More NP-Complete Problems

Lecture 23 April 21, 2011

Recap

NP: languages that have polynomial time certifiers/verifiers

A language **L** is NP-COMPLETE iff

- L is in NP
- for every L' in NP, $L' \leq_P L$

L is NP-HARD if for every L' in NP, $L' \leq_P L$.

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-COMPLETE.

Recap contd

Theorem (Cook-Levin)

Circuit-SAT and SAT are NP-COMPLETE.

Establish NP-Completeness via reductions:

- SAT \leq_P 3-SAT and hence 3-SAT is NP-complete
- 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-COMPLETE
- Vertex Cover is NP-COMPLETE
- Clique is NP-COMPLETE
- Set Cover is NP-COMPLETE

Sariel (UIUC) CS473 3 Fall 2011 3 / 48

Today

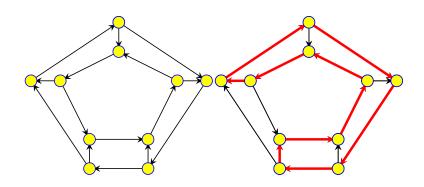
Prove

- Hamiltonian Cycle Problem is NP-COMPLETE
- 3-Coloring is NP-COMPLETE

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



Sariel (UIUC) CS473 5 Fall 2011 5 / 48

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show
 - 3-SAT \leq_P Directed Hamiltonian Cycle

Sariel (UIUC) CS473 6 Fall 2011 6 / 4

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- ullet G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- $m{\circ}$ $m{G}_{arphi}$ should be constructible from $m{arphi}$ by a polynomial time algorithm $m{\mathcal{A}}$

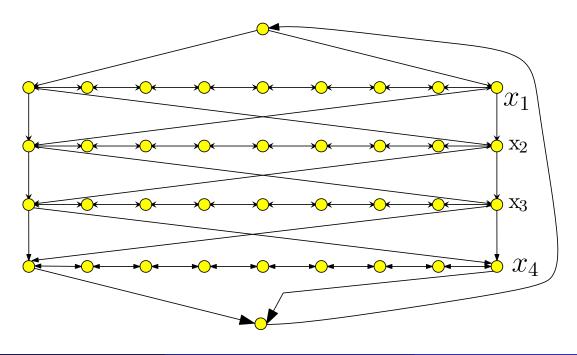
Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has
 3 ways in which it can be satisfied
- Construct graph with 2^n Hamiltonian cycles, where each cycle corresponds to some boolean assignment
- Then add more graph structure to encode constraints on assignments imposed by the clauses

The Reduction: Phase I

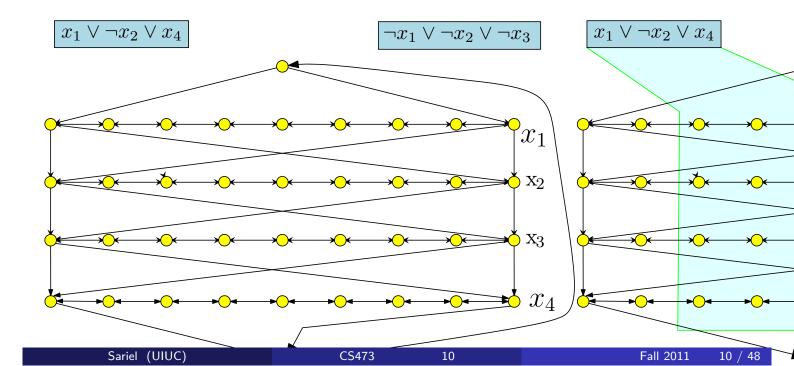
- Traverse path i from left to right iff x_i is set to true
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)



Sariel (UIUC) CS473 9 Fall 2011 9 / 48

The Reduction: Phase II

• Add vertex c_j for clause C_j . c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j , and has edge from vertex 3j + 1 and to vertex 3j if $\neg x_i$ appears in C_j .



Correctness Proof

Proposition

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let **a** be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path i from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

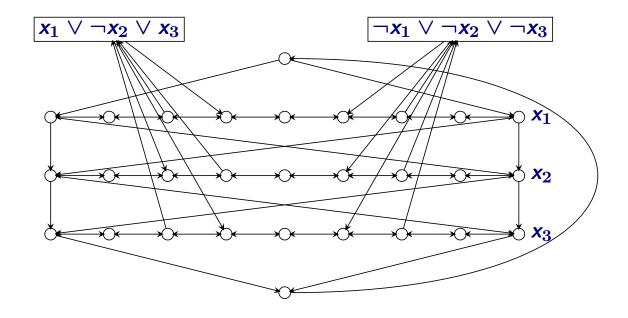
Sariel (UIUC) CS473 11 Fall 2011 11 / 48

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in $extbf{\emph{G}}_{arphi}$

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - ullet If not, then only unvisited neighbor of 3j+1 on path i is 3j+2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_i on edge to 3j on path i

Example



Sariel (UIUC) CS473 13 Fall 2011 13 / 48

Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- Consider Hamiltonian cycle in $G \{c_1, \dots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Sariel (UIUC) CS473 14 Fall 2011 14 / -

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Sariel (UIUC) CS473 15 Fall 2011 15 / 48

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-COMPLETE.

Proof.

- The problem is in NP; proof left as exercise
- ullet Hardness proved by reducing Directed Hamiltonian Cycle to this problem $\hfill\Box$

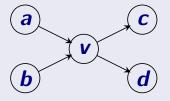
Sariel (UIUC) CS473 16 Fall 2011 16 / 48

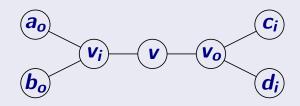
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})





Sariel (UIUC) CS473 17 Fall 2011 17 / 48

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Sariel (UIUC) CS473 18 Fall 2011 18 / 4

Graph Coloring

Input Given an undirected graph G = (V, E) and integer k

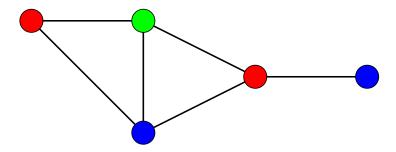
Goal Can the vertices of the graph be colored using **k** colors so that vertices connected by an edge do not get the same color?

Sariel (UIUC) CS473 19 Fall 2011 19 / 48

Graph 3-Coloring

Input Given an undirected graph G = (V, E)

Goal Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?



Sariel (UIUC) CS473 20 Fall 2011 20 / 4

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into K independent sets iff G is K-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (see book).

Sariel (UIUC) CS473 21 Fall 2011 21 / 48

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any k > 3

Sariel (UIUC) CS473 22 Fall 2011 22 / 48

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v_i for each class i
- ullet an edge between $oldsymbol{v_i}$ and $oldsymbol{v_j}$ if classes $oldsymbol{i}$ and $oldsymbol{j}$ conflict

Exercise: G is k-colorable iff k rooms are sufficient

Sariel (UIUC) CS473 23 Fall 2011 23 / 48

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers

Sariel (UIUC) CS473 24 Fall 2011 24 /

3-Coloring is NP-Complete

- 3-Coloring is in **NP**
 - Certificate: for each node a color from $\{1, 2, 3\}$
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v
- Hardness: We will show 3-SAT \leq_P 3-Coloring

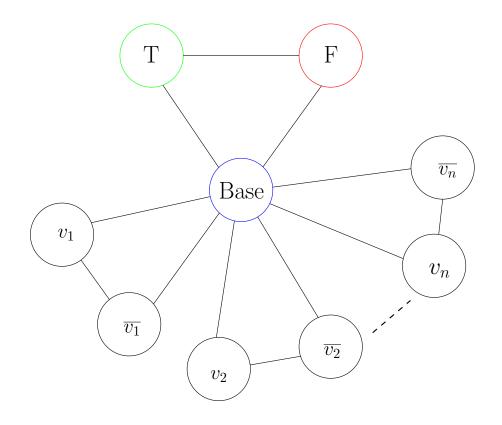
Sariel (UIUC) CS473 25 Fall 2011 25 / 48

Reduction Idea

Start with **3SAT** formula (i.e., **3CNF** formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Sariel (UIUC) CS473 26 Fall 2011 26 / 4



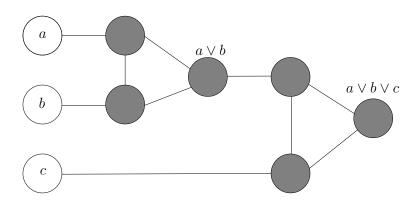
Sariel (UIUC) CS473 27 Fall 2011 27 / 48

Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



Sariel (UIUC) CS473 28 Fall 2011 28 / 48

OR-Gadget Graph

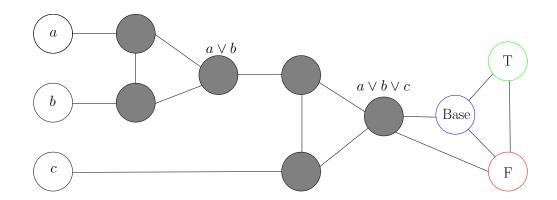
Property: if **a**, **b**, **c** are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of **a**, **b**, **c** is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Sariel (UIUC) CS473 29 Fall 2011 29 / 48

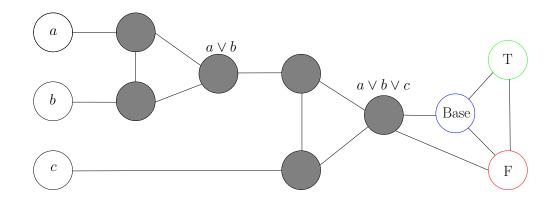
Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



Sariel (UIUC) CS473 30 Fall 2011 30 / 4

Reduction

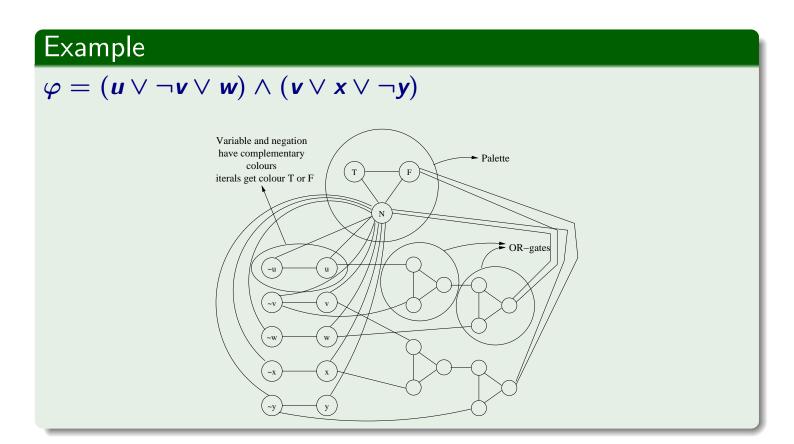


Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

Sariel (UIUC) CS473 31 Fall 2011 31 / 48

Reduction Outline



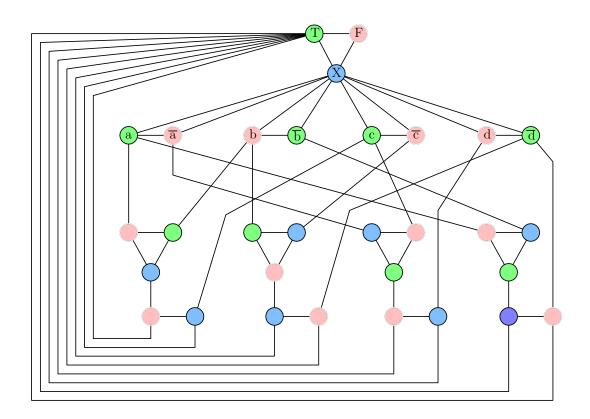
Correctness of Reduction

- φ is satisfiable implies G_{φ} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Sariel (UIUC) CS473 33 Fall 2011 33 / 48

Graph generated in reduction...

... from 3SAT to 3COLOR



Subset Sum

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer

number (Target)

Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x =$

t?

Claim

Subset Sum is NP-Complete.

Sariel (UIUC) CS473 35 Fall 2011 35 / 48

Vec Subset Sum

We will prove following problem is NP-COMPLETE...

Problem: Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{X} \in X} \overrightarrow{X} = \overrightarrow{t}$?

Reduction from **3SAT**.

Sariel (UIUC) CS473 36 Fall 2011 36 / 48

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
a_1	??	??	01	??
a_2	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

Sariel (UIUC) CS473 37 Fall 2011 37 / 48

Handling a clause...

We will have a column for every clause...

numbers		$C \equiv a \lor b \lor \overline{c}$	
а		01	
ā		00	
b		01	
$\overline{\boldsymbol{b}}$		00	
С		00	
<u>c</u>		01	
C fix-up 1	000	07	000
C fix-up 2	000	08	000
C fix-up 3	000	09	000
TARGET		10	

3SAT to Vec Subset Sum

numbers	$a \vee \overline{a}$	$b \vee \overline{b}$	$c \vee \overline{c}$	$d \vee \overline{d}$	$D \equiv \overline{b} \vee c \vee \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
а	1	0	0	0	00	01
ā	1	0	0	0	00	00
b	0	1	0	0	00	01
\overline{b}	0	1	0	0	01	00
С	0	0	1	0	01	00
<u>c</u>	0	0	1	0	00	01
d	0	0	0	1	00	00
\overline{d}	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
<i>C</i> fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Sariel (UIUC) CS473 39 Fall 2011 39 / 48

Vec Subset Sum to Subset Sum

numbers
01000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
00000010101
00000000007
80000000000
00000000009
00000000700
00800000000
000000000900

Sariel (UIUC) CS473 40 Fall 2011 40 / 48

Other NP-Complete Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

Sariel (UIUC) CS473 41 Fall 2011 41 / 48

Need to Know NP-Complete Problems

- 3-SAT
- Circuit-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum

Sariel (UIUC) CS473 42 Fall 2011 42 / 48

Subset Sum and Knapsack

Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?

Subset Sum is NP-COMPLETE— see book.

Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?

Show Knapsack problem is NP-COMPLETE via reduction from Subset Sum (exercise).

Sariel (UIUC) CS473 43 Fall 2011 43 / 48

Subset Sum and Knapsack

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly** NP-Complete.