NP Completeness and Cook-Levin Theorem

Lecture 22 April 19, 2011

P and NP and Turing Machines

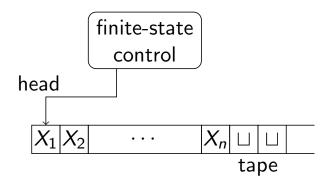
- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.

Turing Machines: Recap



- Infinite tape.
- Finite state control.
- Input at beginning of tape.
- Special tape letter "blank" □.
- Head can move only one cell to left or right.

Turing Machines: Formally

A TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:

- Q is set of states in finite control
- ullet $oldsymbol{q}_0$ start state, $oldsymbol{q}_{accept}$ is accept state, $oldsymbol{q}_{reject}$ is reject state
- Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
- $\delta: \mathbf{Q} \times \Gamma \to \{\mathbf{L}, \mathbf{R}\} \times \Gamma \times \mathbf{Q}$ is transition function
 - $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

L(M): language accepted by M is set of all input strings s on which M accepts; that is:

- TM is started in state q_0 .
- Initially, the tape head is located at the first cell.
- The tape contain **s** on the tape followed by blanks.
- The TM halts in the state q_{accept} .

Sariel (UIUC) CS473 4 Fall 2011 4 / 4

P via TMs

Definition

M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in p(|w|) steps.

Definition

 $m{L}$ is a language in $m{P}$ iff there is a polynomial time $m{TM}$ $m{M}$ such that $m{L} = m{L}(m{M})$.

Sariel (UIUC) CS473 5 Fall 2011 5 / 48

NP via TMs

Definition

 \boldsymbol{L} is an \overline{NP} language iff there is a *non-deterministic* polynomial time \overline{TM} \boldsymbol{M} such that $\boldsymbol{L} = \boldsymbol{L}(\boldsymbol{M})$.

Non-deterministic TM: each step has a choice of moves

- $\delta: \mathbf{Q} \times \Gamma \to \mathcal{P}(\mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\})$.
 - Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).
- L(M): set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}

Sariel (UIUC) CS473 6 Fall 2011 6 / 4

Non-deterministic TMs vs certifiers

NP

Two definition of NP:

- **L** is in NP iff **L** has a polynomial time certifier $C(\cdot, \cdot)$.
- **L** is in NP iff **L** is decided by a non-deterministic polynomial time TM **M**.

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa. In other words L is in NP iff L is accepted by a NTM which first guesses a proof t of length poly in input |s| and then acts as a deterministic TM.

Sariel (UIUC) CS473 7 Fall 2011 7 / 48

Non-determinism, guessing and verification

- A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.
- Equivalently the choices can be thought of as *guessing* a solution and then *verifying* that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The "guess" is the "proof" and the "verifier" is the "certifier".
- We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified.
 No easy way to verify that a string is not in the language.

Sariel (UIUC) CS473 8 Fall 2011 8 / 4

Algorithms: TMs vs RAM Model

Why do we use TMs some times and RAM Model other times?

- TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The "right" formal bare-bones model when dealing with subtleties.
- RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space

Sariel (UIUC) CS473 9 Fall 2011 9 / 48

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- Hardest problem must be at least as "difficult" as every other problem in NP.

Sariel (UIUC) CS473 10 Fall 2011 10 / 48

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Sariel (UIUC) CS473 11 Fall 2011 11 / 48

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose **X** can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - Thus, every problem $Y \in \mathbb{NP}$ is such that $Y \in P$; $\mathbb{NP} \subseteq P$.
 - Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

Sariel (UIUC) CS473 12 Fall 2011 12 / 48

NP-Hard Problems

Definition

A problem X is said to be NP-HARD if

• (Hardness) For any $Y \in NP$, $Y \leq_P X$

An NP-HARD problem need not be in NP!

Example: Halting problem is NP-HARD (why?) but not NP-COMPLETE.

Sariel (UIUC) CS473 13 Fall 2011 13 / 48

Consequences of proving NP-Completeness

If X is NP-COMPLETE

- Since we believe $P \neq NP$,
- and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) CS473 14 Fall 2011 14 /

NP-Complete Problems

Question

Are there any problems that are NP-COMPLETE?

Answer

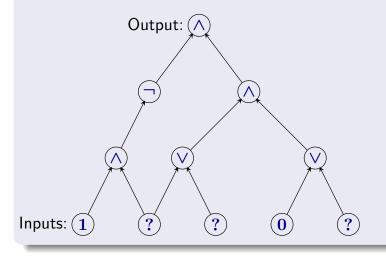
Yes! Many, many problems are NP-COMPLETE.

Sariel (UIUC) CS473 15 Fall 2011 15 / 48

Circuits

Definition

A circuit is a directed acyclic graph with



- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable
- Every other vertex is labelled
 ∨, ∧ or ¬
- Single node output vertex with no outgoing edges

Sariel (UIUC) CS473 16 Fall 2011 16 / 48

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-COMPLETE.

Need to show

- **CSAT** is in NP
- every NP problem X reduces to CSAT.

Sariel (UIUC) CS473 17 Fall 2011 17 / 48

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Sariel (UIUC) CS473 18 Fall 2011 18 / 48

CSAT is **NP**-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that $X \in NP$?

 $X \in \mathbb{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:

- If s is a YES instance $(s \in X)$ then there is a *proof* t of length p(|s|) such that C(s, t) says YES.
- If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
- C(s, t) runs in time q(|s| + |t|) time (hence polynomial time).

Sariel (UIUC) CS473 19 Fall 2011 19 / 48

Reducing X to CSAT

X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine! How are p() and q() given? As numbers.

Example: if 3 is given then $p(n) = n^3$.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

Sariel (UIUC) CS473 20 Fall 2011 20 / 4

Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length p(|s|) such that C(s, t) says YES.

How do we reduce X to CSAT? Need an algorithm A that

- takes s (and < p, q, C >) and creates a circuit G in polynomial time in |s| (note that < p, q, C > are fixed).
- G is satisfiable if and only if there is a proof t such that C(s, t) says YES.

Sariel (UIUC) CS473 21 Fall 2011 21 / 48

Reducing X to CSAT

How do we reduce \boldsymbol{X} to CSAT? Need an algorithm $\boldsymbol{\mathcal{A}}$ that

- takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in |s| (note that $\langle p, q, C \rangle$ are fixed).
- G is satisfiable if and only if there is a proof t such that C(s,t) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

- Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
- We know that |t| = p(|s|) so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
- Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

Sariel (UIUC) CS473 22 Fall 2011 22 / 48

Example: Independent Set

- Problem: Does G = (V, E) have an **Independent Set** of size $\geq k$?
 - Certificate: Set $S \subseteq V$
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge

Formally, why is **Independent Set** in NP?

Sariel (UIUC) CS473 23 Fall 2011 23 / 48

Example: Independent Set

Formally why is **Independent Set** in NP?

- Input:
 - < $n, y_{1,1}, y_{1,2}, \dots, y_{1,n}, y_{2,1}, \dots, y_{2,n}, \dots, y_{n,1}, \dots, y_{n,n}, k >$ encodes < G, k >.
 - *n* is number of vertices in *G*
 - $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
 - **k** is size of independent set.
- Certificate: $t = t_1 t_2 \dots t_n$. Interpretation is that t_i is 1 if vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) CS473 24 Fall 2011 24 /

Certifier for Independent Set

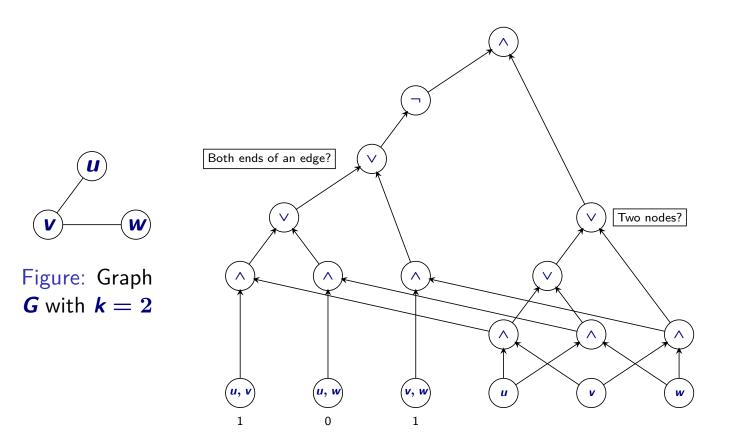
```
Certifier C(s, t) for Independent Set:
```

```
if (t_1+t_2+\ldots+t_n< k) then return NO else for each (i,j) do if (t_i \wedge t_j \wedge y_{i,j}) then return NO
```

return YES

Sariel (UIUC) CS473 25 Fall 2011 25 / 48

Example: Independent Set



Sariel (UIUC) CS473 26 Fall 2011 26 / 48

Circuit from Certifier

Sariel (UIUC) CS473 27 Fall 2011 27 / 48

Programs, Turing Machines and Circuits

Consider "program" **A** that takes f(|s|) steps on input string **s**.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- can simulate real computers with polynomial slow down
- all moves are local (head moves only one cell)

Sariel (UIUC) CS473 28 Fall 2011 28 / 48

Certifiers that at TMs

Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length p(|s|) such that M on s, t will halt in q(|s|) time and say YES.

There is an algorithm \mathcal{A} that can reduce above problem to **CSAT** mechanically as follows.

- \mathcal{A} first computes p(|s|) and q(|s|).
- Knows that **M** can use at most q(|s|) memory/tape cells
- Knows that M can run for at most q(|s|) time
- Simulates the evolution of the state of M and memory over time using a big circuit.

Sariel (UIUC) CS473 29 Fall 2011 29 / 48

Simulation of Computation via Circuit

- Think of M's state at time ℓ as a string $x^{\ell} = x_1 x_2 \dots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
- At time 0 the state of M consists of input string s a guess t (unknown variables) of length p(|s|) and rest q(|s|) blank symbols.
- At time q(|s|) we wish to know if M stops in q_{accept} with say all blanks on the tape.
- We write a circuit $\emph{\textbf{C}}_{\ell}$ which captures the transition of $\emph{\textbf{M}}$ from time ℓ to time $\ell+1$.
- ullet Composition of the circuits for all times 0 to $m{q}(|m{s}|)$ gives a big (still poly) sized circuit $m{\mathcal{C}}$
- The final output of $\mathcal C$ should be true if and only if the entire state of M at the end leads to an accept state.

Sariel (UIUC) CS473 30 Fall 2011 30 / 48

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- Use TMs as the code for certifier for simplicity
- Since p() and q() are known to A, it can set up all required memory and time steps in advance
- ullet Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

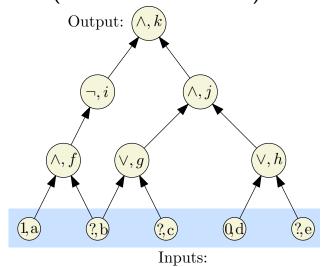
Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.

Sariel (UIUC) CS473 31 Fall 2011 31 / 48

SAT is NP-Complete

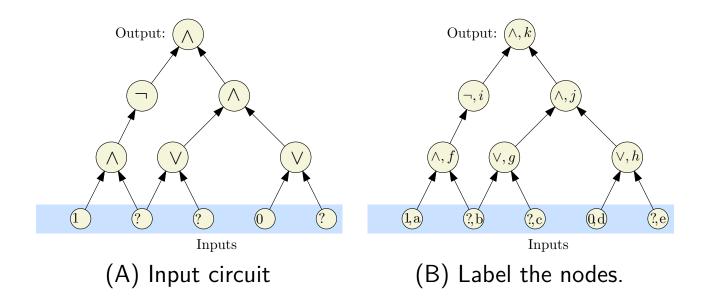
- We have seen that $SAT \in NP$
- To show NP-HARDNESS, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of **CSAT** (we label each node):



Converting a circuit into a CNF formula

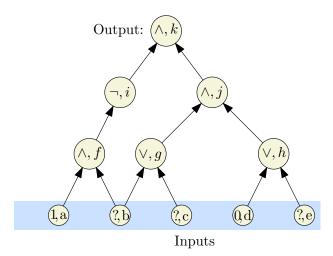
Label the nodes



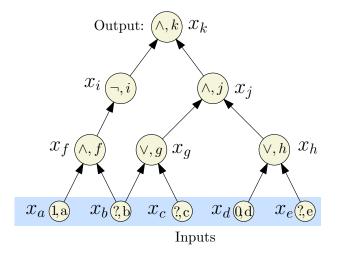
Sariel (UIUC) CS473 33 Fall 2011 33 / 48

Converting a circuit into a CNF formula

Introduce a variable for each node



(B) Label the nodes.

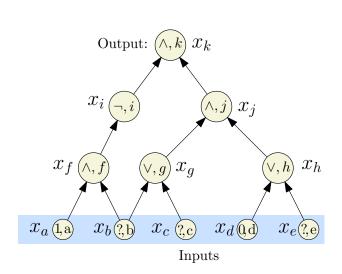


(C) Introduce var for each node.

Sariel (UIUC) CS473 34 Fall 2011 34 / 48

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.



(C) Introduce var for each node.

 $egin{aligned} x_k & ext{ (Demand a sat' assignment!)} \ x_k &= x_i \wedge x_k \ x_j &= x_g \wedge x_h \ x_i &= \neg x_f \ x_h &= x_d \vee x_e \ x_g &= x_b \vee x_c \ x_f &= x_a \wedge x_b \ x_d &= 0 \ x_a &= 1 \end{aligned}$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Sariel (UIUC) CS473 35 Fall 2011 35 / 48

Converting a circuit into a CNF formula

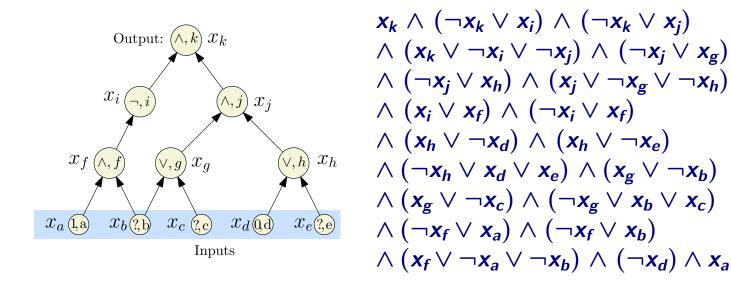
Convert each sub-formula to an equivalent CNF formula

$\boldsymbol{x_k}$	$\boldsymbol{x_k}$
$x_k = x_i \wedge x_j$	$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$
$x_j = x_g \wedge x_h$	$ (\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h) \land $
$x_i = \neg x_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee x_f) \wedge$
$x_h = x_d \lor x_e$	$(x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)$
$x_g = x_b \vee x_c$	$(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$
$x_f = x_a \wedge x_b$	$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$
$x_d = 0$	$\neg x_d$
$x_a = 1$	X _a

Sariel (UIUC) CS473 36 Fall 2011 36 / 48

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas



We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Sariel (UIUC) CS473 37 Fall 2011 37 / 48

Reduction: $CSAT \leq_P SAT$

- ullet For each gate (vertex) $oldsymbol{v}$ in the circuit, create a variable $oldsymbol{x}_{oldsymbol{v}}$
- Case \neg : \mathbf{v} is labeled \neg and has one incoming edge from \mathbf{u} (so $\mathbf{x}_{\mathbf{v}} = \neg \mathbf{x}_{\mathbf{u}}$). In SAT formula generate, add clauses $(\mathbf{x}_{\mathbf{u}} \vee \mathbf{x}_{\mathbf{v}})$, $(\neg \mathbf{x}_{\mathbf{u}} \vee \neg \mathbf{x}_{\mathbf{v}})$. Observe that

$$x_v = \neg x_u$$
 is true $\iff \frac{(x_u \lor x_v)}{(\neg x_u \lor \neg x_v)}$ both true.

Sariel (UIUC) CS473 38 Fall 2011 38 / 40

Reduction: $CSAT \leq_P SAT$

Continued...

• Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe that

$$x_v = x_u \lor x_w$$
 is true $\iff (x_v \lor \neg x_u), (x_v \lor \neg x_w),$ all true. $(\neg x_v \lor x_u \lor x_w)$

Sariel (UIUC) CS473 39 Fall 2011 39 / 48

Reduction: $CSAT \leq_P SAT$

Continued...

• Case \wedge : So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again observe that

$$x_v = x_u \wedge x_w$$
 is true $\iff (\neg x_v \vee x_u), (\neg x_v \vee x_w), (x_v \vee \neg x_u \vee \neg x_w)$ all true.

Sariel (UIUC) CS473 40 Fall 2011 40 / 4

Reduction: $CSAT \leq_P SAT$

Continued...

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- Add the clause x_v where v is the variable for the output gate

Sariel (UIUC) CS473 41 Fall 2011 41 / 48

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment **a** for **C**
 - Find values of all gates in C under a
 - Give value of gate \mathbf{v} to variable $\mathbf{x}_{\mathbf{v}}$; call this assignment \mathbf{a}'
 - a' satisfies φ_{C} (exercise)
- \leftarrow Consider a satisfying assignment **a** for $\varphi_{\mathcal{C}}$
 - Let a' be the restriction of a to only the input variables
 - Value of gate \mathbf{v} under $\mathbf{a'}$ is the same as value of $\mathbf{x}_{\mathbf{v}}$ in \mathbf{a}
 - Thus, a' satisfies C

Theorem

SAT is NP-Complete.

Sariel (UIUC) CS473 42 Fall 2011 42 / 4

Proving that a problem X is NP-Complete

To prove **X** is NP-COMPLETE, show

- Show **X** is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier C(s, t)
- Reduction from a known NP-COMPLETE problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Sariel (UIUC) CS473 43 Fall 2011 43 / 48

NP-Completeness via Reductions

- **CSAT** is NP-Complete.
- CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-COMPLETE.
- SAT \leq_P 3-SAT and hence 3-SAT is NP-COMPLETE.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- **Vertex Cover** is NP-Complete.
- Clique is NP-COMPLETE.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-COMPLETE.

A surprisingly frequent phenomenon!

Sariel (UIUC) CS473 44 Fall 2011 44 / 46