Algorithms Lecture 17: Basic Graph Properties [Fa’13]

Obie looked at the seein’ eye dog. Then at the twenty-seven 8 by 10 color glossy pictures with
the circles and arrows and a paragraph on the back of each one. .. and then he looked at the
seein’ eye dog. And then at the twenty-seven 8 by 10 color glossy pictures with the circles
and arrows and a paragraph on the back of each one and began to cry.

Because Obie came to the realization that it was a typical case of American blind justice,
and there wasn’t nothin’ he could do about it, and the judge wasn’t gonna look at the twenty-
seven 8 by 10 color glossy pictures with the circles and arrows and a paragraph on the back of
each one explainin’ what each one was, to be used as evidence against us.

And we was fined fifty dollars and had to pick up the garbage. In the snow.
But that’s not what I’'m here to tell you about.
— Arlo Guthrie, “Alice’s Restaurant” (1966)

| study my Bible as | gather apples.

First | shake the whole tree, that the ripest might fall.
Then | climb the tree and shake each limb,

and then each branch and then each twig,

and then | look under each leaf.

— Martin Luther

17 Basic Graph Properties

17.1 Definitions

A graph is a pair of sets (V, E). V is a set of arbitrary objects that we call vertices' or nodes. E is a set
of pairs of vertices, which we call edges or (more rarely) arcs. In an undirected graph, the edges are
unordered pairs, or just sets of two vertices; I usually write uv instead of {u, v} to denote the undirected
edge between u and v. In a directed graph, the edges are ordered pairs of vertices; I usually write u—v
instead of (u, v) to denote the directed edge from u to v. We will usually be concerned only with simple
graphs, which do not have loops (edges from a vertex to itself) or parallel edges (multiple edges with
the same endpoints); non-simple graphs are sometimes called multigraphs.

Following standard (but admittedly confusing) practice, I'll also use V to denote the number of
vertices in a graph, and E to denote the number of edges. Thus, in an undirected graph, we have
0<EZ (‘2/), and in a directed graph, 0 < E <V(V —1).

For any edge uv in an undirected graph, we call u a neighbor of v and vice versa. The degree of a
node is its number of neighbors. In directed graphs, we have two kinds of neighbors. For any directed
edge u—v, we call u a predecessor of v and v a successor of u. The in-degree of a node is the number
of predecessors, which is the same as the number of edges going into the node. The out-degree is the
number of successors, or the number of edges going out of the node.

A graph G’ = (V’,E’) is a subgraph of G = (V,E)if V' CV and E' CE.

A path is a sequence of edges, where each successive pair of edges shares a vertex, and all other
edges are disjoint. An undirected graph is connected if there is a path from any vertex to any other vertex.
A disconnected graph consists of several components, which are its maximal connected subgraphs. Two
vertices are in the same component if and only if there is a path between them. Components are

!The singular of ‘vertices’ is vertex. The singular of ‘matrices’ is matrix. Unless you're speaking Italian, there is no such
thing as a vertice, a matrice, an indice, an appendice, a helice, an apice, a vortice, a radice, a simplice, a codice, a directrice, a
dominatrice, a Unice, a Kleenice, an Asterice, an Obelice, a Dogmatice, a Getafice, a Cacofonice, a Vitalstatistice, a Geriatrice,
or Jimi Hendrice! You will lose points for using any of these so-called words.

(© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

sometimes called “connected components”, but this usage is redundant; components are connected by
definition.

A cycle is a path that starts and ends at the same vertex, and has at least one edge. An undirected
graph is acyclic if no subgraph is a cycle; acyclic graphs are also called forests. A tree is a connected
acyclic graph, or equivalently, one component of a forest. A spanning tree of a graph G is a subgraph
that is a tree and contains every vertex of G. Of course, a graph can only have a spanning tree if it’s
connected. A spanning forest of G is a collection of spanning trees, one for each connected component
of G.

Directed graphs can contain directed paths and directed cycles. A directed graph is strongly
connected if there is a directed path from any vertex to any other. A directed graph is acyclic if it does
not contain a directed cycle; directed acyclic graphs are often called dags.

17.2 Abstract Representations and Examples

The most common way to visually represent graphs is by looking at an embedding. An embedding of
a graph maps each vertex to a point in the plane and each edge to a curve or straight line segment
between the two vertices. A graph is planar if it has an embedding where no two edges cross. The same
graph can have many different embeddings, so it is important not to confuse a particular embedding
with the graph itself. In particular, planar graphs can have non-planar embeddings!

()

® O

A non-planar embedding of a planar graph with nine vertices, thirteen edges, and two connected components,
and a planar embedding of the same graph.

However, embeddings are not the only useful representation of graphs. For example, the intersection
graph of a collection of objects has a node for every object and an edge for every intersecting pair.
Whether a particular graph can be represented as an intersection graph depends on what kind of
object you want to use for the vertices. Different types of objects—line segments, rectangles, circles,
etc.—define different classes of graphs. One particularly useful type of intersection graph is an interval
graph, whose vertices are intervals on the real line, with an edge between any two intervals that overlap.

d e
f
b d h
Ca g h f .
| —rm— |
f g
b ; e i
i b d m/————
C e 1 | —re—
(a) (b)

=S
(c)

The example graph is also the intersection graph of (a) a set of line segments, (b) a set of circles, and
(c) a set of intervals on the real line (stacked for visibility).

Another good example is the dependency graph of a recursive algorithm. Dependency graphs are
directed acyclic graphs. The vertices are all the distinct recursive subproblems that arise when executing
the algorithm on a particular input. There is an edge from one subproblem to another if evaluating the

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

second subproblem requires a recursive evaluation of the first. For example, for the Fibonacci recurrence

0 ifn=0,
F,=41 ifn=1,
F,_1+F,_ 5 otherwise,

the vertices of the dependency graph are the integers 0,1,2,...,n, and the edges are the pairs (i — 1)—1i
and (i — 2)—i for every integer i between 2 and n. For the edit distance recurrence

i ifi=0

j ifi=0
Edit(i,) = Edit(i —1,j)+1,

min{ Edit(i,j —1)+1, otherwise

Edit(i — 1,7 — 1) + [A[i] # B[j]]

the dependency graph is an m X n grid with diagonals. Dynamic programming works efficiently for any
recurrence that has a reasonably small dependency graph; a proper evaluation order ensures that each
subproblem is visited after its predecessors.

Another interesting example is the configuration graph of a game, puzzle, or mechanism like
tic-tac-toe, checkers, the Rubik’s Cube, the Towers of Hanoi, or a Turing machine. The vertices of the
configuration graph are all the valid configurations of the puzzle; there is an edge from one configuration
to another if it is possible to transform one configuration into the other with a simple move. (Obviously,
the precise definition depends on what moves are allowed.) Even for reasonably simple mechanisms, the
configuration graph can be extremely complex, and we typically only have access to local information
about the graph.

The configuration graph of the 4-disk Tower of Hanoi.

Finally, the finite-state automata used in formal language theory are just labeled directed graphs.
A deterministic finite-state automaton is usually formally defined as a 5-tuple M = (Q, %, 6, qq,A),
where Q is a finite set of states, Y. is a finite set called the alphabet, 6: Q X X — Q is a transition function,
qo € Q is the initial state, and A C Q is the set of accepting states. But it is often more useful to think
of M as a directed graph G,; whose vertices are the states Q, and whose edges have the form q—6&(q, x)
for every state g € Q and character x € X. Then basic questions about the language accepted by M can
be phrased as questions about the graph G,,;. For example, the language accepted by M is empty if and
only if there is no path in G, from the start state/vertex q, to an accepting state/vertex.

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

It’s important not to confuse these examples/representations of graphs with the actual formal
definition: A graph is always a pair of sets (V, E), where V is an arbitrary finite set, and E is a set of pairs
(either ordered or unordered) of elements of V.

17.3 Graph Data Structures

In practice, graphs are represented by two data structures: adjacency matrices’> and adjacency lists.
The adjacency matrix of a graph G is a V x V matrix, in which each entry indicates whether a
particular edge is or is not in the graph:

Ali,jl:=[(i,)) €E].

For undirected graphs, the adjacency matrix is always symmetric: A[i, j] =A[j,i]. Since we don’t allow
edges from a vertex to itself, the diagonal elements A[i,i] are all zeros.

Given an adjacency matrix, we can decide in ©(1) time whether two vertices are connected by an
edge just by looking in the appropriate slot in the matrix. We can also list all the neighbors of a vertex
in ©(V) time by scanning the corresponding row (or column). This is optimal in the worst case, since
a vertex can have up to V — 1 neighbors; however, if a vertex has few neighbors, we may still have
to examine every entry in the row to see them all. Similarly, adjacency matrices require ©(V?) space,
regardless of how many edges the graph actually has, so it is only space-efficient for very dense graphs.

Qu

OCORrR O KHRKROIn

=)~
~lc)+(d{d~(e)
~le)~(b}>(d~(d)
(e~
(-6~
~(e)~(d)
~(h)-~(1)
(e~ (1)
~(h)~(g)

Adjacency matrix and adjacency list representations for the example graph.

O O O OO +=KFOlR
QOO R R RFRORC
O OO R, ORRo
OO0 0O RMH=HOO O«
= O O OO O O Ol
O-= OO OO oo~
_ O O OO OO O~

Coor~rrRORRO
[~ [=[e [w]s [a]o[=]=]

~ 30 YN0 Q0 o Q
o

o
[«
o
—_
—
o

For sparse graphs—graphs with relatively few edges—adjacency lists are usually a better choice. An
adjacency list is an array of linked lists, one list per vertex. Each linked list stores the neighbors of
the corresponding vertex. For undirected graphs, each edge (u, v) is stored twice, once in u’s neighbor
list and once in v’s neighbor list; for directed graphs, each edge is stored only once. Either way,
the overall space required for an adjacency list is O(V + E). Listing the neighbors of a node v takes
O(1 + deg(v)) time; just scan the neighbor list. Similarly, we can determine whether (u, v) is an edge in
O(1 + deg(u)) time by scanning the neighbor list of u. For undirected graphs, we can improve the time
to O(1 + min{deg(u), deg(v)}) by simultaneously scanning the neighbor lists of both u and v, stopping
either we locate the edge or when we fall of the end of a list.

The adjacency list data structure should immediately remind you of hash tables with chaining; the
two data structures are identical.® Just as with chained hash tables, we can make adjacency lists more
efficient by using something other than a linked list to store the neighbors of each vertex. For example,
if we use a hash table with constant load factor, when we can detect edges in O(1) time, just as with an

2See footnote 1.
3For some reason, adjacency lists are always drawn with horizontal lists, while chained hash tables are always drawn with
vertical lists. Don’t ask me; I just work here.

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

adjacency matrix. (Most hash give us only O(1) expected time, but we can get O(1) worst-case time using
cuckoo hashing.)

The following table summarizes the performance of the various standard graph data structures.
Stars™ indicate expected amortized time bounds for maintaining dynamic hash tables.

Adjacency matrix Standard adjacency list Adjacency list
: (linked lists) i (hash tables)
Space e(v?) e(V +E) . O(V+E)
 TimetotestifuveE | o) - 0(1+min{deg(u) +degM=0(V) | 0o(1)
Time to test if u—v € E o(1) 0(1 + deg(w)) = O(V) 01
Time to list the neighbors of v o(V) O(1 +deg(v)) O(1 + deg(v))
Time to list all edges o(v?) O(V+E) O(V+E)
Time to add edge uv 0(1) 0(1) o(1)*
Time to delete edge uv o(1) O(deg(u) + deg(v)) =0(V) o(1)*

At this point, one might reasonably wonder why anyone would ever use an adjacency matrix; after all,
adjacency lists with hash tables support the same operations in the same time, using less space. Similarly,
why would anyone use linked lists in an adjacency list structure to store neighbors, instead of hash
tables? Although the main reason in practice is almost surely tradition—If it was good enough for your
grandfather’s code, it should be good enough for yours!—there are some more principled arguments.
One reason is that the standard adjacency lists are usually good enough; most graph algorithms never
actually ask whether a given edge is present or absent! Another reason is that for sufficiently dense
graphs, adjacency matrices are simpler and more efficient in practice, because they avoid the overhead
of chasing pointers or computing hash functions.

But perhaps the most compelling reason is that many graphs are implicitly represented by adjacency
matrices and standard adjacency lists. For example, intersection graphs are usually represented as a list
of the underlying geometric objects. As long as we can test whether two objects intersect in constant
time, we can apply any graph algorithm to an intersection graph by pretending that it is stored explicitly
as an adjacency matrix.

Similarly, any data structure composed from records with pointers between them can be seen as a
directed graph; graph algorithms can be applied to these data structures by pretending that the graph is
stored in a standard adjacency list. Similarly, we can apply any graph algorithm to a configuration graph
as though it were given to us as a standard adjacency list, provided we can enumerate all possible moves
from a given configuration in constant time each. In both of these contexts, we can enumerate the edges
leaving any vertex in time proportional to its degree, but we cannot necessarily determine in constant
time if two vertices are connected. (Is there a pointer from this record to that record? Can we get from
this configuration to that configuration in one move?) Thus, a standard adjacency list, with neighbors
stored in linked lists, is the appropriate model data structure.

17.4 Traversing Connected Graphs

To keep things simple, we’ll consider only undirected graphs for the rest of this lecture, although the
algorithms also work for directed graphs with minimal changes.

Suppose we want to visit every node in a connected graph (represented either explicitly or implicitly).
Perhaps the simplest graph-traversal algorithm is depth-first search. This algorithm can be written either
recursively or iteratively. It’s exactly the same algorithm either way; the only difference is that we can
actually see the “recursion” stack in the non-recursive version. Both versions are initially passed a source
vertex s.

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

ITERATIVEDFS(s):
PusH(s)
RECURSIVEDFS(v): . .
P while the stack is not empty
if v is unmarked
v < Pop
mark v e
if v is unmarked
for each edge vw mark v
RECURSIVEDFS(w) for each edge yw
Pusu(w)

Depth-first search is just one (perhaps the most common) species of a general family of graph
traversal algorithms. The generic graph traversal algorithm stores a set of candidate edges in some data
structure that I'll call a “bag”. The only important properties of a “bag” are that we can put stuff into it
and then later take stuff back out. (In C++ terms, think of the bag as a template for a real data structure.)
A stack is a particular type of bag, but certainly not the only one. Here is the generic traversal algorithm:

TRAVERSE(S):

put s into the bag
while the bag is not empty
take v from the bag
if v is unmarked
mark v
for each edge vw
put w into the bag

This traversal algorithm clearly marks each vertex in the graph at most once. In order to show that it
visits every node in a connected graph at least once, we modify the algorithm slightly; the modifications
are highlighted in red. Instead of keeping vertices in the bag, the modified algorithm stores pairs of
vertices. This modification allows us to remember, whenever we visit a vertex v for the first time, which
previously-visited neighbor vertex put v into the bag. We call this earlier vertex the parent of v.

TRAVERSE(S):
put (@,s) in bag
while the bag is not empty

take (p,v) from the bag)
if v is unmarked

mark v

parent(v) < p

for each edge vw @)

put (v,w) into the bag (*%)

Lemma 1. TrRAVERSE(s) marks every vertex in any connected graph exactly once, and the set of pairs
(v, parent(v)) with parent(v) # @ defines a spanning tree of the graph.

Proof: The algorithm marks s. Let v be any vertex other than s, and let (s, ...,u, v) be the path from s
to v with the minimum number of edges. Since the graph is connected, such a path always exists. (If s
and v are neighbors, then u = s, and the path has just one edge.) If the algorithm marks u, then it must
put (u, v) into the bag, so it must later take (u, v) out of the bag, at which point v must be marked. Thus,
by induction on the shortest-path distance from s, the algorithm marks every vertex in the graph, which
implies that parent(v) is well-defined for every vertex v.

The algorithm clearly marks every vertex at most once, so it must mark every vertex exactly once.

Call any pair (v, parent(v)) with parent(v) # @ a parent edge. For any node v, the path of parent
edges (v, parent(v), parent(parent(v)),...) eventually leads back to s, so the set of parent edges form a

6

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

connected graph. Clearly, both endpoints of every parent edge are marked, and the number of parent
edges is exactly one less than the number of vertices. Thus, the parent edges form a spanning tree. [

The exact running time of the traversal algorithm depends on how the graph is represented and
what data structure is used as the ‘bag’, but we can make a few general observations. Because each
vertex is marked at most once, the for loop () is executed at most V times. Each edge uv is put into the
bag exactly twice; once as the pair (u, v) and once as the pair (v,u), so line (x*) is executed at most 2E
times. Finally, we can’t take more things out of the bag than we put in, so line (x) is executed at most
2E + 1 times.

17.5 Examples

Let’s first assume that the graph is represented by a standard adjacency list, so that the overhead of the
for loop () is only constant time per edge.

o If we implement the ‘bag’ using a stack, we recover our original depth-first search algorithm. Each
execution of (%) or (%) takes constant time, so the algorithms runs in O(V + E) time . If the
graph is connected, we have V < E + 1, and so we can simplify the running time to O(E). The
spanning tree formed by the parent edges is called a depth-first spanning tree. The exact shape
of the tree depends on the start vertex and on the order that neighbors are visited in the for loop
(1), but in general, depth-first spanning trees are long and skinny.

o If we use a queue instead of a stack, we get breadth-first search. Again, each execution of (x)
or (**) takes constant time, so the overall running time for connected graphs is still O(E). In this
case, the breadth-first spanning tree formed by the parent edges contains shortest paths from the
start vertex s to every other vertex in its connected component. We’ll see shortest paths again in a
future lecture. Again, exact shape of a breadth-first spanning tree depends on the start vertex and
on the order that neighbors are visited in the for loop (1), but in general, breadth-first spanning
trees are short and bushy.

A depth-first spanning tree and a breadth-first spanning tree
of one component of the example graph, with start vertex a.

e Now suppose the edges of the graph are weighted. If we implement the ‘bag’ using a priority queue,
always extracting the minimum-weight edge in line (%), the resulting algorithm is reasonably
called shortest-first search. In this case, each execution of (x) or (xx) takes O(log E) time, so the
overall running time is O(V + E log E), which simplifies to O(E logE) if the graph is connected.
For this algorithm, the set of parent edges form the minimum spanning tree of the connected
component of s. Surprisingly, as long as all the edge weights are distinct, the resulting tree does
not depend on the start vertex or the order that neighbors are visited; in this case, there is only
one minimum spanning tree. We’ll see minimum spanning trees again in the next lecture.

If the graph is represented using an adjacency matrix instead of an adjacency list, finding all the
neighbors of each vertex in line (1) takes O(V) time. Thus, depth- and breadth-first search each run in
0O(V?) time, and ‘shortest-first search’ runs in O(V?2 + Elog E) = O(V2log V) time.

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

17.6 Searching Disconnected Graphs

If the graph is disconnected, then TRAVERSE(s) only visits the nodes in the connected component of the
start vertex s. If we want to visit all the nodes in every component, we can use the following ‘wrapper’
around our generic traversal algorithm. Since TRAVERSE computes a spanning tree of one component,
TRAVERSEALL computes a spanning forest of the entire graph.

TRAVERSEALL(S):

for all vertices v
if v is unmarked
TRAVERSE(V)

Surprisingly, a few well-known algorithms textbooks claim that this wrapper can only be used with
depth-first search. They’re wrong.

Exercises

1. Prove that the following definitions are all equivalent.

A tree is a connected acyclic graph.

A tree is one component of a forest.

A tree is a connected graph with at most V — 1 edges.

A tree is a minimal connected graph; removing any edge makes the graph disconnected.

A tree is an acyclic graph with at least V — 1 edges.

A tree is a maximal acyclic graph; adding an edge between any two vertices creates a cycle.

2. Prove that any connected acyclic graph with n > 2 vertices has at least two vertices with degree 1.
Do not use the words “tree” or “leaf”, or any well-known properties of trees; your proof should
follow entirely from the definitions of “connected” and “acyclic”.

3. Let G be a connected graph, and let T be a depth-first spanning tree of G rooted at some node v.
Prove that if T is also a breadth-first spanning tree of G rooted at v, then G =T.

4. Whenever groups of pigeons gather, they instinctively establish a pecking order. For any pair
of pigeons, one pigeon always pecks the other, driving it away from food or potential mates.
The same pair of pigeons always chooses the same pecking order, even after years of separation,
no matter what other pigeons are around. Surprisingly, the overall pecking order can contain
cycles—for example, pigeon A pecks pigeon B, which pecks pigeon C, which pecks pigeon A.

(a) Prove that any finite set of pigeons can be arranged in a row from left to right so that every
pigeon pecks the pigeon immediately to its left. Pretty please.

(b) Suppose you are given a directed graph representing the pecking relationships among a set
of n pigeons. The graph contains one vertex per pigeon, and it contains an edge i—j if and
only if pigeon i pecks pigeon j. Describe and analyze an algorithm to compute a pecking
order for the pigeons, as guaranteed by part (a).

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

5. You are helping a group of ethnographers analyze some oral history data they have collected by
interviewing members of a village to learn about the lives of people lived there over the last two
hundred years. From the interviews, you have learned about a set of people, all now deceased,
whom we will denote Py, P,,...,P,. The ethnographers have collected several facts about the
lifespans of these people. Specifically, for some pairs (P;, P;), the ethnographers have learned one
of the following facts:

(a) P; died before P; was born.

(b) P; and P; were both alive at some moment.

Naturally, the ethnographers are not sure that their facts are correct; memories are not so good,
and all this information was passed down by word of mouth. So they’d like you to determine
whether the data they have collected is at least internally consistent, in the sense that there could
have existed a set of people for which all the facts they have learned simultaneously hold.

Describe and analyze and algorithm to answer the ethnographers’ problem. Your algorithm
should either output possible dates of birth and death that are consistent with all the stated facts,
or it should report correctly that no such dates exist.

6. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R, such that
every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given undirected
graph is bipartite.

7. An Euler tour of a graph G is a closed walk through G that traverses every edge of G exactly once.

(a) Prove that a connected graph G has an Euler tour if and only if every vertex has even degree.

(b) Describe and analyze an algorithm to compute an Euler tour in a given graph, or correctly
report that no such graph exists.

8. The d-dimensional hypercube is the graph defined as follows. There are 2d vertices, each labeled
with a different string of d bits. Two vertices are joined by an edge if their labels differ in exactly
one bit.

(a) A Hamiltonian cycle in a graph G is a cycle of edges in G that visits every vertex of G exactly
once. Prove that for all d > 2, the d-dimensional hypercube has a Hamiltonian cycle.

(b) Which hypercubes have an Euler tour (a closed walk that traverses every edge exactly once)?
[Hint: This is very easy.]

9. Snakes and Ladders is a classic board game, originating in India no later than the 16th century.
The board consists of an n x n grid of squares, numbered consecutively from 1 to n?, starting in
the bottom left corner and proceeding row by row from bottom to top, with rows alternating to
the left and right. Certain pairs of squares in this grid, always in different rows, are connected by
either “snakes” (leading down) or “ladders” (leading up). Each square can be an endpoint of at
most one snake or ladder.

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

10.

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance your token
up to k positions, for some fixed constant k. If the token ends the move at the top end of a snake,
it slides down to the bottom of that snake. Similarly, if the token ends the move at the bottom end
of a ladder, it climbs up to the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required for the
token to reach the last square of the grid.

Racetrack (also known as Graph Racers and Vector Rally) is a two-player paper-and-pencil racing
game that Jeff played on the bus in 5th grade.” The game is played with a track drawn on a sheet
of graph paper. The players alternately choose a sequence of grid points that represent the motion
of a car around the track, subject to certain constraints explained below.

Each car has a position and a velocity, both with integer x- and y-coordinates. A subset of
grid squares is marked as the starting area, and another subset is marked as the finishing area.
The initial position of each car is chosen by the player somewhere in the starting area; the initial
velocity of each car is always (0, 0). At each step, the player optionally increments or decrements
either or both coordinates of the car’s velocity; in other words, each component of the velocity
can change by at most 1 in a single step. The car’s new position is then determined by adding the
new velocity to the car’s previous position. The new position must be inside the track; otherwise,
the car crashes and that player loses the race. The race ends when the first car reaches a position
inside the finishing area.

Suppose the racetrack is represented by an n X n array of bits, where each 0 bit represents a
grid point inside the track, each 1 bit represents a grid point outside the track, the ‘starting area’ is
the first column, and the ‘finishing area’ is the last column.

Describe and analyze an algorithm to find the minimum number of steps required to move a
car from the starting line to the finish line of a given racetrack. [Hint: Build a graph. What are the
vertices? What are the edges? What problem is this?]

#The actual game is a bit more complicated than the version described here. See http://harmmade.com/vectorracer/ for an
excellent online version.

10

http://harmmade.com/vectorracer/

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

velocity | position

(0,0) (1,5)
(1,0) (2,5) -
2,-1| 4,49 >
(3,0 | 7.4 0
(2,1) (9,5) I
(1,2) | (10,7)

(0,3) | (10,10)
(-1,4) (9,14)
(0,3) (9,17)
(1,2) |(10,19)
(2,2) | @(12,21)
(2,1) | (14,22)
(2,0) | (16,22)
(1,-1) | (17,21)
(2,-1) | (19,20)
(3,0) | (22,20)
(3,1) | (25,21)

START

A 16-step Racetrack run, on a 25 x 25 track. This is not the shortest run on this track.

*11. Draughts/checkers is a game played on an m x m grid of squares, alternately colored light and
dark. (The game is usually played on an 8 x 8 or 10 x 10 board, but the rules easily generalize to
any board size.) Each dark square is occupied by at most one game piece (usually called a checker
in the U.S.), which is either black or white; light squares are always empty. One player (‘White’)
moves the white pieces; the other (‘Black’) moves the black pieces.

Consider the following simple version of the game, essentially American checkers or British
draughts, but where every piece is a king.” Pieces can be moved in any of the four diagonal
directions, either one or two steps at a time. On each turn, a player either moves one of her pieces
one step diagonally into an empty square, or makes a series of jumps with one of her checkers. In a
single jump, a piece moves to an empty square two steps away in any diagonal direction, but only
if the intermediate square is occupied by a piece of the opposite color; this enemy piece is captured
and immediately removed from the board. Multiple jumps are allowed in a single turn as long as
they are made by the same piece. A player wins if her opponent has no pieces left on the board.

Describe an algorithm that correctly determines whether White can capture every black piece,
thereby winning the game, in a single turn. The input consists of the width of the board (m), a list
of positions of white pieces, and a list of positions of black pieces. For full credit, your algorithm
should run in O(n) time, where n is the total number of pieces. [Hint: The greedy strategy—make
arbitrary jumps until you get stuck—does not always find a winning sequence of jumps even when
one exists. See problem 7. Parity, parity, parity.]

12. A rolling die mage is a puzzle involving a standard six-sided die (a cube with numbers on each
side) and a grid of squares. You should imagine the grid lying on top of a table; the die always
rests on and exactly covers one square. In a single step, you can roll the die 90 degrees around

>Most other variants of draughts have “lying kings’, which behave very differently than what’s described here. In particular,
if we allow flying kings, it is actually NP-hard to determine which move captures the most enemy pieces. The most common
international version of draughts also has a forced-capture rule, which requires each player to capture the maximum possible
number of enemy pieces in each move. Thus, just following the rules is NP-hard.

11

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

o
o
)
o

@ |
O
(ol

|
x
ang

e e e)

o] ©) hd
White wins in one turn.

() :k.0.0 (] :k; .O
Enan | HEN n
7% 0) e e

o @ e e e @
SuEamafuunfl Euluta®

White cannot win in one turn from either of these positions.

one of its bottom edges, moving it to an adjacent square one step north, south, east, or west.

R e
ST oS

Rolling a die.

Some squares in the grid may be blocked; the die can never rest on a blocked square. Other
squares may be labeled with a number; whenever the die rests on a labeled square, the number of
pips on the top face of the die must equal the label. Squares that are neither labeled nor marked
are free. You may not roll the die off the edges of the grid. A rolling die maze is solvable if it is
possible to place a die on the lower left square and roll it to the upper right square under these
constraints.

For example, here are two rolling die mazes. Black squares are blocked. The maze on the left
can be solved by placing the die on the lower left square with 1 pip on the top face, and then
rolling it north, then north, then east, then east. The maze on the right is not solvable.

1 B
1] 1]

Two rolling die mazes. Only the maze on the left is solvable.

(a) Suppose the input is a two-dimensional array L[1..n][1..n], where each entry L[i][j] stores

12

Algorithms Lecture 17: Basic Graph Properties [Fa’13]

the label of the square in the ith row and jth column, where O means the square is free
and —1 means the square is blocked. Describe and analyze a polynomial-time algorithm to
determine whether the given rolling die maze is solvable.

*(b) Now suppose the maze is specified implicitly by a list of labeled and blocked squares.
Specifically, suppose the input consists of an integer M, specifying the height and width of
the maze, and an array S[1..n], where each entry S[i] is a triple (x, y, L) indicating that
square (x, y) has label L. As in the explicit encoding, label —1 indicates that the square is
blocked; free squares are not listed in S at all. Describe and analyze an efficient algorithm to
determine whether the given rolling die maze is solvable. For full credit, the running time of
your algorithm should be polynomial in the input size n.

[Hint: You have some freedom in how to place the initial die. There are rolling die mazes that can
only be solved if the initial position is chosen correctly.]

(© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

13

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Basic Graph Properties
	Definitions
	Abstract Representations and Examples
	Graph Data Structures
	Traversing Connected Graphs
	Examples
	Searching Disconnected Graphs

