤ r(1+ εn/2), which implies that

r < r ′ ≤ s ≤ r ′ · (1+ εn/2)i−1 ≤ r · (1+ εn/2)i ,

so the claim holds.

11

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

(2) Suppose s ∈ Si−1 + x i. By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that
r ′ ≤ s− x i ≤ r ′ · (1+ εn/2)i−1. If r ′ + x i ∈ Ri, the claim obviously holds. On the other hand, if
r ′+ x i 6∈ Ri, there must be an element r ∈ Ri such that r < r ′+ x i ≤ r(1+ εn/2), which implies
that

r < r ′+ x i ≤ s ≤ r ′ · (1+ εn/2)i−1+ x i

≤ (r − x i) · (1+ εn/2)i + x i

≤ r · (1+ εn/2)i − x i · ((1+ εn/2)i − 1)

≤ r · (1+ εn/2)i .

so the claim holds.

Now let s∗ =max Sn and r∗ =max Rn. Clearly r∗ ≤ s∗, since Rn ⊆ Sn. Our claim implies that there
is some r ∈ Rn such that s∗ ≤ r · (1+ ε/2n)n. But r cannot be bigger than r∗, so s∗ ≤ r∗ · (1+ ε/2n)n.
The inequalities ex ≥ 1+ x for all x , and ex ≤ 2x + 1 for all 0≤ x ≤ 1, imply that (1+ ε/2n)n ≤ eε/2 ≤
1+ ε. �

Theorem 9. APPROXSUBSETSUM runs in O((n3 log n)/ε) time.

Proof: Assuming we keep each set Ri in a sorted array, we can merge the two sorted arrays Ri−1 and
Ri−1+ x i in O(|Ri−1|) time. FILTERin Ri and removing elements larger than t also requires only O(|Ri−1|)
time. Thus, the overall running time of our algorithm is O(

∑

i|Ri|); to express this in terms of n and ε,
we need to prove an upper bound on the size of each set Ri .

Let δ = ε/2n. Because we consider the elements of X in increasing order, every element of Ri is
between 0 and i · x i . In particular, every element of Ri−1+ x i is between x i and i · x i . After FILTERing, at
most one element r ∈ Ri lies in the range (1+δ)k ≤ r < (1+δ)k+1, for any k. Thus, at most dlog1+δ ie
elements of Ri−1+ x i survive the call to FILTER. It follows that

|Ri|= |Ri−1|+
�

log i

log(1+δ)

�

≤ |Ri−1|+
�

log n

log(1+δ)

�

[i ≤ n]

≤ |Ri−1|+
�

2 ln n

δ

�

[ex ≤ 1+ 2x for all 0≤ x ≤ 1]

≤ |Ri−1|+
�

n ln n

ε

�

[δ = ε/2n]

Unrolling this recurrence into a summation gives us the upper bound |Ri| ≤ i·d(n ln n)/εe = O((n2 log n)/ε).
We conclude that the overall running time of APPROXSUBSETSUM is O((n3 log n)/ε), as claimed. �

12

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Exercises

1. (a) Prove that for any set of jobs, the makespan of the greedy assignment is at most (2− 1/m)
times the makespan of the optimal assignment, where m is the number of machines.

(b) Describe a set of jobs such that the makespan of the greedy assignment is exactly (2− 1/m)
times the makespan of the optimal assignment, where m is the number of machines.

(c) Describe an efficient algorithm to solve the minimum makespan scheduling problem exactly
if every processing time T[i] is a power of two.

2. (a) Find the smallest graph (minimum number of edges) for which GREEDYVERTEXCOVER does
not return the smallest vertex cover.

(b) For any integer n, describe an n-vertex graph for which GREEDYVERTEXCOVER returns a vertex
cover of size OPT ·Ω(log n).

3. (a) Find the smallest graph (minimum number of edges) for which DUMBVERTEXCOVER does not
return the smallest vertex cover.

(b) Describe an infinite family of graphs for which DUMBVERTEXCOVER returns a vertex cover of
size 2 ·OPT.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G: return
the set of non-leaf nodes in any depth-first spanning tree of G.

(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Describe an infinite family of graphs for which this heuristic returns a vertex cover of size
2 ·OPT.

5. Consider the following optimization version of the PARTITION problem. Given a set X of positive
integers, our task is to partition X into disjoint subsets A and B such that max{

∑

A,
∑

B} is as
small as possible. This problem is clearly NP-hard. Determine the approximation ratio of the
following polynomial-time approximation algorithm. Prove your answer is correct.

PARTITION(X [1 .. n]):
Sort X in increasing order
a← 0; b← 0
for i← 1 to n

if a < b
a← a+ X [i]

else
b← b+ X [i]

return max{a, b}

6. The chromatic number χ(G) of a graph G is the minimum number of colors required to color
the vertices of the graph, so that every edge has endpoints with different colors. Computing the
chromatic number exactly is NP-hard.

13

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Prove that the following problem is also NP-hard: Given an n-vertex graph G, return any
integer between χ(G) and χ(G)+573. [Note: This does not contradict the possibility of a constant
factor approximation algorithm.]

7. Let G = (V, E) be an undirected graph, each of whose vertices is colored either red, green, or blue.
An edge in G is boring if its endpoints have the same color, and interesting if its endpoints have
different colors. The most interesting 3-coloring is the 3-coloring with the maximum number of
interesting edges, or equivalently, with the fewest boring edges. Computing the most interesting
3-coloring is NP-hard, because the standard 3-coloring problem is a special case.

(a) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a graph G.
Prove that it is NP-hard to approximate zzz(G) within a factor of 1010100

.

(b) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring of G.
Suppose we assign each vertex in G a random color from the set {red, green,blue}. Prove
that the expected number of interesting edges is at least 2

3
wow(G).

8. Consider the following algorithm for coloring a graph G.

TREECOLOR(G):
T ← any spanning tree of G
Color the tree T with two colors
c← 2

for each edge (u, v) ∈ G \ T
T ← T ∪ {(u, v)}

if color(u) = color(v) 〈〈Try recoloring u with an existing color〉〉
for i← 1 to c

if no neighbor of u in T has color i
color(u)← i

if color(u) = color(v) 〈〈Try recoloring v with an existing color〉〉
for i← 1 to c

if no neighbor of v in T has color i
color(v)← i

if color(u) = color(v) 〈〈Give up and create a new color〉〉
c← c+ 1
color(u)← c

(a) Prove that this algorithm colors any bipartite graph with just two colors.

(b) Let ∆(G) denote the maximum degree of any vertex in G. Prove that this algorithm colors
any graph G with at most ∆(G) colors. This trivially implies that TREECOLOR is a ∆(G)-
approximation algorithm.

(c) Prove that TREECOLOR is not a constant-factor approximation algorithm.

9. The KNAPSACK problem can be defined as follows. We are given a finite set of elements X where
each element x ∈ X has a non-negative size and a non-negative value, along with an integer
capacity c. Our task is to determine the maximum total value among all subsets of X whose total
size is at most c. This problem is NP-hard. Specifically, the optimization version of SUBSETSUM is a
special case, where each element’s value is equal to its size.

14

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

Determine the approximation ratio of the following polynomial-time approximation algorithm.
Prove your answer is correct.

APPROXKNAPSACK(X , c):
return max{GREEDYKNAPSACK(X , c), PICKBESTONE(X , c)}

GREEDYKNAPSACK(X , c):
Sort X in decreasing order by the ratio value/size
S← 0; V ← 0
for i← 1 to n

if S+ size(x i)> c
return V

S← S+ size(x i)
V ← V + value(x i)

return V

PICKBESTONE(X , c):
Sort X in increasing order by size
V ← 0
for i← 1 to n

if size(x i)> c
return V

if value(x i)> V
V ← value(x i)

return V

10. In the bin packing problem, we are given a set of n items, each with weight between 0 and 1, and
we are asked to load the items into as few bins as possible, such that the total weight in each bin
is at most 1. It’s not hard to show that this problem is NP-Hard; this question asks you to analyze
a few common approximation algorithms. In each case, the input is an array W[1 .. n] of weights,
and the output is the number of bins used.

NEXTFIT(W[1 .. n]):
b← 0
Total[0]←∞

for i← 1 to n
if Total[b] +W[i]> 1

b← b+ 1
Total[b]←W[i]

else
Total[b]← Total[b] +W[i]

return b

FIRSTFIT(W[1 .. n]):
b← 0

for i← 1 to n
j← 1; f ound ← FALSE

while j ≤ b and f ound = FALSE

if Total[j] +W[i]≤ 1
Total[j]← Total[j] +W[i]
f ound ← TRUE

j← j+ 1

if f ound = FALSE

b← b+ 1
Total[b] =W[i]

return b

(a) Prove that NEXTFIT uses at most twice the optimal number of bins.

(b) Prove that FIRSTFIT uses at most twice the optimal number of bins.
?(c) Prove that if the weight array W is initially sorted in decreasing order, then FIRSTFIT uses at

most (4 ·OPT+ 1)/3 bins, where OPT is the optimal number of bins. The following facts may
be useful (but you need to prove them if your proof uses them):

• In the packing computed by FIRSTFIT, every item with weight more than 1/3 is placed in
one of the first OPT bins.

• FIRSTFIT places at most OPT− 1 items outside the first OPT bins.

11. Given a graph G with edge weights and an integer k, suppose we wish to partition the the vertices
of G into k subsets S1, S2, . . . , Sk so that the sum of the weights of the edges that cross the partition
(that is, have endpoints in different subsets) is as large as possible.

15

Algorithms Lecture 30: Approximation Algorithms [Fa’13]

(a) Describe an efficient (1− 1/k)-approximation algorithm for this problem.

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross the
partition. What approximation ratio does your algorithm from part (a) achieve for the new
problem? Justify your answer.

12. The lecture notes describe a (3/2)-approximation algorithm for the metric traveling salesman
problem. Here, we consider computing minimum-cost Hamiltonian paths. Our input consists of
a graph G whose edges have weights that satisfy the triangle inequality. Depending upon the
problem, we are also given zero, one, or two endpoints.

(a) If our input includes zero endpoints, describe a (3/2)-approximation to the problem of
computing a minimum cost Hamiltonian path.

(b) If our input includes one endpoint u, describe a (3/2)-approximation to the problem of
computing a minimum cost Hamiltonian path that starts at u.

(c) If our input includes two endpoints u and v, describe a (5/3)-approximation to the problem
of computing a minimum cost Hamiltonian path that starts at u and ends at v.

13. Suppose we are given a collection of n jobs to execute on a machine containing a row of m
processors. When the ith job is executed, it occupies a contiguous set of prox[i] processors for
time[i] seconds. A schedule for a set of jobs assigns each job an interval of processors and a starting
time, so that no processor works on more than one job at any time. The makespan of a schedule is
the time from the start to the finish of all jobs. Finally, the parallel scheduling problem asks us to
compute the schedule with the smallest possible makespan.

(a) Prove that the parallel scheduling problem is NP-hard.

(b) Give an algorithm that computes a 3-approximation of the minimum makespan of a set of
jobs in O(m log m) time. That is, if the minimum makespan is M , your algorithm should
compute a schedule with make-span at most 3M . You can assume that n is a power of 2.

14. Consider the greedy algorithm for metric TSP: start at an arbitrary vertex u, and at each step,
travel to the closest unvisited vertex.

(a) Show that the greedy algorithm for metric TSP is an O(log n)-approximation, where n is the
number of vertices. [Hint: Argue that the kth least expensive edge in the tour output by the
greedy algorithm has weight at most OPT/(n− k+ 1); try k = 1 and k = 2 first.]

?(b) Show that the greedy algorithm for metric TSP is no better than an O(log n)-approximation.
That is, describe an infinite family of weighted graphs such that the greedy algorithm returns
a cycle whose weight is Ω(log n) times the optimal TSP tour.

© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

16

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Approximation Algorithms
	Load Balancing
	Generalities
	Greedy Vertex Cover
	Set Cover and Hitting Set
	Vertex Cover, Again
	Traveling Salesman: The Bad News
	Traveling Salesman: The Good News
	k-center Clustering
	Approximation Schemes
	An FPTAS for Subset Sum

