
Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

Wouldn’t the sentence “I want to put a hyphen between the words Fish and
And and And and Chips in my Fish-And-Chips sign.” have been clearer if
quotation marks had been placed before Fish, and between Fish and and,
and and and And, and And and and, and and and And, and And and and,
and and and Chips, as well as after Chips?1

— Martin Gardner, Aha! Insight (1978)

4 Efficient Exponential-Time Algorithms?

In another lecture note, we discuss the class of NP-hard problems. For every problem in this class, the
fastest algorithm anyone knows has an exponential running time. Moreover, there is very strong evidence
(but alas, no proof) that it is impossible to solve any NP-hard problem in less than exponential time—it’s
not that we’re all stupid; the problems really are that hard! Unfortunately, an enormous number of
problems that arise in practice are NP-hard; for some of these problems, even approximating the right
answer is NP-hard.

Suppose we absolutely have to find the exact solution to some NP-hard problem. A polynomial-time
algorithm is almost certainly out of the question; the best running time we can hope for is exponential.
But which exponential? An algorithm that runs in O(1.5n) time, while still unusable for large problems,
is still significantly better than an algorithm that runs in O(2n) time!

For most NP-hard problems, the only approach that is guaranteed to find an optimal solution is
recursive backtracking. The most straightforward version of this approach is to recursively generate all
possible solutions and check each one: all satisfying assignments, or all vertex colorings, or all subsets,
or all permutations, or whatever. However, most NP-hard problems have some additional structure that
allows us to prune away most of the branches of the recursion tree, thereby drastically reducing the
running time.

4.1 3SAT

Let’s consider the mother of all NP-hard problems: 3SAT. Given a boolean formula in conjunctive normal
form, with at most three literals in each clause, our task is to determine whether any assignment of
values of the variables makes the formula true. Yes, this problem is NP-hard, which means that a
polynomial algorithm is almost certainly impossible. Too bad; we have to solve the problem anyway.

The trivial solution is to try every possible assignment. We’ll evaluate the running time of our
3SAT algorithms in terms of the number of variables in the formula, so let’s call that n. Provided any
clause appears in our input formula at most once—a condition that we can easily enforce in polynomial
time—the overall input size is O(n3). There are 2n possible assignments, and we can evaluate each
assignment in O(n3) time, so the overall running time is O(2nn3).

Since polynomial factors like n3 are essentially noise when the overall running time is exponential,
from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other words, poly(n) = nO(1).
For example, the trivial algorithm for 3SAT runs in time O(2n poly(n)).

1If you ever decide to read this sentence out loud, be sure to pause briefly between ‘Fish and and’ and ‘and and and And’,
‘and and and And’ and ‘and And and and’, ‘and And and and’ and ‘and and and And’, ‘and and and And’ and ‘and And and and’,
and ‘and And and and’ and ‘and and and Chips’!

Did you notice the punctuation I carefully inserted between ‘Fish and and’ and ‘and’, ’and’ and ’and and and And’, ‘and and
and And’ and ’and and and And’, ‘and and and And’ and ’and’, ’and’ and ‘and And and and’, ‘and And and and’ and ‘and And
and and’, ‘and And and and’ and ’and’, ’and’ and ‘and and and And’, ‘and and and And’ and ‘and and and And’, ‘and and and
And’ and ‘and’, ‘and’ and ‘and And and and’, ‘and And and and’ and ‘and’, ‘and’ and ‘and And and and’, ‘and And and and’ and
‘and’, and ‘and’ and ‘and and and Chips’?

c© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

We can make this algorithm smarter by exploiting the special recursive structure of 3CNF formulas:

A 3CNF formula is either nothing
or a clause with three literals ∧ a 3CNF formula

Suppose we want to decide whether some 3CNF formula Φ with n variables is satisfiable. Of course this
is trivial if Φ is the empty formula, so suppose

Φ = (x ∨ y ∨ z)∧Φ′

for some literals x , y, z and some 3CNF formula Φ′. By distributing the ∧ across the ∨s, we can rewrite
Φ as follows:

Φ = (x ∧Φ′)∨ (y ∧Φ′)∨ (z ∧Φ′)

For any boolean formula Ψ and any literal x , let Ψ|x (pronounced “sigh given eks") denote the simpler
boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint, hint) that
x ∧Ψ= x ∧Ψ|x , which implies that

Φ = (x ∧Φ′|x)∨ (y ∧Φ′|y)∨ (z ∧Φ′|z).

Thus, in any satisfying assignment for Φ, either x is true and Φ′|x is satisfiable, or y is true and Φ′|y is
satisfiable, or z is true and Φ′|z is satisfiable. Each of the smaller formulas has at most n− 1 variables. If
we recursively check all three possibilities, we get the running time recurrence

T (n)≤ 3T (n− 1) + poly(n),

whose solution is O(3n poly(n)). So we’ve actually done worse!
But these three recursive cases are not mutually exclusive! If Φ′|x is not satisfiable, then x must be

false in any satisfying assignment for Φ. So instead of recursively checking Φ′|y in the second step, we
can check the even simpler formula Φ′| x̄ y. Similarly, if Φ′| x̄ y is not satisfiable, then we know that y
must be false in any satisfying assignment, so we can recursively check Φ′| x̄ ȳz in the third step.

3SAT(Φ):
if Φ =∅

return TRUE

(x ∨ y ∨ z)∧Φ′← Φ
if 3SAT(Φ|x)

return TRUE

if 3SAT(Φ| x̄ y)
return TRUE

return 3SAT(Φ| x̄ ȳz)

The running time off this algorithm obeys the recurrence

T (n) = T (n− 1) + T (n− 2) + T (n− 3) + poly(n),

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control flow,
move stuff into and out of the recursion stack, and so on. The annihilator method gives us the solution

T (n) = O(λn poly(n)) = O(1.83928675522n)

2

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

where λ≈ 1.83928675521 . . . is the largest root of the characteristic polynomial r3− r2− r−1. (Notice
that we cleverly eliminated the polynomial noise by increasing the base of the exponent ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before recursing.
A literal x is pure in if it appears in the formula Φ but its negation x̄ does not. It’s not hard to prove (hint,
hint) that if Φ has a satisfying assignment, then it has a satisfying assignment where every pure literal is
true. If Φ = (x ∨ y ∨ z)∧Φ′ has no pure literals, then some in Φ contains the literal x̄ , so we can write

Φ = (x ∨ y ∨ z)∧ (x̄ ∨ u∨ v)∧Φ′

for some literals u and v (each of which might be y , ȳ , z, or z̄). It follows that the first recursive formula
Φ|x has contains the clause (u∨ v). We can recursively eliminate the variables u and v just as we tested
the variables y and x in the second and third cases of our previous algorithm:

Φ|x = (u∨ v)∧Φ′|x = (u∧Φ′|xu)∨ (v ∧Φ′|xūv).

Here is our new faster algorithm:

3SAT(Φ):
if Φ =∅

return TRUE

if Φ has a pure literal x
return 3SAT(Φ|x)

(x ∨ y ∨ z)∧ (x̄ ∨ u∨ v)∧Φ′← Φ
if 3SAT(Φ|xu)

return TRUE

if 3SAT(Φ|xūv)
return TRUE

if 3SAT(Φ| x̄ y)
return TRUE

return 3SAT(Φ| x̄ ȳz)

The running time T (n) of this new algorithm satisfies the recurrence

T (n) = 2T (n− 2) + 2T (n− 3) + poly(n),

and the annihilator method implies that

T (n) = O(µn poly(n)) = O(1.76929235425n)

where µ≈ 1.76929235424 . . . is the largest root of the characteristic polynomial r3− 2r − 2.
Naturally, this approach can be extended much further; since 1998, at least fifteen different 3SAT

algorithms have been published, each improving the running time by a small amount. As of 2010,
the fastest deterministic algorithm for 3SAT runs in O(1.33334n) time2, and the fastest randomized
algorithm runs in O(1.32113n) expected time3, but there is good reason to believe that these are not the
best possible.

2Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. ArXiv:1008.4067, 2010.
3Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved randomized algorithms for 3-SAT. To appear in

Proc. STACS, 2010.

3

http://arxiv.org/abs/1008.4067

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

4.2 Maximum Independent Set

Now suppose we are given an undirected graph G and are asked to find the size of the largest independent
set, that is, the largest subset of the vertices of G with no edges between them. Once again, we have
an obvious recursive algorithm: Try every subset of nodes, and return the largest subset with no edges.
Expressed recursively, the algorithm might look like this.

MAXIMUMINDSETSIZE(G):
if G =∅

return 0
else

v← any node in G
withv← 1+MAXIMUMINDSETSIZE(G \ N(v))
withoutv←MAXIMUMINDSETSIZE(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: The set containing v and all of its neighbors. Our
algorithm is exploiting the fact that if an independent set contains v, then by definition it contains none
of v’s neighbors. In the worst case, v has no neighbors, so G \ {v} = G \ N(v). Thus, the running time of
this algorithm satisfies the recurrence T (n) = 2T (n− 1) + poly(n) = O(2n poly(n)). Surprise, surprise.

This algorithm is mirroring a crude recursive upper bound for the number of maximal independent
sets in a graph; an independent set is maximal if every vertex in G is either already in the set or a
neighbor of a vertex in the set. If the graph is non-empty, then every maximal independent set either
includes or excludes each vertex. Thus, the number of maximal independent sets satisfies the recurrence
M(n)≤ 2M(n− 1), with base case M(1) = 1. The annihilator method gives us M(n)≤ 2n− 1. The only
subset that we aren’t counting with this upper bound is the empty set!

We can speed up our algorithm by making several careful modifications to avoid the worst case of
the running-time recurrence.

• If v has no neighbors, then N(v) = {v}, and both recursive calls consider a graph with n−1 nodes.
But in this case, v is in every maximal independent set, so one of the recursive calls is redundant.
On the other hand, if v has at least one neighbor, then G \ N(v) has at most n− 2 nodes. So now
we have the following recurrence.

T (n)≤ O(poly(n)) +max

¨

T (n− 1)
T (n− 1) + T (n− 2)

«

= O(1.61803398875n)

The upper bound is derived by solving each case separately using the annihilator method and
taking the larger of the two solutions. The first case gives us T (n) = O(poly(n)); the second case
yields our old friends the Fibonacci numbers.

• We can improve this bound even more by examining the new worst case: v has exactly one
neighbor w. In this case, either v or w appears in every maximal independent set. However, given
any independent set that includes w, removing w and adding v creates another independent set of
the same size. It follows that some maximum independent set includes v, so we don’t need to search
the graph G \ {v}, and the G \N(v) has at most n− 2 nodes. On the other hand, if the degree of v
is at least 2, then G \ N(v) has at most n− 3 nodes.

T (n)≤ O(poly(n)) +max







T (n− 1)
T (n− 2)
T (n− 1) + T (n− 3)







= O(1.46557123188n)

4

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

The base of the exponent is the largest root of the characteristic polynomial r3− r2− 1.

• Now the worst-case is a graph where every node has degree at least 2; we split this worst case
into two subcases. If G has a node v with degree 3 or more, then G \ N(v) has at most n− 4
nodes. Otherwise (since we have already considered nodes of degree 0 and 1), every node in G has
degree 2. Let u, v, w be a path of three nodes in G (possibly with u adjacent to w). In any maximal
independent set, either v is present and u, w are absent, or u is present and its two neighbors are
absent, or w is present and its two neighbors are absent. In all three cases, we recursively count
maximal independent sets in a graph with n− 3 nodes.

T (n)≤ O(poly(n)) +max







T (n− 1)
T (n− 2)
T (n− 1) + T (n− 4)
3T (n− 3)







= O(3n/3 poly(n)) = O(1.44224957031n)

The base of the exponent is 3p3, the largest root of the characteristic polynomial r3 − 3. The
third case would give us a bound of O(1.3802775691n), where the base is the largest root of the
characteristic polynomial r4− r3− 1.

• Now the worst case for our algorithm is a graph with an extraordinarily special structure: Every
node has degree 2. In other words, every component of G is a cycle. But it is easy to prove that the
largest independent set in a cycle of length k has size bk/2c. So we can handle this case directly in
polynomial time, without no recursion at all!

T (n)≤ O(poly(n)) +max







T (n− 1)
T (n− 2)
T (n− 1) + T (n− 4)







= O(1.3802775691n)

Again, the base of the exponential running time is the largest root of the characteristic polynomial
r4− r3− 1.

MAXIMUMINDSETSIZE(G):
if G =∅

return 0

else if G has a node v with degree 0 or 1
return 1+MAXIMUMINDSETSIZE(G \ N(v)) 〈〈≤ n− 1〉〉

else if G has a node v with degree greater than 2
withv← 1+MAXIMUMINDSETSIZE(G \ N(v)) 〈〈≤ n− 4〉〉
withoutv←MAXIMUMINDSETSIZE(G \ {v}) 〈〈≤ n− 1〉〉
return max{withv, withoutv}

else 〈〈every node in G has degree 2〉〉
total← 0
for each component of G

k← number of vertices in the component
total← total+ bk/2c

return total

As with 3SAT, further improvements are possible but increasingly complex. As of 2010, the fastest
published algorithm for computing maximum independent sets runs in O(1.2210n) time4. However,

4Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and conquer: A simple O(20.288n) independent set
algorithm. Proc. SODA, 18–25, 2006.

5

Algorithms Lecture 4: Efficient Exponential-Time Algorithms [Fa’13]

in an unpublished technical report, Robson describes a computer-generated algorithm that runs in
O(2n/4 poly(n)) = O(1.1889n) time; just the description of this algorithm requires more than 15 pages.5

Exercises

1. (a) Prove that any n-vertex graph has at most 3n/3 maximal independent sets. [Hint: Modify the
MAXIMUMINDSETSIZE algorithm so that it lists all maximal independent sets.]

(b) Describe an n-vertex graph with exactly 3n/3 maximal independent sets, for every integer n
that is a multiple of 3.

?2. Describe an algorithm to solve 3SAT in time O(φn poly(n)), where φ = (1+
p

5)/2≈ 1.618034.
[Hint: Prove that in each recursive call, either you have just eliminated a pure literal, or the
formula has a clause with at most two literals. What recurrence leads to this running time?]

5Mike Robson. Finding a maximum independent set in time O(2n/4). Technical report 1251-01, LaBRI, 2001. 〈http:
//www.labri.fr/perso/robson/mis/techrep.ps〉.

c© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

6

http://www.labri.fr/perso/robson/mis/techrep.ps
http://www.labri.fr/perso/robson/mis/techrep.ps
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

