1. Let G be a directed acyclic graph where each node has a label from some finite alphabet; different nodes may have the same label. Any directed path in G has a signature, which is the string defined by concatenating the labels of its vertices. A subsequence of G is a subsequence of the signature of some directed path in G. For example, the strings DYNAMIC, PROGRAM, and DETPHFIRST are all subsequences of the dag shown below; in fact, PROGRAM is the signature of a path.

Describe and analyze an algorithm to compute the length of the longest common subsequence of two given directed acyclic graphs, that is, the longest string that is a subsequence of both dags.
2. Suppose you are given a graph G with weighted edges and a minimum spanning tree T of G.
(a) Describe an algorithm to update the minimum spanning tree when the weight of a single edge e is decreased.
(b) Describe an algorithm to update the minimum spanning tree when the weight of a single edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your algorithms should modify T so that it is still a minimum spanning tree. [Hint: Consider the cases $e \in T$ and $e \notin T$ separately.]
3. When there is more than one shortest paths from one node s to another node t, it is often most convenient to choose the shortest path with the fewest edges; call this the best path from s to t. For instance, if nodes represent cities and edge lengths represent costs of flying between cities, there could be many ways to fly from city s to city t for the same cost; the most desirable these schedules is the one with the fewest flights.

Suppose we are given a directed graph G with positive edge weights and a source vertex s in G. Describe and analyze an algorithm to compute best paths in G from s to every other vertex. [Hint: What is the actual output of your algorithm? If possible, use one of the standard shortest-path algorithms as a black box.]

