
Algorithms Lecture 0: Introduction [Fa’13]

Hinc incipit algorismus.
Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris
0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

— Friar Alexander de Villa Dei, Carmen de Algorismo, (c. 1220)

We should explain, before proceeding, that it is not our object to consider this program with
reference to the actual arrangement of the data on the Variables of the engine, but simply
as an abstract question of the nature and number of the operations required to be perfomed
during its complete solution.

— Ada Augusta Byron King, Countess of Lovelace, translator’s notes for Luigi F. Menabrea,
“Sketch of the Analytical Engine invented by Charles Babbage, Esq.” (1843)

You are right to demand that an artist engage his work consciously, but you confuse two
different things: solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)

The more we reduce ourselves to machines in the lower things,
the more force we shall set free to use in the higher.

— Anna C. Brackett, The Technique of Rest (1892)

The moment a man begins to talk about technique
that’s proof that he is fresh out of ideas.

— Raymond Chandler

0 Introduction

0.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary
instructions. For example, here is an algorithm for singing that annoying song “99 Bottles of Beer on the
Wall”, for arbitrary values of 99:

BOTTLESOFBEER(n):
For i← n down to 1

Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i− 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

The word “algorithm” does not derive, as algorithmophobic classicists might guess, from the Greek
roots arithmos (), meaning “number”, and algos (ἄλγος), meaning “pain”. Rather, it is a corruption of
the name of the 9th century Persian mathematician Abū ’Abd Allāh Muh. ammad ibn Mūsā al-Khwārizmı̄.1

Al-Khwārizmı̄ is perhaps best known as the writer of the treatise Al-Kitāb al-mukhtas.ar f̄ıh̄ısāb al-ğabr
wa’l-muqābala2, from which the modern word algebra derives. In another treatise, al-Khwārizmı̄
popularized the modern decimal system for writing and manipulating numbers—in particular, the
use of a small circle or s. ifr to represent a missing quantity—which had originated in India several

1‘Mohammad, father of Adbdulla, son of Moses, the Kwārizmian’. Kwārizm is an ancient city, now called Khiva, in the
Khorezm Province of Uzbekistan.

2‘The Compendious Book on Calculation by Completion and Balancing’.

© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 0: Introduction [Fa’13]

centuries earlier. This system later became known in Europe as algorism, and its figures became known
in English as ciphers.3 Thanks to the efforts of the medieval Italian mathematician Leonardo of Pisa,
better known as Fibonacci, algorism began to replace the abacus as the preferred system of commercial
calculation in Europe in the late 12th century. (Indeed, the word calculate derives from the Latin word
calculus, meaning “small rock”, referring to the stones on a counting board, or abacus.) Ciphers became
truly ubiquitous in Western Europe only after the French revolution 600 years after Fibonacci. The
more modern word algorithm is a false cognate with the Greek word arithmos (ἀριθμός), meaning
‘number’ (and perhaps the aforementioned άλγος).4 Thus, until very recently, the word algorithm
referred exclusively to pencil-and-paper methods for numerical calculations. People trained in the
reliable execution of these methods were called—you guessed it—computers.5

0.2 A Few Simple Examples

Multiplication by compass and straightedge

Although they have only been an object of formal study for a few decades, algorithms have been with us
since the dawn of civilization, for centuries before Al-Khwārizmı̄ and Fibonacci popularized the cypher.
Here is an algorithm, popularized (but almost certainly not discovered) by Euclid about 2500 years
ago, for multiplying or dividing numbers using a ruler and compass. The Greek geometers represented
numbers using line segments of the appropriate length. In the pseudo-code below, CIRCLE(p, q) represents
the circle centered at a point p and passing through another point q. Hopefully the other instructions
are obvious.6

〈〈Construct the line perpendicular to ` and passing through P.〉〉
RIGHTANGLE(`, P):

Choose a point A∈ `
A, B← INTERSECT(CIRCLE(P, A),`)
C , D← INTERSECT(CIRCLE(A, B), CIRCLE(B, A))
return LINE(C , D)

〈〈Construct a point Z such that |AZ |= |AC ||AD|/|AB|.〉〉
MULTIPLYORDIVIDE(A, B, C , D):
α← RIGHTANGLE(LINE(A, C), A)
E← INTERSECT(CIRCLE(A, B),α)
F ← INTERSECT(CIRCLE(A, D),α)
β ← RIGHTANGLE(LINE(E, C), F)
γ← RIGHTANGLE(β , F)
return INTERSECT(γ, LINE(A, C))

A

B

C

Z

D

E
F α

β

γ
Multiplying or dividing using a compass and straightedge.

3The Italians transliterated s. ifr as zefiro, which later evolved into the modern zero.
4In fact, some medieval English sources claim the Greek prefix “algo-” meant “art” or “introduction”. Other sources claimed

that algorithms was invented by a Greek philosopher, or a king of India, or perhaps a king of Spain, named “Algus” or “Algor”
or “Argus”. A few, possibly including Dante Alighieri, even identified the inventor with the mythological Greek shipbuilder and
eponymous argonaut. I don’t think any serious medieval scholars made the connection to the Greek work for pain, although
I’m quite certain their students did.

5From the Latin verb putāre, which variously means “to trim/prune”, “to clean”, “to arrange”, “to value”, “to judge”, and “to
consider/suppose”; also the source of the English words “dispute”, “reputation”, and “amputate”.

6Euclid and his students almost certainly drew their constructions on an ἄβαξ, a table covered in dust or sand (or perhaps
very small rocks). Over the next several centuries, the Greek abax evolved into the medieval European abacus.

2

Algorithms Lecture 0: Introduction [Fa’13]

This algorithm breaks down the difficult task of multiplication into a series of simple primitive
operations: drawing a line between two points, drawing a circle with a given center and boundary point,
and so on. These primitive steps are quite non-trivial to execute on a modern digital computer, but
this algorithm wasn’t designed for a digital computer; it was designed for the Platonic Ideal Classical
Greek Mathematician, wielding the Platonic Ideal Compass and the Platonic Ideal Straightedge. In
this example, Euclid first defines a new primitive operation, constructing a right angle, by (as modern
programmers would put it) writing a subroutine.

Multiplication by duplation and mediation

Here is an even older algorithm for multiplying large numbers, sometimes called (Russian) peasant
multiplication. A variant of this method was copied into the Rhind papyrus by the Egyptian scribe Ahmes
around 1650 BC, from a document he claimed was (then) about 350 years old. This was the most
common method of calculation by Europeans before Fibonacci’s introduction of Arabic numerals; it was
still taught in elementary schools in Eastern Europe in the late 20th century. This algorithm was also
commonly used by early digital computers that did not implement integer multiplication directly in
hardware.

PEASANTMULTIPLY(x , y):
prod← 0
while x > 0

if x is odd
prod← prod+ y

x ← bx/2c
y ← y + y

return p

x y prod
0

123 + 456 = 456
61 + 912 = 1368
30 1824
15 + 3648 = 5016
7 + 7296 = 12312
3 + 14592 = 26904
1 + 29184 = 56088

The peasant multiplication algorithm breaks the difficult task of general multiplication into four
simpler operations: (1) determining parity (even or odd), (2) addition, (3) duplation (doubling a
number), and (4) mediation (halving a number, rounding down).7 Of course a full specification of this
algorithm requires describing how to perform those four ‘primitive’ operations. Peasant multiplication
requires (a constant factor!) more paperwork to execute by hand, but the necessary operations are easier
(for humans) to remember than the 10× 10 multiplication table required by the American grade school
algorithm.8

The correctness of peasant multiplication follows from the following recursive identity, which holds
for any non-negative integers x and y:

x · y =

0 if x = 0

bx/2c · (y + y) if x is even

bx/2c · (y + y) + y if x is odd

7The version of this algorithm actually used in ancient Egypt does not use mediation or parity, but it does use comparisons.
To avoid halving, the algorithm pre-computes two tables by repeated doubling: one containing all the powers of 2 not
exceeding x , the other containing the same powers of 2 multiplied by y. The powers of 2 that sum to x are then found by
greedy subtraction, and the corresponding entries in the other table are added together to form the product.

8American school kids learn a variant of the lattice multiplication algorithm developed by Indian mathematicians and
described by Fibonacci in Liber Abaci. The two algorithms are equivalent if the input numbers are represented in binary.

3

Algorithms Lecture 0: Introduction [Fa’13]

Congressional Apportionment

Here is another good example of an algorithm that comes from outside the world of computing. Article I,
Section 2 of the United States Constitution requires that

Representatives and direct Taxes shall be apportioned among the several States which may be included
within this Union, according to their respective Numbers. . . . The Number of Representatives shall
not exceed one for every thirty Thousand, but each State shall have at Least one Representative. . . .

Since there are a limited number of seats available in the House of Representatives, exact proportional
representation is impossible without either shared or fractional representatives, neither of which are
legal. As a result, several different apportionment algorithms have been proposed and used to round
the fractional solution fairly. The algorithm actually used today, called the Huntington-Hill method or
the method of equal proportions, was first suggested by Census Bureau statistician Joseph Hill in 1911,
refined by Harvard mathematician Edward Huntington in 1920, adopted into Federal law (2 U.S.C. §§2a
and 2b) in 1941, and survived a Supreme Court challenge in 1992.9 The input array Pop[1 .. n] stores
the populations of the n states, and R is the total number of representatives. Currently, n = 50 and
R= 435. The output array Rep[1 .. n] stores the number of representatives assigned to each state.

APPORTIONCONGRESS(Pop[1 .. n], R):
PQ← NEWPRIORITYQUEUE

for i← 1 to n
Rep[i]← 1
INSERT

�

PQ, i, Pop[i]/
p

2
�

R← R− 1

while R> 0
s← EXTRACTMAX(PQ)
Rep[s]← Rep[s] + 1

INSERT

�

PQ, s, Pop[s]
.

p

Rep[s] (Rep[s] + 1)
�

R← R− 1

return Rep[1 .. n]

This pseudocode description assumes that you know how to implement a priority queue that supports
the operations NEWPRIORITYQUEUE, INSERT, and EXTRACTMAX. (The actual law doesn’t assume that, of
course.) The output of the algorithm, and therefore its correctness, does not depend at all on how
the priority queue is implemented. The Census Bureau uses an unsorted array, stored in a column of
an Excel spreadsheet; you should have learned a more efficient solution in your undergraduate data
structures class.

A bad example

Consider “Martin’s algorithm”:10

9Overruling an earlier ruling by a federal district court, the Supreme Court unanimously held that any apportionment
method adopted in good faith by Congress is constitutional (United States Department of Commerce v. Montana). The
current congressional apportionment algorithm is described in gruesome detail at the U.S. Census Department web site
http://www.census.gov/population/www/censusdata/apportionment/computing.html. A good history of the apportionment
problem can be found at http://www.thirty-thousand.org/pages/Apportionment.htm. A report by the Congressional Research
Service describing various apportionment methods is available at http://www.rules.house.gov/archives/RL31074.pdf.

10Steve Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Also appears on Comedy Is Not Pretty,
Warner Bros. Records, 1979.

4

http://www.law.cornell.edu/uscode/html/uscode02/usc_sec_02_00000002---a000-.html
http://www.law.cornell.edu/uscode/html/uscode02/usc_sec_02_00000002---a000-.html
http://www.census.gov/population/www/censusdata/apportionment/computing.html
http://www.thirty-thousand.org/pages/Apportionment.htm
http://www.rules.house.gov/archives/RL31074.pdf

Algorithms Lecture 0: Introduction [Fa’13]

BECOMEAMILLIONAIREANDNEVERPAYTAXES:
Get a million dollars.
Don’t pay taxes.
If you get caught,

Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy. A group of billionaire CEOs might consider this
an algorithm, since for them the first step is both unambiguous and trivial, but for the rest of us poor
slobs, Martin’s procedure is too vague to be considered an actual algorithm. On the other hand, this is a
perfect example of a reduction—it reduces the problem of being a millionaire and never paying taxes to
the ‘easier’ problem of acquiring a million dollars. We’ll see reductions over and over again in this class.
As hundreds of businessmen and politicians have demonstrated, if you know how to solve the easier
problem, a reduction tells you how to solve the harder one.

Martin’s algorithm, like many of our previous examples, is not the kind of algorithm that computer
scientists are used to thinking about, because it is phrased in terms of operations that are difficult
for computers to perform. In this class, we’ll focus (almost!) exclusively on algorithms that can be
reasonably implemented on a computer. In other words, each step in the algorithm must be something
that either is directly supported by common programming languages (such as arithmetic, assignments,
loops, or recursion) or is something that you’ve already learned how to do in an earlier class (like sorting,
binary search, or depth first search).

0.3 Writing down algorithms

Computer programs are concrete representations of algorithms, but algorithms are not programs; they
should not be described in a particular programming language. The whole point of this course is to
develop computational techniques that can be used in any programming language. The idiosyncratic
syntactic details of C, C++, C#, Java, Python, Ruby, Erlang, Haskell, OcaML, Scheme, Scala, Clojure,
Visual Basic, Smalltalk, Javascript, Processing, Squeak, Forth, TEX, Fortran, COBOL, INTERCAL, MMIX,
LOLCODE, Befunge, Parseltongue, Whitespace, or Brainfuck are of little or no importance in algorithm
design, and focusing on them will only distract you from what’s really going on.11 What we really want
is closer to what you’d write in the comments of a real program than the code itself.

On the other hand, a plain English prose description is usually not a good idea either. Algorithms
have a lot of structure—especially conditionals, loops, and recursion—that are far too easily hidden
by unstructured prose. Natural languages like English are full of ambiguities, subtleties, and shades of
meaning, but algorithms must be described as precisely and unambigiously as possible. Finally and more
seriously, there is natural tendency to describe repeated operations informally: “Do this first, then do this
second, and so on.” But as anyone who has taken one of those ‘What comes next in this sequence?’ tests
already knows, specifying what happens in the first few iterations of a loop says very little, of anything,
about what happens later iterations. To make the description unambiguous, we must explicitly specify
the behavior of every iteration. The stupid joke about the programmer dying in the shower has a grain
of truth—“Lather, rinse, repeat” is ambiguous; what exactly do we repeat, and until when?

11This is, of course, a matter of religious conviction. Linguists argue incessantly over the Sapir-Whorf hypothesis, which states
(more or less) that people think only in the categories imposed by their languages. According to an extreme formulation of
this principle, some concepts in one language simply cannot be understood by speakers of other languages, not just because
of technological advancement—How would you translate ‘jump the shark’ or ‘blog’ into Aramaic?—but because of inherent
structural differences between languages and cultures. For a more skeptical view, see Steven Pinker’s The Language Instinct.
There is admittedly some strength to this idea when applied to different programming paradigms. (What’s the Y combinator,
again? How do templates work? What’s an Abstract Factory?) Fortunately, those differences are generally too subtle to have
much impact in this class. For a compelling counterexample, see Chris Okasaki’s thesis/monograph Functional Data Structures
and its more recent descendants.

5

http://99-bottles-of-beer.net/
http://en.wikipedia.org/wiki/INTERCAL
http://en.wikipedia.org/wiki/MMIX
http://lolcode.com/
http://en.wikipedia.org/wiki/Befunge
https://github.com/jdavis/Parseltongue
http://en.wikipedia.org/wiki/Whitespace_(programming_language)
http://esolangs.org/wiki/Brainfuck
http://www.research.att.com/~njas/sequences/
http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

Algorithms Lecture 0: Introduction [Fa’13]

In my opinion, the clearest way to present an algorithm is using pseudocode. Pseudocode uses the
structure of formal programming languages and mathematics to break algorithms into primitive steps;
but the primitive steps themselves may be written using mathematics, pure English, or an appropriate
mixture of the two. Well-written pseudocode reveals the internal structure of the algorithm but hides
irrelevant implementation details, making the algorithm much easier to understand, analyze, debug,
and implement.

The precise syntax of pseudocode is a personal choice, but the overriding goal should be clarity and
precision. Ideally, pseudocode should allow any competent programmer to implement the underlying
algorithm, quickly and correctly, in their favorite programming language, without understanding why the
algorithm works. Here are the guidelines I follow and strongly recommend:

• Be consistent!

• Use standard imperative programming keywords (if/then/else, while, for, repeat/until, case,
return) and notation (variable← value, Array[index], function(argument), bigger> smaller, etc.).
Keywords should be standard English words: write ‘else if’ instead of ‘elif’.

• Indent everything carefully and consistently; the block structure should be visible from across the
room. This rule is especially important for nested loops and conditionals. Don’t add unnecessary
syntactic sugar like braces or begin/end tags; careful indentation is almost always enough.

• Use mnemonic algorithm and variable names. Short variable names are good, but readability is
more important than concision; except for idioms like loop indices, short but complete words are
better than single letters. Absolutely never use pronouns!

• Use standard mathematical notation for standard mathematical things. For example, write x · y
instead of x ∗ y for multiplication; write x mod y instead of x % y for remainder; write

p
x instead

of sqrt(x) for square roots; write ab instead of power(a, b) for exponentiation; and write φ instead
of phi for the golden ratio.

• Avoid mathematical notation if English is clearer. For example, ‘Insert a into X ’ may be preferable
to INSERT(X , a) or X ← X ∪ {a}.

• Each statement should fit on one line, and each line should contain either exactly one statement
or exactly one structuring element (for, while, if). (I sometimes make an exception for short and
similar statements like i← i+ 1; j← j− 1; k← 0.)

• Don’t use a fixed-width typeface to typeset pseudocode; it’s much harder to read than normal
typeset text. Similarly, don’t typeset keywords like ‘for’ or ‘while’ in a different style; the syntactic
sugar is not what you want the reader to look at. On the other hand, I do use italics for variables
(following the standard mathematical typesetting convention), SMALL CAPS for algorithms and
constants, and a different typeface for literal strings.

0.4 Analyzing algorithms

It’s not enough just to write down an algorithm and say ‘Behold!’ We must also convince our audience
(and ourselves!) that the algorithm actually does what it’s supposed to do, and that it does so efficiently.

6

Algorithms Lecture 0: Introduction [Fa’13]

Correctness

In some application settings, it is acceptable for programs to behave correctly most of the time, on
all ‘reasonable’ inputs. Not in this class; we require algorithms that are correct for all possible inputs.
Moreover, we must prove that our algorithms are correct; trusting our instincts, or trying a few test
cases, isn’t good enough. Sometimes correctness is fairly obvious, especially for algorithms you’ve seen
in earlier courses. On the other hand, ‘obvious’ is all too often a synonym for ‘wrong’. Many of the
algorithms we will discuss in this course will require extra work to prove correct. Correctness proofs
almost always involve induction. We like induction. Induction is our friend.12

But before we can formally prove that our algorithm does what it’s supposed to do, we have to
formally state what it’s supposed to do! Algorithmic problems are usually presented using standard
English, in terms of real-world objects, not in terms of formal mathematical objects. It’s up to us, the
algorithm designers, to restate these problems in terms of mathematical objects that we can prove things
about—numbers, arrays, lists, graphs, trees, and so on. We must also determine if the problem statement
carries any hidden assumptions, and state those assumptions explicitly. (For example, in the song “n
Bottles of Beer on the Wall”, n is always a positive integer.) Restating the problem formally is not only
required for proofs; it is also one of the best ways to really understand what a problem is asking for. The
hardest part of answering any question is figuring out the right way to ask it!

It is important to remember the distinction between a problem and an algorithm. A problem is a
task to perform, like “Compute the square root of x” or “Sort these n numbers” or “Keep n algorithms
students awake for t minutes”. An algorithm is a set of instructions for accomplishing such a task. The
same problem may have hundreds of different algorithms; the same algorithm may solve hundreds of
different problems.

Running time

The most common way of ranking different algorithms for the same problem is by how quickly they run.
Ideally, we want the fastest possible algorithm for any particular problem. In many application settings,
it is acceptable for programs to run efficiently most of the time, on all ‘reasonable’ inputs. Not in this
class; we require algorithms that always run efficiently, even in the worst case.

But how do we measure running time? As a specific example, how long does it take to sing the song
BOTTLESOFBEER(n)? This is obviously a function of the input value n, but it also depends on how quickly
you can sing. Some singers might take ten seconds to sing a verse; others might take twenty. Technology
widens the possibilities even further. Dictating the song over a telegraph using Morse code might take
a full minute per verse. Downloading an mp3 over the Web might take a tenth of a second per verse.
Duplicating the mp3 in a computer’s main memory might take only a few microseconds per verse.

What’s important here is how the singing time changes as n grows. Singing BOTTLESOFBEER(2n)
takes about twice as long as singing BOTTLESOFBEER(n), no matter what technology is being used. This
is reflected in the asymptotic singing time Θ(n). We can measure time by counting how many times the
algorithm executes a certain instruction or reaches a certain milestone in the ‘code’. For example, we
might notice that the word ‘beer’ is sung three times in every verse of BOTTLESOFBEER, so the number of
times you sing ‘beer’ is a good indication of the total singing time. For this question, we can give an
exact answer: BOTTLESOFBEER(n) uses exactly 3n+ 3 beers.

There are plenty of other songs that have non-trivial singing time. This one is probably familiar to
most English-speakers:

12If induction is not your friend, you will have a hard time in this course.

7

Algorithms Lecture 0: Introduction [Fa’13]

NDAYSOFCHRISTMAS(gifts[2 .. n]):
for i← 1 to n

Sing “On the ith day of Christmas, my true love gave to me”
for j← i down to 2

Sing “ j gifts[j]”
if i > 1

Sing “and”
Sing “a partridge in a pear tree.”

The input to NDAYSOFCHRISTMAS is a list of n−1 gifts. It’s quite easy to show that the singing time is
Θ(n2); in particular, the singer mentions the name of a gift

∑n
i=1 i = n(n+ 1)/2 times (counting the

partridge in the pear tree). It’s also easy to see that during the first n days of Christmas, my true love
gave to me exactly

∑n
i=1

∑i
j=1 j = n(n+ 1)(n+ 2)/6=Θ(n3) gifts.

There are many other traditional songs that take quadratic time to sing; examples include “Old
MacDonald Had a Farm”, “There Was an Old Lady Who Swallowed a Fly”, “The House that Jack Built”,
“Hole in the Bottom of the Sea”, “Green Grow the Rushes O”, “The Rattlin’ Bog”, “The Barley-Mow”,
“Eh, Cumpari!”, “Alouette”, “Echad Mi Yode’a”, “Ist das nicht ein Schnitzelbank?”, and “Minkurinn í
hænsnakofanum”. For further details, consult your nearest preschooler.

OLDMACDONALD(animals[1 .. n], noise[1 .. n]):
for i← 1 to n

Sing “Old MacDonald had a farm, E I E I O”
Sing “And on this farm he had some animals[i], E I E I O”
Sing “With a noise[i] noise[i] here, and a noise[i] noise[i] there”
Sing “Here a noise[i], there a noise[i], everywhere a noise[i] noise[i]”
for j← i− 1 down to 1

Sing “noise[j] noise[j] here, noise[j] noise[j] there”
Sing “Here a noise[j], there a noise[j], everywhere a noise[j] noise[j]”

Sing “Old MacDonald had a farm, E I E I O.”

ALOUETTE(lapart[1 .. n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerais. »
pour tout i de 1 á n

Chantez « Je te plumerais lapart[i]. Je te plumerais lapart[i]. »
pour tout j de i− 1 á bas á 1

Chantez « Et lapart[j] ! Et lapart[j] ! »
Chantez « Ooooooo! »
Chantez « Alouette, gentille alluette, alouette, je te plumerais. »

A more modern example of the parametrized cumulative song is “The TELNET Song” by Guy Steele,
which takes O(2n) time to sing; Steele recommended n= 4.

For a slightly less facetious example, consider the algorithm APPORTIONCONGRESS. Here the running
time obviously depends on the implementation of the priority queue operations, but we can certainly
bound the running time as O(N+RI+(R−n)E), where N denotes the running time of NEWPRIORITYQUEUE,
I denotes the running time of INSERT, and E denotes the running time of EXTRACTMAX. Under the
reasonable assumption that R> 2n (on average, each state gets at least two representatives), we can
simplify the bound to O(N + R(I + E)). The Census Bureau implements the priority queue using an
unsorted array of size n; this implementation gives us N = I = Θ(1) and E = Θ(n), so the overall
running time is O(Rn). This is good enough for government work, but we can do better. Implementing
the priority queue using a binary heap (or a heap-ordered array) gives us N = Θ(1) and I = R = O(log n),
which implies an overall running time of O(R log n).

8

Algorithms Lecture 0: Introduction [Fa’13]

Sometimes we are also interested in other computational resources: space, randomness, page faults,
inter-process messages, and so forth. We can use the same techniques to analyze those resources as we
use to analyze running time.

0.5 A Longer Example: Stable Matching

Every year, thousands of new doctors must obtain internships at hospitals around the United States.
During the first half of the 20th century, competition among hospitals for the best doctors led to earlier
and earlier offers of internships, sometimes as early as the second year of medical school, along with
tighter deadlines for acceptance. In the 1940s, medical schools agreed not to release information until a
common date during their students’ fourth year. In response, hospitals began demanding faster decisions.
By 1950, hospitals would regularly call doctors, offer them internships, and demand immediate responses.
Interns were forced to gamble if their third-choice hospital called first—accept and risk losing a better
opportunity later, or reject and risk having no position at all.13

Finally, a central clearinghouse for internship assignments, now called the National Resident Matching
Program, was established in the early 1950s. Each year, doctors submit a ranked list of all hospitals
where they would accept an internship, and each hospital submits a ranked list of doctors they would
accept as interns. The NRMP then computes an assignment of interns to hospitals that satisfies the
following stability requirement. For simplicity, let’s assume that there are n doctors and n hospitals; each
hospital offers exactly one internship; each doctor ranks all hospitals and vice versa; and finally, there
are no ties in the doctors’ and hospitals’ rankings.14 We say that a matching of doctors to hospitals is
unstable if there are two doctors α and β and two hospitals A and B, such that

• α is assigned to A, and β is assigned to B;

• α prefers B to A, and B prefers α to β .

In other words, α and B would both be happier with each other than with their current assignment.
The goal of the Resident Match is a stable matching, in which no doctor or hospital has an incentive to
cheat the system. At first glance, it is not clear that a stable matching exists!

In 1952, the NRMP adopted the “Boston Pool” algorithm to assign interns, so named because it had
been previously used by a regional clearinghouse in the Boston area. The algorithm is often misattributed
to David Gale and Lloyd Shapley, who formally analyzed the algorithm and first proved that it computes
a stable matching in 1962; Gale and Shapley used the metaphor of college admissions.15 Similar
algorithms have since been adopted for other matching markets, including faculty recruiting in France,
university admission in Germany, public school admission in New York and Boston, billet assignments
for US Navy sailors, and kidney-matching programs. Shapley was awarded the 2012 Nobel Prize in
Economics for his research on stable matching, together with Alvin Roth, who significantly extended
Shapley’s work and used it to develop several real-world exchanges.

13The academic job market involves similar gambles, at least in computer science. Some departments start making offers in
February with two-week decision deadlines; other departments don’t even start interviewing until late March; MIT notoriously
waits until May, when all its interviews are over, before making any faculty offers.

14In reality, most hospitals offer multiple internships, each doctor ranks only a subset of the hospitals and vice versa, and
there are typically more internships than interested doctors. And then it starts getting complicated.

15The “Gale-Shapley algorithm” is a prime instance of Stigler’s Law of Eponymy: No scientific discovery is named after its
original discoverer. In his 1980 paper that gives the law its name, the statistician Stephen Stigler claimed that this law was first
proposed by sociologist Robert K. Merton. However, similar statements were previously made by Vladimir Arnol’d in the 1970’s
(“Discoveries are rarely attributed to the correct person.”), Carl Boyer in 1968 (“Clio, the muse of history, often is fickle in
attaching names to theorems!”), Alfred North Whitehead in 1917 (“Everything of importance has been said before by someone
who did not discover it.”), and even Stephen’s father George Stigler in 1966 (“If we should ever encounter a case where a
theory is named for the correct man, it will be noted.”). We will see many other examples of Stigler’s law in this class.

9

Algorithms Lecture 0: Introduction [Fa’13]

The Boston Pool algorithm proceeds in rounds until every position has been filled. Each round has
two stages:

1. An arbitrary unassigned hospital A offers its position to the best doctor α (according to the
hospital’s preference list) who has not already rejected it.

2. Each doctor ultimately accepts the best offer that she receives, according to her preference list.
Thus, if α is currently unassigned, she (tentatively) accepts the offer from A. If α already has an
assignment but prefers A, she rejects her existing assignment and (tentatively) accepts the new
offer from A. Otherwise, α rejects the new offer.

For example, suppose four doctors (Dr. Quincy, Dr. Rotwang, Dr. Shephard, and Dr. Tam, represented
by lower-case letters) and four hospitals (Arkham Asylum, Bethlem Royal Hospital, County General
Hospital, and The Dharma Initiative, represented by upper-case letters) rank each other as follows:

q r s t
A A B D
B D A B
C C C C
D B D A

A B C D
t r t s
s t r r
r q s q
q s q t

Given these preferences as input, the Boston Pool algorithm might proceed as follows:

1. Arkham makes an offer to Dr. Tam.

2. Bedlam makes an offer to Dr. Rotwang.

3. County makes an offer to Dr. Tam, who rejects her earlier offer from Arkham.

4. Dharma makes an offer to Dr. Shephard. (From this point on, because there is only one unmatched
hospital, the algorithm has no more choices.)

5. Arkham makes an offer to Dr. Shephard, who rejects her earlier offer from Dharma.

6. Dharma makes an offer to Dr. Rotwang, who rejects her earlier offer from Bedlam.

7. Bedlam makes an offer to Dr. Tam, who rejects her earlier offer from County.

8. County makes an offer to Dr. Rotwang, who rejects it.

9. County makes an offer to Dr. Shephard, who rejects it.

10. County makes an offer to Dr. Quincy.

At this point, all pending offers are accepted, and the algorithm terminates with a matching: (A, s), (B, t),
(C , q), (D, r). You can (and should) verify by brute force that this matching is stable, even though no
doctor was hired by her favorite hospital, and no hospital hired its favorite doctor; in fact, County was
forced to hire their least favorite doctor. This is not the only stable matching for this list of preferences;
the matching (A, r), (B, s), (C , q), (D, t) is also stable.

Running Time

Analyzing the algorithm’s running time is relatively straightforward. Each hospital makes an offer to
each doctor at most once, so the algorithm requires at most n2 rounds. In an actual implementation,
each doctor and hospital can be identified by a unique integer between 1 and n, and the preference lists
can be represented as two arrays DocPref[1 .. n][1 .. n] and HosPref[1 .. n][1 .. n], where DocPref[α][r]

10

Algorithms Lecture 0: Introduction [Fa’13]

represents the rth hospital in doctor α’s preference list, and HosPref[A][r] represents the rth doctor in
hospital A’s preference list. With the input in this form, the Boston Pool algorithm can be implemented
to run in O(n2) time; we leave the details as an easy exercise.

A somewhat harder exercise is to prove that there are inputs (and choices of who makes offers
when) that force Ω(n2) rounds before the algorithm terminates. Thus, the O(n2) upper bound on the
worst-case running time cannot be improved; in this case, we say our analysis is tight.

Correctness

But why is the algorithm correct? How do we know that the Boston Pool algorithm always computes
a stable matching? Gale and Shapley proved correctness as follows. The algorithm continues as long
as there is at least one unfilled position; conversely, when the algorithm terminates (after at most n2

rounds), every position is filled. No doctor can accept more than one position, and no hospital can hire
more than one doctor. Thus, the algorithm always computes a matching; it remains only to prove that
the matching is stable.

Suppose doctor α is assigned to hospital A in the final matching, but prefers B. Because every doctor
accepts the best offer she receives, α received no offer she liked more than A. In particular, B never
made an offer to α. On the other hand, B made offers to every doctor they like more than β . Thus,
B prefers β to α, and so there is no instability.

Surprisingly, the correctness of the algorithm does not depend on which hospital makes its offer
in which round. In fact, there is a stronger sense in which the order of offers doesn’t matter—no
matter which unassigned hospital makes an offer in each round, the algorithm always computes the same
matching! Let’s say that α is a feasible doctor for A if there is a stable matching that assigns doctor α to
hospital A.

Lemma 0.1. During the Boston Pool algorithm, each hospital A is rejected only by doctors that are
infeasible for A.

Proof: We prove the lemma by induction. Consider an arbitrary round of the Boston Pool algorithm, in
which doctor α rejects one hospital A for another hospital B. The rejection implies that α prefers B to A.
Every doctor that appears higher than α in B’s preference list has already rejected B and therefore, by
the inductive hypothesis, is infeasible for B.

Now consider an arbitrary matching that assigns α to A. We already established that α prefers B to A.
If B prefers α to its partner, the matching is unstable. On the other hand, if B prefers its partner to α,
then (by our earlier argument) its partner is infeasible, and again the matching is unstable. We conclude
that there is no stable matching that assigns α to A. �

Now let best(A) denote the highest-ranked feasible doctor on A’s preference list. Lemma 0.1 implies
that every doctor that A prefers to its final assignment is infeasible for A. On the other hand, the final
matching is stable, so the doctor assigned to A is feasible for A. The following result is now immediate:

Corollary 0.2. The Boston Pool algorithm assigns best(A) to A, for every hospital A.

Thus, from the hospitals’ point of view, the Boston Pool algorithm computes the best possible stable
matching. It turns out that this matching is also the worst possible from the doctors’ viewpoint! Let
worst(α) denote the lowest-ranked feasible hospital on doctor α’s preference list.

Corollary 0.3. The Boston Pool algorithm assigns α to worst(α), for every doctor α.

11

Algorithms Lecture 0: Introduction [Fa’13]

Proof: Suppose the Boston Pool algorithm assigns doctor α to hospital A; we need to show that
A= worst(α). Consider an arbitrary stable matching where A is not matched with α but with another
doctor β . The previous corollary implies that A prefers α= best(A) to β . Because the matching is stable,
α must therefore prefer her assigned hopital to A. This argument works for any stable assignment, so α
prefers every other feasible match to A; in other words, A= worst(α). �

A subtle consequence of these two corollaries, discovered by Dubins and Freeman in 1981, is that a
doctor can potentially improve her assignment by lying about her preferences, but a hospital cannot.
(However, a set of hospitals can collude so that some of their assignments improve.) Partly for this
reason, the National Residency Matching Program reversed its matching algorithm in 1998, so that
potential residents offer to work for hospitals in preference order, and each hospital accepts its best
offer. Thus, the new algorithm computes the best possible stable matching for the doctors, and the worst
possible stable matching for the hospitals. In practice, however, this modification affected less than 1%
of the resident’s assignments. As far as I know, the precise effect of this change on the patients is an
open problem.

0.6 Why are we here, anyway?

This class is ultimately about learning two skills that are crucial for all computer scientists.

1. Intuition: How to think about abstract computation.

2. Language: How to talk about abstract computation.

The first goal of this course is to help you develop algorithmic intuition. How do various algorithms
really work? When you see a problem for the first time, how should you attack it? How do you tell
which techniques will work at all, and which ones will work best? How do you judge whether one
algorithm is better than another? How do you tell whether you have the best possible solution? These
are not easy questions; anyone who says differently is selling something.

Our second main goal is to help you develop algorithmic language. It’s not enough just to understand
how to solve a problem; you also have to be able to explain your solution to somebody else. I don’t mean
just how to turn your algorithms into working code—despite what many students (and inexperienced
programmers) think, ‘somebody else’ is not just a computer. Nobody programs alone. Code is read far
more often than it is written, or even compiled. Perhaps more importantly in the short term, explaining
something to somebody else is one of the best ways to clarify your own understanding. As Albert Einstein
(or was it Richard Feynman?) apocryphally put it, “You do not really understand something unless you
can explain it to your grandmother.”

Along the way, you’ll pick up a bunch of algorithmic facts—mergesort runs in Θ(n log n) time; the
amortized time to search in a splay tree is O(log n); greedy algorithms usually don’t produce optimal
solutions; the traveling salesman problem is NP-hard—but these aren’t the point of the course. You
can always look up mere facts in a textbook or on the web, provided you have enough intuition and
experience to know what to look for. That’s why we let you bring cheat sheets to the exams; we don’t
want you wasting your study time trying to memorize all the facts you’ve seen.

You’ll also practice a lot of algorithm design and analysis skills—finding useful (counter)examples,
developing induction proofs, solving recurrences, using big-Oh notation, using probability, giving
problems crisp mathematical descriptions, and so on. These skills are incredibly useful, and it’s impossible
to develop good intuition and good communication skills without them, but they aren’t the main point
of the course either. At this point in your educational career, you should be able to pick up most of those
skills on your own, once you know what you’re trying to do.

12

Algorithms Lecture 0: Introduction [Fa’13]

Unfortunately, there is no systematic procedure—no algorithm—to determine which algorithmic
techniques are most effective at solving a given problem, or finding good ways to explain, analyze,
optimize, or implement a given algorithm. Like many other activities (music, writing, juggling, acting,
martial arts, sports, cooking, programming, teaching, etc.), the only way to master these skills is to make
them your own, through practice, practice, and more practice. You can only develop good problem-
solving skills by solving problems. You can only develop good communication skills by communicating.
Good intuition is the product of experience, not its replacement. We can’t teach you how to do well in
this class. All we can do (and what we will do) is lay out some fundamental tools, show you how to use
them, create opportunities for you to practice with them, and give you honest feedback, based on our
own hard-won experience and intuition. The rest is up to you.

Good algorithms are extremely useful, elegant, surprising, deep, even beautiful, but most importantly,
algorithms are fun! I hope you will enjoy playing with them as much as I do.

13

Algorithms Lecture 0: Introduction [Fa’13]

Boethius the algorist versus Pythagoras the abacist.
from Margarita Philosophica by Gregor Reisch (1503)

14

Algorithms Lecture 0: Introduction [Fa’13]

Exercises

0. Describe and analyze an efficient algorithm that determines, given a legal arrangement of standard
pieces on a standard chess board, which player will win at chess from the given starting position if
both players play perfectly. [Hint: There is a trivial one-line solution!]

1. “The Barley Mow” is a cumulative drinking song which has been sung throughout the British Isles
for centuries. (An early version entitled “Giue vs once a drinke” appears in Thomas Ravenscroft’s
song collection Deuteromelia, which was published in 1609, but the song is almost certainly much
older.) The song has many variants, but one version traditionally sung in Devon and Cornwall has
the following pseudolyrics, where vessel[i] is the name of a vessel that holds 2i ounces of beer.
The traditional song uses the following vessels: nipperkin, gill pot, half-pint, pint, quart, pottle,
gallon, half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. (Every
vessel in this list is twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and
the last three units are just silly.)

BARLEYMOW(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

for i← 1 to n
“We’ll drink it out of the vessel[i], boys,”
“Here’s a health to the barley-mow!”
for j← i downto 1

“The vessel[j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

(a) Suppose each name vessel[i] is a single word, and you can sing four words a second. How
long would it take you to sing BARLEYMOW(n)? (Give a tight asymptotic bound.)

(b) If you want to sing this song for arbitrarily large values of n, you’ll have to make up your
own vessel names. To avoid repetition, these names must become progressively longer as n
increases. (“We’ll drink it out of the hemisemidemiyottapint, boys!”) Suppose vessel[n] has
Θ(log n) syllables, and you can sing six syllables per second. Now how long would it take
you to sing BARLEYMOW(n)? (Give a tight asymptotic bound.)

(c) Suppose each time you mention the name of a vessel, you actually drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2i ounces for each vessel[i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how many
ounces of beer would you drink if you sang BARLEYMOW(n)? (Give an exact answer, not just
an asymptotic bound.)

2. Describe and analyze the Boston Pool stable matching algorithm in more detail, so that the
worst-case running time is O(n2), as claimed earlier in the notes.

15

http://www.youtube.com/watch?v=tN7wh3DrIBU
http://imslp.org/wiki/Deuteromelia_(Ravenscroft,_Thomas)
http://books.google.com/books?id=RCFAAAAAYAAJ&pg=PA159#v=onepage&q&f=false

Algorithms Lecture 0: Introduction [Fa’13]

3. Prove that it is possible for the Boston Pool algorithm to execute Ω(n2) rounds. (You need to
describe both a suitable input and a sequence of Ω(n2) valid proposals.)

4. Describe and analyze an efficient algorithm to determine whether a given set of hospital and
doctor preferences has to a unique stable matching.

5. Consider a generalization of the stable matching problem, where some doctors do not rank all
hospitals and some hospitals do not rank all doctors, and a doctor can be assigned to a hospital
only if each appears in the other’s preference list. In this case, there are three additional unstable
situations:

• A hospital prefers an unmatched doctor to its assigned match.

• A doctor prefers an unmatched hospital to her assigned match.

• An unmatched doctor and an unmatched hospital appear in each other’s preference lists.

Describe and analyze an efficient algorithm that computes a stable matching in this setting.

Note that a stable matching may leave some doctors and hospitals unmatched, even though
their preference lists are non-empty. For example, if every doctor lists Harvard as their only
acceptable hospital, and every hospital lists Dr. House as their only acceptable intern, then only
House and Harvard will be matched.

6. Recall that the input to the Huntington-Hill apportionment algorithm APPORTIONCONGRESS is an
array P[1 .. n], where P[i] is the population of the ith state, and an integer R, the total number
of representatives to be allotted. The output is an array r[1 .. n], where r[i] is the number of
representatives allotted to the ith state by the algorithm.

Let P =
∑n

i=1 P[i] denote the total population of the country, and let r∗i = R · P[i]/P denote
the ideal number of representatives for the ith state.

(a) Prove that r[i]≥ br∗i c for all i.

(b) Describe and analyze an algorithm that computes exactly the same congressional apportion-
ment as APPORTIONCONGRESS in O(n log n) time. (Recall that the running time of APPORTION-
CONGRESS depends on R, which could be arbitrarily larger than n.)

?(c) If a state’s population is small relative to the other states, its ideal number r∗i of represen-
tatives could be close to zero; thus, tiny states are over-represented by the Huntington-
Hill apportionment process. Surprisingly, this can also be true of very large states. Let
α= (1+

p
2)/2≈ 1.20710678119. Prove that for any ε > 0, there is an input to APPORTION-

CONGRESS with maxi P[i] = P[1], such that r[1]> (α− ε) r∗1 .
Æ(d) Can you improve the constant α in the previous question?

© Copyright 2013 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

16

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Introduction
	What is an algorithm?
	A Few Simple Examples
	Writing down algorithms
	Analyzing algorithms
	A Longer Example: Stable Matching
	Why are we here, anyway?

