
Algorithms Lecture 14: Amortized Analysis [Fa’13]

The goode workes that men don whil they ben in good lif al amortised by
synne folwyng.

— Geoffrey Chaucer, “The Persones [Parson’s] Tale” (c.1400)

I will gladly pay you Tuesday for a hamburger today.

— J. Wellington Wimpy, “Thimble Theatre” (1931)

I want my two dollars!

— Johnny Gasparini [Demian Slade], “Better Off Dead” (1985)

14 Amortized Analysis

14.1 Incrementing a Binary Counter

It is a straightforward exercise in induction, which often appears on Homework 0, to prove that any
non-negative integer n can be represented as the sum of distinct powers of 2. Although some students
correctly use induction on the number of bits—pulling off either the least significant bit or the most
significant bit in the binary representation and letting the Recursion Fairy convert the remainder—the
most commonly submitted proof uses induction on the value of the integer, as follows:

Proof: The base case n= 0 is trivial. For any n> 0, the inductive hypothesis implies that there is set of
distinct powers of 2 whose sum is n− 1. If we add 20 to this set, we obtain a multiset of powers of two
whose sum is n, which might contain two copies of 20. Then as long as there are two copies of any 2i

in the multiset, we remove them both and insert 2i+1 in their place. The sum of the elements of the
multiset is unchanged by this replacement, because 2i+1 = 2i + 2i . Each iteration decreases the size of
the multiset by 1, so the replacement process must eventually terminate. When it does terminate, we
have a set of distinct powers of 2 whose sum is n. �

This proof is describing an algorithm to increment a binary counter from n− 1 to n. Here’s a more
formal (and shorter!) description of the algorithm to add 1 to a binary counter. The input B is an
(infinite) array of bits, where B[i] = 1 if and only if 2i appears in the sum.

INCREMENT(B[0 ..∞]):
i← 0
while B[i] = 1

B[i]← 0
i← i+ 1

B[i]← 1

We’ve already argued that INCREMENT must terminate, but how quickly? Obviously, the running time
depends on the array of bits passed as input. If the first k bits are all 1s, then INCREMENT takes Θ(k) time.
The binary representation of any positive integer n is exactly blg nc+ 1 bits long. Thus, if B represents
an integer between 0 and n, INCREMENT takes Θ(log n) time in the worst case.

14.2 Counting from 0 to n

Now suppose we call INCREMENT n times, starting with a zero counter. How long does it take to count
from 0 to n? If we only use the worst-case running time for each INCREMENT, we get an upper bound
of O(n log n) on the total running time. Although this bound is correct, we can do better; in fact, the
total running time is only Θ(n). This section describes several general methods for deriving, or at least
proving, this linear time bound. Many (perhaps even all) of these methods are logically equivalent, but
different formulations are more natural for different problems.
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14.2.1 Summation

Perhaps the simplest way to derive a tighter bound is to observe that INCREMENT doesn’t flip Θ(log n) bits
every time it is called. The least significant bit B[0] does flip in every iteration, but B[1] only flips every
other iteration, B[2] flips every 4th iteration, and in general, B[i] flips every 2ith iteration. Because we
start with an array full of 0’s, a sequence of n INCREMENTs flips each bit B[i] exactly bn/2ic times. Thus,
the total number of bit-flips for the entire sequence is

blg nc
∑

i=0

� n

2i

�

<

∞
∑

i=0

n

2i = 2n.

(More precisely, the number of flips is exactly 2n−#1(n), where #1(n) is the number of 1 bits in the
binary representation of n.) Thus, on average, each call to INCREMENT flips just less than two bits, and
therefore runs in constant time.

This sense of “on average” is quite different from the averaging we consider with randomized
algorithms. There is no probability involved; we are averaging over a sequence of operations, not
the possible running times of a single operation. This averaging idea is called amortization—the
amortized time for each INCREMENT is O(1). Amortization is a sleazy clever trick used by accountants to
average large one-time costs over long periods of time; the most common example is calculating uniform
payments for a loan, even though the borrower is paying interest on less and less capital over time.
For this reason, it is common to use “cost” as a synonym for running time in the context of amortized
analysis. Thus, the worst-case cost of INCREMENT is O(log n), but the amortized cost is only O(1).

Most textbooks call this particular technique “the aggregate method”, or “aggregate analysis”, but
these are just fancy names for computing the total cost of all operations and then dividing by the number
of operations.

The Summation Method. Let T(n) be the worst-case running time for a sequence of n
operations. The amortized time for each operation is T (n)/n.

14.2.2 Taxation

A second method we can use to derive amortized bounds is called either the accounting method or the
taxation method. Suppose it costs us a dollar to toggle a bit, so we can measure the running time of our
algorithm in dollars. Time is money!

Instead of paying for each bit flip when it happens, the Increment Revenue Service charges a two-
dollar increment tax whenever we want to set a bit from zero to one. One of those dollars is spent
changing the bit from zero to one; the other is stored away as credit until we need to reset the same bit
to zero. The key point here is that we always have enough credit saved up to pay for the next INCREMENT.
The amortized cost of an INCREMENT is the total tax it incurs, which is exactly 2 dollars, since each
INCREMENT changes just one bit from 0 to 1.

It is often useful to distribute the tax income to specific pieces of the data structure. For example, for
each INCREMENT, we could store one of the two dollars on the single bit that is set for 0 to 1, so that that
bit can pay to reset itself back to zero later on.

Taxation Method 1. Certain steps in the algorithm charge you taxes, so that the total cost
incurred by the algorithm is never more than the total tax you pay. The amortized cost of an
operation is the overall tax charged to you during that operation.
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A different way to schedule the taxes is for every bit to charge us a tax at every operation, regardless
of whether the bit changes of not. Specifically, each bit B[i] charges a tax of 1/2i dollars for each
INCREMENT. The total tax we are charged during each INCREMENT is

∑

i≥0 2−i = 2 dollars. Every time a
bit B[i] actually needs to be flipped, it has collected exactly $1, which is just enough for us to pay for
the flip.

Taxation Method 2. Certain portions of the data structure charge you taxes at each oper-
ation, so that the total cost of maintaining the data structure is never more than the total
taxes you pay. The amortized cost of an operation is the overall tax you pay during that
operation.

In both of the taxation methods, our task as algorithm analysts is to come up with an appropriate
‘tax schedule’. Different ‘schedules’ can result in different amortized time bounds. The tightest bounds
are obtained from tax schedules that just barely stay in the black.

14.2.3 Charging

Another common method of amortized analysis involves charging the cost of some steps to some other,
earlier steps. The method is similar to taxation, except that we focus on where each unit of tax is (or will
be) spent, rather than where is it collected. By charging the cost of some operations to earlier operations,
we are overestimating the total cost of any sequence of operations, since we pay for some charges from
future operations that may never actually occur.

The Charging Method. Charge the cost of some steps of the algorithm to earlier steps, or
to steps in some earlier operation. The amortized cost of the algorithm is its actual running
time, minus its total charges to past operations, plus its total charge from future operations.

For example, in our binary counter, suppose we charge the cost of clearing a bit (changing its value
from 1 to 0) to the previous operation that sets that bit (changing its value from 0 to 1). If we flip k
bits during an INCREMENT, we charge k− 1 of those bit-flips to earlier bit-flips. Conversely, the single
operation that sets a bit receives at most one unit of charge from the next time that bit is cleared. So
instead of paying for k bit-flips, we pay for at most two: one for actually setting a bit, plus at most one
charge from the future for clearing that same bit. Thus, the total amortized cost of the INCREMENT is at
most two bit-flips.

We can visualize this charging scheme as follows. For each integer i, we represent the running time
of the ith INCREMENT as a stack of blocks, one for each bit flip. The jth block in the ith stack is white if
the ith INCREMENT changes B[ j] from 0 to 1, and shaded if the ith INCREMENT changes B[ j] from 1 to 0.
If we moved each shaded block onto the white block directly to its left, there would at most two blocks
in each stack.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Charging scheme for a binary counter.
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14.2.4 Potential

The most powerful method (and the hardest to use) builds on a physics metaphor of ‘potential energy’.
Instead of associating costs or taxes with particular operations or pieces of the data structure, we
represent prepaid work as potential that can be spent on later operations. The potential is a function of
the entire data structure.

Let Di denote our data structure after i operations have been performed, and let Φi denote its
potential. Let ci denote the actual cost of the ith operation (which changes Di−1 into Di). Then the
amortized cost of the ith operation, denoted ai, is defined to be the actual cost plus the increase in
potential:

ai = ci +Φi −Φi−1

So the total amortized cost of n operations is the actual total cost plus the total increase in potential:

n
∑

i=1

ai =
n
∑

i=1

�

ci +Φi −Φi−1
�

=
n
∑

i=1

ci +Φn−Φ0.

A potential function is valid if Φi −Φ0 ≥ 0 for all i. If the potential function is valid, then the total actual
cost of any sequence of operations is always less than the total amortized cost:

n
∑

i=1

ci =
n
∑

i=1

ai −Φn ≤
n
∑

i=1

ai .

For our binary counter example, we can define the potential Φi after the ith INCREMENT to be the
number of bits with value 1. Initially, all bits are equal to zero, so Φ0 = 0, and clearly Φi > 0 for all
i > 0, so this is a valid potential function. We can describe both the actual cost of an INCREMENT and the
change in potential in terms of the number of bits set to 1 and reset to 0.

ci = #bits changed from 0 to 1+#bits changed from 1 to 0

Φi −Φi−1 = #bits changed from 0 to 1−#bits changed from 1 to 0

Thus, the amortized cost of the ith INCREMENT is

ai = ci +Φi −Φi−1 = 2×#bits changed from 0 to 1

Since INCREMENT changes only one bit from 0 to 1, the amortized cost INCREMENT is 2.

The Potential Method. Define a potential function for the data structure that is initially
equal to zero and is always non-negative. The amortized cost of an operation is its actual
cost plus the change in potential.

For this particular example, the potential is precisely the total unspent taxes paid using the taxation
method, so it should be no surprise that we obtain precisely the same amortized cost. In general,
however, there may be no natural way to interpret change in potential as “taxes” or “charges”. Taxation
and charging are useful when there is a convenient way to distribute costs to specific steps in the
algorithm or components of the data structure. Potential arguments allow us to argue more globally
when a local distribution is difficult or impossible.

Different potential functions can lead to different amortized time bounds. The trick to using the
potential method is to come up with the best possible potential function. A good potential function goes
up a little during any cheap/fast operation, and goes down a lot during any expensive/slow operation.
Unfortunately, there is no general technique for finding good potential functions, except to play around
with the data structure and try lots of possibilities (most of which won’t work).
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14.3 Incrementing and Decrementing

Now suppose we wanted a binary counter that we can both increment and decrement efficiently. A
standard binary counter won’t work, even in an amortized sense; if we alternate between 2k and 2k − 1,
every operation costs Θ(k) time.

A nice alternative is represent each integer as a pair (P, N) of bit strings, subject to the invariant
P ∧ N = 0 where ∧ represents bit-wise AND. In other words,

For every index i, at most one of the bits P[i] and N[i] is equal to 1.

If we interpret P and N as binary numbers, the actual value of the counter is P − N ; thus, intuitively, P
represents the “positive” part of the pair, and N represents the “negative” part. Unlike the standard binary
representation, this new representation is not unique, except for zero, which can only be represented by
the pair (0,0). In fact, every positive or negative integer can be represented has an infinite number of
distinct representations.

We can increment and decrement our double binary counter as follows. Intuitively, the INCREMENT

algorithm increments P, and the DECREMENT algorithm increments N ; however, in both cases, we must
change the increment algorithm slightly to maintain the invariant P ∧ N = 0.

INCREMENT(P, N):
i← 0
while P[i] = 1

P[i]← 0
i← i+ 1

if N[i] = 1
N[i]← 0

else
P[i]← 1

DECREMENT(P, N):
i← 0
while N[i] = 1

N[i]← 0
i← i+ 1

if P[i] = 1
P[i]← 0

else
N[i]← 1

P = 10001
N = 01100
P − N = 5

++−→
P = 10010
N = 01100
P − N = 6

++−→
P = 10011
N = 01100
P − N = 7

++−→
P = 10000
N = 01000
P − N = 8

−−−→
P = 10000
N = 01001
P − N = 7

−−−→
P = 10000
N = 01010
P − N = 6

++−→
P = 10001
N = 01010
P − N = 7

Incrementing and decrementing a double-binary counter.

Now suppose we start from (0,0) and apply a sequence of n INCREMENTs and DECREMENTs. In
the worst case, each operation takes Θ(log n) time, but what is the amortized cost? We can’t use the
aggregate method here, because we don’t know what the sequence of operations looks like.

What about taxation? It’s not hard to prove (by induction, of course) that after either P[i] or N[i] is
set to 1, there must be at least 2i operations, either INCREMENTs or DECREMENTs, before that bit is reset
to 0. So if each bit P[i] and N[i] pays a tax of 2−i at each operation, we will always have enough money
to pay for the next operation. Thus, the amortized cost of each operation is at most

∑

i≥0 2 · 2−i = 4.
We can get even better amortized time bounds using the potential method. Define the potential Φi

to be the number of 1-bits in both P and N after i operations. Just as before, we have

ci = #bits changed from 0 to 1+#bits changed from 1 to 0

Φi −Φi−1 = #bits changed from 0 to 1−#bits changed from 1 to 0

=⇒ ai = 2×#bits changed from 0 to 1

Since each operation changes at most one bit to 1, the ith operation has amortized cost ai ≤ 2.

5



Algorithms Lecture 14: Amortized Analysis [Fa’13]

14.4 Gray Codes?

An attractive alternate solution to the increment/decrement problem was independently suggested by
several students. Gray codes (named after Frank Gray, who discovered them in the 1950s) are methods
for representing numbers as bit strings so that successive numbers differ by only one bit. For example,
here is the four-bit binary reflected Gray code for the integers 0 through 15:

0000,0001, 0011,0010, 0110,0111, 0101,0100, 1100,1101, 1111,1110, 1010,1011, 1001,1000

The general rule for incrementing a binary reflected Gray code is to invert the bit that would be set from
0 to 1 by a normal binary counter. In terms of bit-flips, this is the perfect solution; each increment of
decrement by definition changes only one bit. Unfortunately, the naïve algorithm to find the single bit
to flip still requires Θ(log n) time in the worst case. Thus, so the total cost of maintaining a Gray code,
using the obvious algorithm, is the same as that of maintaining a normal binary counter.

Fortunately, this is only true of the naïve algorithm. The following algorithm, discovered by Gideon
Ehrlich1 in 1973, maintains a Gray code counter in constant worst-case time per increment! The
algorithm uses a separate ‘focus’ array F[0 .. n] in addition to a Gray-code bit array G[0 .. n− 1].

EHRLICHGRAYINIT(n):
for i← 0 to n− 1

G[i]← 0
for i← 0 to n

F[i]← i

EHRLICHGRAYINCREMENT(n):
j← F[0]
F[0]← 0
if j = n

G[n− 1]← 1− G[n− 1]
else

G[ j] = 1− G[ j]
F[ j]← F[ j+ 1]
F[ j+ 1]← j+ 1

The EHRLICHGRAYINCREMENT algorithm obviously runs in O(1) time, even in the worst case. Here’s
the algorithm in action with n= 4. The first line is the Gray bit-vector G, and the second line shows the
focus vector F , both in reverse order:

G : 0000,0001, 0011,0010,0110, 0111,0101, 0100,1100, 1101,1111, 1110,1010, 1011,1001, 1000
F : 3210,3211, 3220,3212,3310, 3311,3230, 3213,4210, 4211,4220, 4212,3410, 3411,3240, 3214

Voodoo! I won’t explain in detail how Ehrlich’s algorithm works, except to point out the following
invariant. Let B[i] denote the ith bit in the standard binary representation of the current number.
If B[ j] = 0 and B[ j−1] = 1, then F[ j] is the smallest integer k > j such that B[k] = 1; otherwise,
F[ j] = j . Got that?

But wait — this algorithm only handles increments; what if we also want to decrement? Sorry, I
don’t have a clue. Extra credit, anyone?

14.5 Generalities and Warnings

Although computer scientists usually apply amortized analysis to understand the efficiency of maintaining
and querying data structures, you should remember that amortization can be applied to any sequence of
numbers. Banks have been using amortization to calculate fixed payments for interest-bearing loans for
centuries. The IRS allows taxpayers to amortize business expenses or gambling losses across several

1Gideon Ehrlich. Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J.
Assoc. Comput. Mach. 20:500–513, 1973.
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years for purposes of computing income taxes. Some cell phone contracts let you to apply amortization
to calling time, by rolling unused minutes from one month into the next month.

It’s also important to remember that amortized time bounds are not unique. For a data structure
that supports multiple operations, different amortization schemes can assign different costs to exactly
the same algorithms. For example, consider a generic data structure that can be modified by three
algorithms: FOLD, SPINDLE, and MUTILATE. One amortization scheme might imply that FOLD and SPINDLE

each run in O(log n) amortized time, while MUTILATE runs in O(n) amortized time. Another scheme
might imply that FOLD runs in O(

p
n) amortized time, while SPINDLE and MUTILATE each run in O(1)

amortized time. These two results are not necessarily inconsistent! Moreover, there is no general reason
to prefer one of these sets of amortized time bounds over the other; our preference may depend on the
context in which the data structure is used.

Exercises

1. Suppose we are maintaining a data structure under a series of n operations. Let f (k) denote the
actual running time of the kth operation. For each of the following functions f , determine the
resulting amortized cost of a single operation. (For practice, try all of the methods described in
this note.)

(a) f (k) is the largest integer i such that 2i divides k.

(b) f (k) is the largest power of 2 that divides k.

(c) f (k) = n if k is a power of 2, and f (k) = 1 otherwise.

(d) f (k) = n2 if k is a power of 2, and f (k) = 1 otherwise.

(e) f (k) is the index of the largest Fibonacci number that divides k.

(f) f (k) is the largest Fibonacci number that divides k.

(g) f (k) = k if k is a Fibonacci number, and f (k) = 1 otherwise.

(h) f (k) = k2 if k is a Fibonacci number, and f (k) = 1 otherwise.

(i) f (k) is the largest integer whose square divides k.

(j) f (k) is the largest perfect square that divides k.

(k) f (k) = k if k is a perfect square, and f (k) = 1 otherwise.

(l) f (k) = k2 if k is a perfect square, and f (k) = 1 otherwise.

(m) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is the
number of ancestors of node k.

(n) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is the
number of descendants of node k.

(o) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) is the
square of the number of ancestors of node k.

(p) Let T be a complete binary search tree, storing the integer keys 1 through n. f (k) =
size(k) lg size(k), where size(k) is the number of descendants of node k.

(q) Let T be an arbitrary binary search tree, storing the integer keys 0 through n. f (k) is the
length of the path in T from node k− 1 to node k.

(r) Let T be an arbitrary binary search tree, storing the integer keys 0 through n. f (k) is the
square of the length of the path in T from node k− 1 to node k.
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(s) Let T be a complete binary search tree, storing the integer keys 0 through n. f (k) is the
square of the length of the path in T from node k− 1 to node k.

2. Consider the following modification of the standard algorithm for incrementing a binary counter.

INCREMENT(B[0 ..∞]):
i← 0
while B[i] = 1

B[i]← 0
i← i+ 1

B[i]← 1
SOMETHINGELSE(i)

The only difference from the standard algorithm is the function call at the end, to a black-box
subroutine called SOMETHINGELSE.

Suppose we call INCREMENT n times, starting with a counter with value 0. The amortized time
of each INCREMENT clearly depends on the running time of SOMETHINGELSE. Let T(i) denote the
worst-case running time of SOMETHINGELSE(i). For example, we proved in class that INCREMENT

algorithm runs in O(1) amortized time when T (i) = 0.

(a) What is the amortized time per INCREMENT if T (i) = 42?

(b) What is the amortized time per INCREMENT if T (i) = 2i?

(c) What is the amortized time per INCREMENT if T (i) = 4i?

(d) What is the amortized time per INCREMENT if T (i) =
p

2
i
?

(e) What is the amortized time per INCREMENT if T (i) = 2i/(i+ 1)?

3. An extendable array is a data structure that stores a sequence of items and supports the following
operations.

• ADDTOFRONT(x) adds x to the beginning of the sequence.

• ADDTOEND(x) adds x to the end of the sequence.

• LOOKUP(k) returns the kth item in the sequence, or NULL if the current length of the sequence
is less than k.

Describe a simple data structure that implements an extendable array. Your ADDTOFRONT and
ADDTOBACK algorithms should take O(1) amortized time, and your LOOKUP algorithm should take
O(1) worst-case time. The data structure should use O(n) space, where n is the current length of
the sequence.

4. An ordered stack is a data structure that stores a sequence of items and supports the following
operations.

• ORDEREDPUSH(x) removes all items smaller than x from the beginning of the sequence and
then adds x to the beginning of the sequence.

• POP deletes and returns the first item in the sequence (or NULL if the sequence is empty).
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Suppose we implement an ordered stack with a simple linked list, using the obvious ORDEREDPUSH

and POP algorithms. Prove that if we start with an empty data structure, the amortized cost of
each ORDEREDPUSH or POP operation is O(1).

5. A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. The user always pushes and pops elements from the smallest stack S0. However,
before any element can be pushed onto any full stack Si, we first pop all the elements off Si and
push them onto stack Si+1 to make room. (Thus, if Si+1 is already full, we first recursively move
all its members to Si+2.) Similarly, before any element can be popped from any empty stack Si,
we first pop 3i elements from Si+1 and push them onto Si to make room. (Thus, if Si+1 is already
empty, we first recursively fill it by popping elements from Si+2.) Moving a single element from
one stack to another takes O(1) time.

Here is pseudocode for the multistack operations MSPUSH and MSPOP. The internal stacks are
managed with the subroutines PUSH and POP.

MPUSH(x) :
i← 0
while Si is full

i← i+ 1

while i > 0
i← i− 1
for j← 1 to 3i

PUSH(Si+1, POP(Si))

PUSH(S0, x)

MPOP(x) :
i← 0
while Si is empty

i← i+ 1

while i > 0
i← i− 1
for j← 1 to 3i

PUSH(Si , POP(Si+1))

return POP(S0)

×9

×3

Making room in a multistack, just before pushing on a new element.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that if the user never pops anything from the multistack, the amortized cost of a push
operation is O(log n), where n is the maximum number of elements in the multistack during
its lifetime.

(c) Prove that in any intermixed sequence of pushes and pops, each push or pop operation takes
O(log n) amortized time, where n is the maximum number of elements in the multistack
during its lifetime.
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6. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• PUSH(x): Add item x to the end of the sequence.

• PULL(): Remove and return the item at the beginning of the sequence.

It is easy to implement a queue using a doubly-linked list and a counter, so that the entire data
structure uses O(n) space (where n is the number of items in the queue) and the worst-case time
per operation is O(1).

(a) Now suppose we want to support the following operation instead of PULL:

• MULTIPULL(k): Remove the first k items from the front of the queue, and return the kth
item removed.

Suppose we use the obvious algorithm to implement MULTIPULL:

MULTIPULL(k):
for i← 1 to k

x ← PULL()
return x

Prove that in any intermixed sequence of PUSH and MULTIPULL operations, the amortized cost
of each operation is O(1)

(b) Now suppose we also want to support the following operation instead of PUSH:

• MULTIPUSH(x , k): Insert k copies of x into the back of the queue.

Suppose we use the obvious algorithm to implement MULTIPUUSH:

MULTIPUSH(k, x):
for i← 1 to k

PUSH(x)

Prove that for any integers ` and n, there is a sequence of ` MULTIPUSH and MULTIPULL

operations that require Ω(n`) time, where n is the maximum number of items in the queue
at any time. Such a sequence implies that the amortized cost of each operation is Ω(n).

(c) Describe a data structure that supports arbitrary intermixed sequences of MULTIPUSH and
MULTIPULL operations in O(1) amortized cost per operation. Like a standard queue, your
data structure should use only O(1) space per item.

7. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• PUSH(x): Add item x to the end of the sequence.

• PULL(): Remove and return the item at the beginning of the sequence.

• SIZE(): Return the current number of items in the sequence.

It is easy to implement a queue using a doubly-linked list, so that it uses O(n) space (where n is
the number of items in the queue) and the worst-case time for each of these operations is O(1).

Consider the following new operation, which removes every tenth element from the queue,
starting at the beginning, in Θ(n) worst-case time.

10
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DECIMATE():
n← SIZE()
for i← 0 to n− 1

if i mod 10= 0
PULL() 〈〈result discarded〉〉

else
PUSH(PULL())

Prove that in any intermixed sequence of PUSH, PULL, and DECIMATE operations, the amortized cost
of each operation is O(1).

8. Chicago has many tall buildings, but only some of them have a clear view of Lake Michigan.
Suppose we are given an array A[1 .. n] that stores the height of n buildings on a city block,
indexed from west to east. Building i has a good view of Lake Michigan if and only if every
building to the east of i is shorter than i.

Here is an algorithm that computes which buildings have a good view of Lake Michigan. What
is the running time of this algorithm?

GOODVIEW(A[1 .. n]):
initialize a stack S
for i← 1 to n

while (S not empty and A[i]> A[TOP(S)])
POP(S)

PUSH(S, i)
return S

9. Suppose we can insert or delete an element into a hash table in O(1) time. In order to ensure that
our hash table is always big enough, without wasting a lot of memory, we will use the following
global rebuilding rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big as
our current table, insert everything into the new table, and then free the old table.

• After a deletion, if the table is less than 1/4 full, we allocate a new table half as big as our
current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is still
O(1). [Hint: Do not use potential functions.]

10. Professor Pisano insists that the size of any hash table used in his class must always be a Fibonacci
number. He insists on the following variant of the previous global rebuilding strategy. Suppose the
current hash table has size Fk.

• After an insertion, if the number of items in the table is Fk−1, we allocate a new hash table of
size Fk+1, insert everything into the new table, and then free the old table.

• After a deletion, if the number of items in the table is Fk−3, we allocate a new hash table of
size Fk−1, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is still
O(1). [Hint: Do not use potential functions.]

11
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11. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory, so that
the amortized time for any enqueue or dequeue operation is O(1). The only access you have
to the stacks is through the standard subroutines PUSH and POP.

(b) A quack is a data structure combining properties of both stacks and queues. It can be viewed
as a list of elements written left to right such that three operations are possible:

• QUACKPUSH(x): add a new item x to the left end of the list;
• QUACKPOP(): remove and return the item on the left end of the list;
• QUACKPULL(): remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the amortized
time for any QUACKPUSH, QUACKPOP, or QUACKPULL operation is O(1). In particular, each
element in the quack must be stored in exactly one of the three stacks. Again, you cannot
access the component stacks except through the interface functions PUSH and POP.

12. Let’s glom a whole bunch of earlier problems together. Yay! An random-access double-ended
multi-queue or radmuque (pronounced “rad muck”) stores a sequence of items and supports the
following operations.

• MULTIPUSH(x , k) adds k copies of item x to the beginning of the sequence.

• MULTIPOKE(x , k) adds k copies of item x to the end of the sequence.

• MULTIPOP(k) removes k items from the beginning of the sequence and retrns the last item
removed. (If there are less than k items in the sequence, remove them all and return NULL.)

• MULTIPULL(k) removes k items from the end of the sequence and retrns the last item removed.
(If there are less than k items in the sequence, remove them all and return NULL.)

• LOOKUP(k) returns the kth item in the sequence. (If there are less than k items in the
sequence, return NULL.)

Describe and analyze a simple data structure that supports these operations using O(n) space,
where n is the current number of items in the sequence. LOOKUP should run in O(1) worst-case
time; all other operations should run in O(1) amortized time.

13. Suppose you are faced with an infinite number of counters x i , one for each integer i. Each counter
stores an integer mod m, where m is a fixed global constant. All counters are initially zero. The
following operation increments a single counter x i; however, if x i overflows (that is, wraps around
from m to 0), the adjacent counters x i−1 and x i+1 are incremented recursively.

NUDGEm(i):
x i ← x i + 1
while x i ≥ m

x i ← x i −m
NUDGEm(i− 1)
NUDGEm(i+ 1)

(a) Prove that NUDGE3 runs in O(1) amortized time. [Hint: Prove that NUDGE3 always halts!]

(b) What is the worst-case total time for n calls to NUDGE2, if all counters are initially zero?

12
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14. Now suppose you are faced with an infinite two-dimensional grid of modular counters, one counter
x i, j for every pair of integers (i, j). Again, all counters are initially zero. The counters are modified
by the following operation, where m is a fixed global constant:

2DNUDGEm(i, j):
x i, j ← x i + 1
while x i, j ≥ m

x i, j ← x i, j −m
2DNUDGEm(i− 1, j)
2DNUDGEm(i, j+ 1)
2DNUDGEm(i+ 1, j)
2DNUDGEm(i, j− 1)

(a) Prove that 2DNUDGE5 runs in O(1) amortized time.
Æ(b) Prove or disprove: 2DNUDGE4 also runs in O(1) amortized time.
Æ(c) Prove or disprove: 2DNUDGE3 always halts.

?15. Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers. In
other words, instead of an array of bits, we keep an array of fits, where the ith least significant
fit indicates whether the sum includes the ith Fibonacci number Fi. For example, the fitstring
101110F represents the number F6+ F4+ F3+ F2 = 8+ 3+ 2+ 1= 14. Describe algorithms to
increment and decrement a single fitstring in constant amortized time. [Hint: Most numbers can
be represented by more than one fitstring!]

?16. A doubly lazy binary counter represents any number as a weighted sum of powers of two, where
each weight is one of four values: −1, 0, 1, or 2. (For succinctness, I’ll write 1 instead of −1.) Every
integer—positive, negative, or zero—has an infinite number of doubly lazy binary representations.
For example, the number 13 can be represented as 1101 (the standard binary representation), or
2101 (because 2 · 23− 22 + 20 = 13) or 10111 (because 24− 22 + 21− 20 = 13) or 11200010111
(because −210+ 29+ 2 · 28+ 24− 22+ 21− 20 = 13).

To increment a doubly lazy binary counter, we add 1 to the least significant bit, then carry the
rightmost 2 (if any). To decrement, we subtract 1 from the lest significant bit, and then borrow
the rightmost 1 (if any).

LAZYINCREMENT(B[0 .. n]):
B[0]← B[0] + 1
for i← 1 to n− 1

if B[i] = 2
B[i]← 0
B[i+ 1]← B[i+ 1] + 1
return

LAZYDECREMENT(B[0 .. n]):
B[0]← B[0]− 1
for i← 1 to n− 1

if B[i] =−1
B[i]← 1
B[i+ 1]← B[i+ 1]− 1
return

For example, here is a doubly lazy binary count from zero up to twenty and then back down to
zero. The bits are written with the least significant bit B[0] on the right, omitting all leading 0’s.

13
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0
++−→ 1

++−→ 10
++−→ 11

++−→ 20
++−→ 101

++−→ 110
++−→ 111

++−→ 120
++−→ 201

++−→ 210
++−→ 1011

++−→ 1020
++−→ 1101

++−→ 1110
++−→ 1111

++−→ 1120
++−→ 1201

++−→ 1210
++−→ 2011

++−→ 2020
−−−→ 2011

−−−→ 2010
−−−→ 2001

−−−→ 2000
−−−→ 2011

−−−→ 2110
−−−→ 2101

−−−→ 1100
−−−→ 1111

−−−→ 1010
−−−→ 1001

−−−→ 1000
−−−→ 1011

−−−→ 1110
−−−→ 1101

−−−→ 100
−−−→ 111

−−−→ 10
−−−→ 1

−−−→ 0

Prove that for any intermixed sequence of increments and decrements of a doubly lazy binary
number, starting with 0, the amortized time for each operation is O(1). Do not assume, as in the
example above, that all the increments come before all the decrements.

c© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

14

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

